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Metal ions play an essential role in regulating the functions of immune cells by

transmitting intracellular and extracellular signals in tumor microenvironment

(TME). Among these immune cells, we focused on the impact of metal ions on T

cells because they can recognize and kill cancer cells and play an important role

in immune-based cancer treatment. Metal ions are often used in nanomedicines

for tumor immunotherapy. In this review, we discuss seven metal ions related to

anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel

insights into tumor immunotherapy and clinical applications.
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1 Introduction

Cancer is a multifaceted disease characterized with abnormal proliferation of malignant

cells. High morbidity and mortality rates as well as restricted treatment options pose a

serious threat to public health. Consequently, innovative cancer treatments, such as

immunotherapy and photothermal therapy, are emerging in clinical settings and trials

(1). Cancer immunotherapy has been successful because of its ability to mobilize immune

activation and memory, which results in the rapid and effective control of tumor growth

and prevention of recurrence (2). The complex tumor microenvironment (TME) is the

main reason for limiting immunotherapy, including immunosuppressive cytokines and

cells, such as transforming growth factor-beta (TGF-b), interleukin (IL-10), regulatory T

cells (Tregs) and myeloid-derived suppressor cells (MDSCs) (3, 4). With continuous

research on immunomodulatory factors, the role of metal ions in tumor immunotherapy

has gradually been emphasized (5).

Ion signals are transmitted by various transcellular and intracellular signaling cascades

that regulate immunological memory and immune responses. Different metal ions play

various roles in signal transmission, including calcium (Ca2+), zinc (Zn2+), manganese

(Mn2+), magnesium (Mg2+), potassium (K+), iron (Fe2+/3+), and copper (Cu+/2+) (6).
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Cell membrane is the main barrier limiting free penetration in the

process of metal ion transport. The transport of metal ions through

active means results in the establishment of concentrations and

electric gradients across the membranes. Various integral pore-

forming membrane proteins facilitate this process by enabling the

movement of ions across membranes, allowing the conversion of

different signals through alterations in ion permeability. Currently,

nanotechnology provides new methods for clinical tumor

immunotherapy and has more advantages than traditional

immunotherapy nanocarriers. Nanometallic materials have

garnered attention as a promising delivery medium due to their

nanocrystalline strengthening, high photoabsorptivity, heightened

surface energy, and unique single magnetic domain characteristics

(7). Metal ions are important components of nanoparticles to

improve their anti-tumor effects (8, 9). Because metal-based

nanomaterials are comparable in size to deoxyribonucleic acid

(DNA), proteins, viruses, and biomolecules, there are distinctive

interactions that occur between metal-based nanoparticles and

proteins found in the matrix (10). Additionally, metal-based

nanomaterials have the ability to enter the bloodstream

and penetrate the TME, enabling them to be absorbed and

transported by tumor cells. Crucially, nanomaterials of the

appropriate size exhibit a unique enhanced permeability and

retention (EPR) effect in tumor sites, significantly enhancing their

utilization rate and tumor treatment efficacy (11). In this review, we

discuss the role played by different metal ions in anti-tumor

immunotherapy and how to use metal ions to improve the

efficacy of tumor immunotherapy.
2 Metal ions in anti-cancer immunity

2.1 Calcium

Ca2+ is the most abundant metal ion involved in the

proliferation and cycling of immune cells. Currently, Ca2+ is the

most studied metal ion and widely recognized as a second

messenger in immune responses (12). This section will discuss

the transport and effect of Ca2+ in lymphocytes.

The concentration gradient of Ca2+ is involved in release and

storage and dependent on Ca2+ release-activated Ca2+ (CRAC)

channels, transient receptor potential (TRP) channels, P2X and

Cav channels. After the engagement of immunoreceptors, the

mitogenic signal emanating from the IS induces the breakdown of

PIP2 to inositol trisphosphate (IP3) binding to the IP3 receptors

resulting in the release of Ca2+ from the endoplasmic reticulum

(ER), and activates stromal interaction molecules (STIM1/2) to

bind to the N- and C-termini of ORAI1 which form the subunit of

the CRAC channel (13). The CRAC channel exhibits a notable

preference for Ca2+ and possesses remarkably low single-channel

conductance (14, 15). The influx of Ca2+ into intracellular

organelles is mediated by store-operated Ca2+ entry (SOCE) (16,

17) (Figure 1).

T cells activated by tumor antigens in an MHC-I-restricted

manner begin to proliferate and release cytokines. During this
Frontiers in Immunology 02
progression, signal transduction considerably relies on key

receptors and signaling molecules, including evocation and

termination (18). IP3 binds to the IP3 receptor, resulting in Ca2+

influx to activate the calcineurin-nuclear factor of activated T

(NFAT) pathway, which enhances the cellular processes, for

example, polarization, proliferation, and cytokines release

including interleukin 2 (IL-2), interferon-g (IFNg), tumor necrosis

factor (TNF), perforin, and granzyme (19, 20). Abolishment of

humanT cell function is caused by deletion of STIM1 or ORAI1 to

inhibit Ca2+ influx in vitro (21). Functional CRAC channels and

elevated levels of cytoplasmic Ca2+ may activate leukocyte function-

associated antigen 1 (LFA-1), contributing to the adhesion of

cytotoxic lymphocytes (CTLs) to the target cells both in vitro and

in vivo (22–24). Co-receptor CD5 co-cross-linking with the TCR-

CD3 complex down-regulated the TCR-CD3-increased Ca2+

mobilization to inhibit T cell function (25). Programmed death-1

(PD1) blockade increases Ca2+ signaling to enhance the migratory

ability of CTLs in neck cancer (26). P2X, a type of Ca2+ channels,

enhances T cell function and T cell receptor (TCR) signaling both in

human and mouse model (27, 28). TRP and Cav channels promote

rodent and human T cells differentiation and proliferation (29–

32) (Table 1).

Tregs protect organisms from autoimmune reactions by

maintaining T cell tolerance (60). Inhibition or depletion of Tregs

enhances the efficacy of cancer immunotherapy (33). Deficiency of

either STIM1 or STIM2 in T cells leads to differentiation to Treg,

Th1and Th17 cells suggesting that STIM is vital for their

development and function (34).

Natural killer (NK) cells originate from bone marrow stem cells,

undergo two differentiation and maturation pathways in the bone

marrow and thymus, and are widely distributed in the main organs.

NK cells selectively kill target cells, such as viral infections or

tumors, and play an important role in anti-tumor immunity (35,

36, 61, 62). The ablation of either RAI1 or STIM1 in NK cells

severely impairs defective store-operated Ca2+ entry but not

cytotoxic granule polarization (63, 64). After interaction with

target cells, the release of cytokines, such as TNF-a, granulocyte-
macrophage colony stimulating factor (GM-CSF), and interferons,

by NK cells is increased via the calcineurin-NFAT-dependent

pathway (65, 66). Increasing the intracellular Ca2+ concentration

of dendritic cells (DCs) boosts autophagy and promotes antigen

presentation (67). High intracellular Ca2+ levels inhibit the

formation of WIP/WASP droplets, allowing PKC-q to easily

access and phosphorylate WIP, thereby increasing the actin

polarization of macrophages and phagocytosis of tumor cells

(68) (Figure 2).

Ca2+ can bind directly to anionic phospholipids, acting as a

regulator for membrane protein functionality. A pH-responsive

calcium carbonate nanoparticle (CaCO3/CAI@Liposome, CCL)

was prepared by loading calcium carbonate nanoparticles with

CAIX inhibitors (CAI) and coating with liposomes, which can

accurately regulate the content of Ca2+ and pH in and out of

tumor cells to promote DCs maturation and macrophage

polarization towards the anti-tumor M1 type (69). Given the

positive role of Ca2+ in immune cells, novel methods should be

explored to utilize Ca to improve its anti-tumor effects.
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TABLE 1 Role in lymphocytes function.

Metal
ion

Role in lymphocytes function
Refs.

T DC NK Macrophage Neutrophils

Ca
T cells function,

differentiation, proliferation

Maturation,
Antigen

presentation
Activation

Polarization
and Phagocytosis

Unknown role
(18, 19, 26,
33–36)

Zn
T cells function,

differentiation, proliferation
Maturation

Activation,
Differentiation

Activation
Recruitment,
Chemotaxis

(37–41)

Mn
T cells function,

differentiation, proliferation
Maturation

Activation,
Infiltration

Polarization,
Antigen presentation

Unknown role (42–45)

Mg
T cells function,

proliferation, infiltration
Unknown role Activation Unknown role Unknown role (46–48)

K T cells function, differentiation Unknown role Unknown role Polarization Unknown role (49–52)

Fe T cells function Unknown role Activation Polarization Infiltration (53–55)

Cu T cells function, Infiltration Unknown role Infiltration Unknown role
Superoxide

anion production
(56–59)
F
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FIGURE 1

Role of metal ions in T cells. Various metal ion channels or transporters are present on the surface of T cells. They are mainly used to maintain the
entry and exit of metal ions. In addition, some metal ions or transporters can regulate the transport of metal ions within the cytoplasm to various
organelles and nuclei, thereby altering the function of related organelles or the transcription of target genes, thus regulating the cell function.
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2.2 Zinc

Zn2+ is a trace metal essential for several proteins and plays a

vital role in cell proliferation, differentiation, oxidative stress,

immune responses, and apoptosis by conjugating to zinc-binding

proteins (37, 70, 71). Moreover, Zn2+ participates in various

pathophysiological processes, including growth retardation,

cognitive disorders, cardiovascular diseases, and cancer (72).

Zn2+ homeostasis is tightly regulated by two families of Zn2+

transporters: ZnTs and ZIPs (72). ZnTs contain10 members

contributing to the export of Zn2+ from the intracellular space.

ZIPs have 14 members that facilitate an increase in the cytosolic

concentration of Zn2+ (73). Metal regulatory transcription factor 1

(MTF-1) is sensitive to Zn2+ and activated via cysteine2-histidine2

(Cys2-His2) Zn fingers binding to DNA to mediate the expression

of ZnT1, ZnT2, and metallothioneins (MTs), which regulate the

storage and release of intracellular Zn2+ (74, 75) (Figure 1).

In the T cell response, the MAPK, PI3K/Akt, and STAT3

pathways are the main signal target transducers of Zn2+ which

regulate the expression of genes involved in differentiation, survival,

proliferation, and apoptosis. ZIP6 expression is enhanced by the

activation of the STAT3 signaling pathway to mediate cell

migration (38, 39, 76). In sickle cell anemia, Zn2+ deficiency

decreases CD73, a marker of cytotoxic T cells, resulting in

suppressing T cell differentiation and maturation (77, 78). In

addition, interaction between the domain of CD4 or CD8a with

p56lck is also controlled by Zn2+ in regulating T cell activation and

differentiation in vitro (79). Zap70, a TCR signaling downstream

molecule, is phosphorylated through activating Zn2+ regulated

kinase to sustain proliferation and activation in mouse spleen and

thymus cells, as well as human Jurkat T cells. Moreover, Zn2

+-dependent TCR signal amplification induces IL-2 receptor

expression, leading to proliferation of activated T cells (76). In
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contrast, ZIP6 deletion impairs activation marker expression and

cytokine production (80–82). Additionally, SLC39A6 indirectly

promotes cell proliferation and cytokine production via TCR

activation (83). Moreover, MTs and zinc-finger transcription

factors are increased to regulate tumor infiltrating lymphocytes

(TILs) in mouse model (40). TILs up-regulate GATA-3 and IKZF2

to mediate Zn2+ homeostasis inducing T-cell differentiation and

exhaustion in the B16F10 murine melanoma model (84). The

balance of T helper cell differentiation is altered by Zn2+

signaling. Zn2+ depletion decreases IFNg and T-bet essential for

Th1 differentiation in Con-A stimulated HUT-78 cells (41, 84)..

TH17 and Treg cells formation is mediated by Zn2+

supplementation which remits the T cell-mediated allogeneic

immune responses in the human mixed lymphocyte reaction (85,

86). GLI-similar 1 (GLIS1), a zinc finger protein, causes CD8+ T cell

exhaustion via the SGK1-STAT3-PD1 pathway in hepatocellular

carcinoma (HCC) (87). Zinc finger protein 64 (ZFP64) is a

transcription factor for cytotoxic T-lymphocyte-associated protein

4 (CTLA-4) and anti- PD-1 in esophageal cancer (88, 89) (Table 1).

In addition to affecting T cells, Zn2+ can also regulate other

immune cells. In mature DCs, the importers ZIP6/10 are decreased,

whereas ZnT1/4/6 and MTs are increased to reduce intracellular

Zn2+ (90). Unlike in DCs, an increase of Zn2+ activates

macrophages and the recruitment of neutrophils (91). In NK

cells, Zn2+ promotes the lytic activity and differentiation

(92) (Figure 2).

Zn2+ is essential for innate and adaptive anti-tumor immunity

leading to an increase of Zn2+-based nanometallic materials. ZnS@

BSA (bovine serum albumin), a new zinc-based nanocluster,

enhances the infiltration of CD8+ T cells and DCs via cGAS-

STING signals in HCC (93). Moreover, a Zn-metal-organic

skeleton vaccine (ZPM@OVA-CpG) achieved the targeted release

of Zn2+ in DCs and the TME under acidic conditions. The vaccine
FIGURE 2

Role of metal ions in dendritic cells, macrophages, and natural killer cells. (A) The influence of various metal ions on DCs, the main antigen-
presenting cells, is mainly reflected in antigen presentation and maturation. (B) Macrophages have both phagocytic and antigen presenting functions,
as well as immunosuppressive effects. Therefore, the influence of metal ions on macrophages is mainly reflected in activation, antigen presentation,
and polarization. (C) NK cells belong to innate immune cells and have strong anti-tumor effects. The main impact of metal ions on NK cells is to
regulate their differentiation, activation, and infiltration.
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actively promoted DCs maturation and antigen cross-presentation

via cGAS-STING signaling, resulting in the activation of CD8+ T

cells (94). Weichselbaum et al. investigated ZnCDA, a powerful

tumor-targeting STING agonist, which enhances tumor

accumulation by destroying endothelial cells in the tumor

vascular system. ZnCDA preferentially targets tumor-associated

macrophages to regulate antigen processing and presentation and

subsequently triggers anti-tumor T cell responses. ZnCDA

reinvigorates the anti-tumor activity of radiation therapy and

immune checkpoint inhibitors in immunologically “cold”

pancreatic and glioma tumor models (95). Based on the effects on

different immune cells, Zn2+ is a double-edged sword. Therefore,

these factors should be carefully considered before using Zn2+.
2.3 Manganese

Mn2+ is regarded as a second messenger in mammalian tissues

and as an essential metal for intracellular processes, such as energy

production, bone growth, reactive oxygen species (ROS) generation,

and immune response (42, 96). The mobilization and distribution

of Mn2+ is precisely mediated through gamma globulin, albumin,

and Mn-transferrin complex. Mn2+ plays a key role in the activation

of various enzymes, including glutamine synthetase (GS),

isomerases, pyruvate carboxylase, arginase (ARG), lyases, and

hydrolases (43, 44).

Usually, intracellular Mn2+ is stored in resting organelles, such

as the mitochondria or Golgi apparatus. However, damage to

mitochondrial activity and DNA can result in the presence of a

large amount of intracellular Mn2+ (45, 97). Unlike Ca2+ and Zn2+,

intracellular Mn2+ is transported using various transporters, such as

divalent metal transporter A (DMT1), calcium-based proteins such

as TRPM3/7, and metal-dependent proteins such as ZIP8/14 and

ZnT10 (42, 98–100) (Figure 1).

The effect of Mn2+ on T cells is mainly reflected by an increase

in the number, differentiation, and cytokine release of TILs by

inducing type I interferon production in a murine orthotopic HCC

model (101–103). Moreover, Mn2+ deficiency leads to a reduction of

macrophage antigen presentation and DCs maturation, thereby

mediating murine CD8+ T cell activation in vivo (104).

Furthermore, Mn2+ treatment substantially increases the

infiltration of murine NK cells and the release of cytokines to

reduce tumor growth (105, 106). Mn2+ can change macrophage

(M2) polarization to macrophage (M1) with anti-tumor effects

(107). Mechanistically, the Mn2+-dependent cGAS-STING

pathway plays a remarkable role in T and NK cell functions and

DCs maturation. It was reported that NK cell activity increased by

producing type I IFNs after adding MnCl2 (103). In addition, Mn2+

improved the clinical efficacy of PD-1/PD-L1 therapy (101, 108).

Taken together, Mn2+ serves a vital function in the cross-

presentation of immune cells, such as DCs, TILs, and NK

cells (Figure 2).

Manganese oxide (MnO2) nanomaterials are typically used as

enhancers to increase the immunotherapy efficiency of

photothermal agents by catalyzing the conversion of H2O2 into
Frontiers in Immunology
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O2 (109). Mn@CaCO3/ICG nanoparticles serve as vectors for

loading small interfering RNA (siRNA) targeting PD-L1 (109).

Hou et al. designed MnO nanoparticles combined with the

tumor-homing peptide iRGD (CRGDKGPD) to effectively

activate the cGAS-STING signaling pathway. Manganese also

assisted a-PD-1 to inhibit tumor growth and metastasis (110).

Therefore, Mn2+ is a potential therapeutic adjuvant for the

treatment of tumors.
2.4 Magnesium

Mg2+ is the second-most abundant metal ion (111, 112). Mg2+ is

normally complexed with ATP or ADP or acts as a cofactor, which

is essential in the regulation of biological activities, such as the cell

cycle, apoptosis, division, and differentiation (46, 113), as well as

biochemical processes, including oxidative phosphorylation,

glycolysis, DNA repair, metabolism, and synthesis (114–116).

Mg2+ distribution is different among the extracellular and

intracellular spaces, which determines its various functions.

Extracellular Mg2+ binds to plasma proteins to transmit activating

or inhibitory signals, whereas intracellular Mg2+ interacts with

nucleotides, nucleic acids, or ATP to mediate biochemical

processes (117). The Mg2+ transport is tightly regulated by intake

and excretion via Mg transporter 1 (MAGT1), TRP cation channel

subfamily M member 7 (TRPM7), SLC41A1, and Na+ exchange;

MAGT1 is a highly selective Mg2+ channel (47, 118, 119) (Figure 1).

Mg2+ is regarded as a second messenger that regulates

proliferation, development, and function through MAGT1,

TRPM7, and SLC41A1 transporters in T cells (48, 120),. After

TCR stimulation or PLCg1 activation, Mg2+ and Ca2+ enter T cells

in an MAGT1-dependent manner (121). The deletion of MAGT1

decreases the capacity response to TCR and Ca2+ entry into human

T cells in vitro (48, 122). In contrast, reducing the concentration of

Mg2+ causes TCR signal suppression, resulting in human T cell

exhaustion, decreased Ca2+ influx, proliferation, CD69 and CD25

expression both in vitro and vivo (120, 123). In addition, TRPM7, a

non-selective Mg2+ channel, modulates Mg2+ concentration and T

cell development and maturation (124, 125) and is fundamental for

anti-tumor immunity (20, 126). Mouse TRPM7 deficiency did not

affect acute uptake of Mg2+ or the maintenance of total cellular Mg2

+ but suppresses T cell maturation (20, 49). Mechanistically, the

binding between Mg2+ and metal-ion-dependent adhesion sites

causes TCR signal stimulation, resulting in conformational

changes in LFA-1, which is essential for T cell activation by

mediating proximal and distal signaling activities, such as focal

adhesion kinase phosphorylation and extracellular signal-regulated

protein kinase 1/2 (ERK1/2) phosphorylation (50, 127–129).

Lotscher et al. measured serum Mg2+ levels in 100 patients with

leukemia and 67 patients with lung cancer and found that patients

with low serum Mg2+ levels had lower survival rates to CAR-T

therapy (128) (Table 1). In addition, activation and cytotoxicity are

increased in intratumor CD8+ T cells and NK cells after

intraperitoneal injection of MgCl2 (127) (Figure 2).
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2.5 Potassium

K+ is an important inorganic electrolyte used to maintain

normal physiological functions in the human body. K+ is involved

in glucose, protein, and energy metabolism. K+ is the main cation in

the cells and involved in maintaining osmotic pressure, myocardial

function, and the acid-base balance of the intracellular and

extracellular fluids (51, 130).

Similar to other cations, the balance of K+ within cells is finely

controlled by several ion channels, including Kv1.3, KCa3.1,

K2p3.1, K2p5.1, and K2p9.1 (131). Kv1.3 and KCa3.1 act as the

main channels. The activation of Kv1.3- and KCa3.1-dependent

membrane depolarization and release of Ca2+ and calmodulin,

respectively, results in K+ efflux (52).

K+ has a crucial role in modulating T cell function and is

associated with Ca2+ signaling (17, 132). TCR activation signals

increase Ca2+ entry, resulting in intracellular Ca2+ release and

membrane depolarization that causes Kv1.3 and KCa3.1

activation to increase K+ efflux, which in turn restores the

membrane state, resulting in Ca2+ entry to induce NFAT

expression, IL-2 release, T cell migratory capacity, and T cell

subsets, including Th1, Th2, Th17, and Treg cells (133–135). In

contrast, Ca2+ signaling is repressed if Kv1.3 and KCa3.1 are

blocked upon TCR stimulation, indicating that the K+ gradient

and Kv1.3 and KCa3.1 channels are essential for modulating T-cell

activation (136). Moreover, reducing intracellular K+ via

overexpression of KCa3.1 can increase the production of IFNg in

T cells to inhibit tumor growth and prolong survival, which is

proved in patients with head and neck cancer (26, 53). In anti-

tumor T-cell responses, large amounts of K+ produced by

necrotizing tumor cells lead to a functional decline in CD8+ T

cells owing to increased intracellular K+ affecting the Akt-mTOR

pathway. Adenosine (Ado) and PD-1 signaling inhibit

KCa3.1channel activity to limit K+ efflux leading to restrain the

ability of CD8+ T cells from cancer patients (51) (Figure 1).

Another effect of K+ on T cells is the reprogramming of T cell

metabolism. Higher extracellular K+ levels lead to autophagy and

mitochondrial-based energy metabolism, causing changes in the

expression of genes associated with activation, stemness, or

exhaustion in T cells (137). In TILs isolated from B16 tumors,

increasing extracellular K+ level induces central memory T cells,

whereas reducing effector memory T cells and exhaustion markers,

such as PD1, 2B4, and Tim-3 to enhance cancer immunotherapy.

Hexokinase II also requires K+ as a cofactor to mediate anti-tumor

immunity (137). In contrast, CD19-CAR-T cells express higher

memory and lower effector genes after culturing in a medium

containing a low glucose level and K+ (138) (Table 1). The anti-

tumor effect of high K+ level was reported. The underlying

mechanism was attributed to inhibition of tumor-associated

macrophages (TAM), and the Kir2.1 channel was identified as the

central regulator of TAM functional polarization in the high K+

TME (139) (Figure 2).
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2.6 Iron

Fe2+/3+ has several biological functions in living organisms. Iron

ions are important components of hemoglobin and myoglobin,

which are used to maintain normal respiratory function (140).

Second, iron ions participate in the catalytic reactions of various

enzymes in the body, including fatty acid metabolism and oxidases.

Iron ions also regulate various important metabolic processes, such

as immune responses, neurotransmission, and DNA synthesis

(141, 142).

Given the importance of Fe2+, its transport is finely regulated.

Transferrin protein (Tf) is regarded as the primary transporter that

forms a complex with Fe2+ and internalized by the transferrin

receptor (CD71) (54, 143). In addition, DMT-1 and ZIP-8 are used

to transport Fe2+ in a nonspecific manner (143).

T cell function and activation are impaired under conditions of

defective Tf-receptors or decreased intracellular Fe2+ levels, such as

reduced expression of CD25 and impaired to IL-2 receptor

signaling (144). In contrast, Fe2+ supplementation in the culture

medium can restore the biogenesis of T cell (145). Ferroptosis is an

iron-dependent form of regulated cell death in both T and tumor

cells. Fe3+ usually binds to transferrin in the form of trivalent iron,

enters cells through transferrin channels, and is reduced to Fe2 + by

the metal reductase STEAP3, resulting in a Fenton’s reaction that

releases reactive oxygen species (ROS) represented by hydroxyl

radicals. Accumulated ROS-mediated peroxidation of membrane

lipids leads to damage to cell function and ferroptosis. At present,

ferroptosis is regarded as a method of inhibiting tumor growth, and

a close correlation has been found between ferroptosis and anti-

tumor immunity (55, 146). In a recent study, CD36 expression

decreased cytokine release and inhibited the anti-tumor activity of

B16 tumor-infiltrating CD8+ T cells owing to CD36-mediated lipid

peroxidation and ferroptosis (147). In contrast, CD8+ T cells can

induce tumor ferroptosis via lipid peroxide accumulation triggered

by CD8+ T cells-secreted IFNg to increase STAT1 and suppress

cystine/glutamate antiporter system Xc in B16 beard mouse model

(148). Peng Liao et al. found that arachidonic acid and IFN-g
secreted by CD8+ T cells in the TME can induce MC38 and B16F10

cell ferroptosis (149) (Figure 1).

According to a previous report, Fe2+ is released by other

immune cells, such as TAMs and tumor-associated neutrophils

(TANs), to sustain cancer progression (150). Fe2+ transporters and

metabolism play an essential role in macrophage polarization; for

example, M1 macrophages tend to reduce the level of Fe2+, whereas

M2 macrophages are inclined to recirculate free Fe2+ (151). Kim

et al. reported that myeloid-derived immunosuppressive cells

(PMN-MDSCs) in the TME spontaneously induce oxidized lipid

release, causing repression of T cell activity. In mice with normal

immune function, suppressing ferroptosis inhibits the

immunosuppressive activity of PMN-MDSCs and can be

combined with immune checkpoint inhibitors to inhibit tumor

growth (152). In HCC, ferroptosis triggers tumor invasion of
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MDSCs via high mobility group protein B1 (153). In gastric cancer,

NK cell levels are negatively correlated with the abundance of

tumor-associated fibroblasts (CAF). CAF impair the anti-tumor

ability of NK cells by inducing ferroptosis (154) (Figure 2).

Magnetic hyperthermia is a tumor therapy triggered by iron

oxide nanoparticles, enabling an increase in antigen presentation,

maturation of DCs, T lymphocyte recruitment, and a reduction in

Tregs (155). Biocompatible PEG-coated ferrihydrite nanoparticles

(PEG-Fns) mediate TAM polarization fromM2 to M1 (156). Zhang

et al. assembled quercetin and iron ions to prepare the nano-

photosensitization agent, QFN. When QFN was decomposed, the

released quercetin reduced programmed death ligand 1 (PD-L1) in

tumor cells by decreasing the activation of JAK2 and STAT3 and

reshaping the extracellular matrix (ECM) (157). In summary, these

data indicate that iron plays a dual role in regulating immune and

tumor cells.
2.7 Copper

Cu+/2+ is an important trace element and an essential

component of many biochemical reactions. There are two types,

Cu+ and Cu2+ in living organisms (158). Within cells, Cu2+ undergo

redox reactions and metabolic pathways with other metabolites,

such as cytochrome c redox reactions and intracellular respiration

(159). In addition, Cu2+ is important components of many

enzymatic reactions, such as intracellular oxygen site-catalyzed

oxidation reactions. Finally, Cu2+ participates in the expression of

many transcription factors that regulate various physiological

reactions, such as nuclear factor-kappa B (NF-кB) and activator

protein-1 (AP-1) (160–162).

Cu2+ deficiency or excess can lead to oxidative stress and

toxicity. Intracellular Cu2+ is delivered to various cellular

compartments to modulate intracellular processes (163).

Consequently, Cu2+ homeostasis is closely modulated by solute

carrier family 31 member 1/2 (CTR1/2) and SLC11A2/DMT1, as

well as ATPase copper transporting a (ATP7A) and b (ATP7B),

MT, glutathione (GSH), Cu2+ chaperone for superoxide dismutase

(CCS), antioxidant protein 1 (Atox1), and cytochrome c oxidase

copper chaperone 17 (COX17). Extracellular Cu2+ is reduced to Cu+

by binding to metal reductases of the STEAP family and is

transported into cells via SLC31A1 or combined with Cu2+

chaperone protein antioxidant-1 (ATOX1) to the Golgi network

via ATP7A/B (164, 165). Within the cytoplasm, excess Cu2+ is

excreted via ATP7A/B and transferred from the Golgi apparatus to

other organelles to mediate cellular copper homeostasis (56). CCS1

delivers Cu2+ to superoxide dismutase 1 (SOD1) in the cytoplasm

(57, 166). Cu+ in the mitochondrial membrane is regulated by

COX17 during transport (167). CCS and ATOX1 are important

transporters of Cu+ into the nucleus (168, 169). Furthermore,

elesclomol, ATN-224, tetrathiomolybdate, disulfiram (DSF),

pyrithione, and chloroquine are considered copper ionophores (58).

Cu2+ potentially is involved in the activation and regulation of T

cells. Cu2+ deficiency impairs CTL capacity to kill target cells and

reduces T cell proliferation both in vitro and in vivo (170, 171). Bala

et al. found that the infiltration of CD4+ and CD8+ T cells decreased
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in splenic monocytes from copper-deficient rats (59). Both the

protein and mRNA expression of IL-2 are reversibly decreased in

human T lymphocytes, as well as superoxide anion production by

neutrophils after Cu2+ deficiency (172–174). Moreover, the effect of

Cu2+ on helper T cells is consistent with CTLs including their

proliferation and function (175, 176). Voli et al. demonstrated that

intracellular Cu2+ regulates PD-L1 expression to inhibit the function

of T lymphocytes in brain tumors. Further exploration revealed that

copper chelators decrease PD-L1 expression by suppressing the

epidermal growth factor receptor (EGFR) and transcriptional

activator protein (STAT) signaling pathways to increase the

number of T lymphocytes and NK cells (177) (Figure 1).

Like other ions, Cu2+ also regulate other immune cells.

Chatterjee et al. demonstrated that CuNG (a copper chelate)

reprogrammed TAMs from M2 to M1, activating the T cell

function (178, 179). Blood neutrophils are reduced in copper

deficiency by decreasing the superoxide anions (180) (Table 1).

Cuproptosis is a unique mode of cell death and first reported by

Tsvetkov et al. in 2022 (181–184). The classical mechanism of

cuproptosis involves the binding of elesclomol to extracellular Cu2+

and its transport to the cellular compartment. Ferredoxin 1 (FDX1)

reduces Cu2+ to Cu+ and inhibits iron-sulfur protein cluster (Fe-S)

synthesis. Together, these abnormal processes lead to protein

toxicity, ultimately leading to cell death. Wang et al. showed that

chimeric antigen receptor T (CAR T) cells were reprogrammed by

exposing DSF/Cu plus ionizing irradiation (IR). This method can

reverse the immunosuppressive TME and increase the anti-tumor

function of CAR-T cells (185, 186).

A nanoparticle drug, NP@ESCu, was developed to induce

cancer cell apoptosis and simultaneously reprogram the

immunosuppressive TME. When combined with aPD-L1

blockade, the therapeutic effect on cancer was obviously

increased, which contributes to a broad range of clinical

applications (187). BSO-CAT@MOF-199 @DDM (BCMD)

nanomediated copper proliferation can induce immunogenic cell

death (ICD) and enhance DC activation and T cell infiltration

(188). In summary, although copper plays a key role in the activity

of various enzymes, cytotoxicity can occur at higher concentrations.
3 Conclusion

Tumor immunotherapy has become one of the most promising

treatment methods besides surgery, radiotherapy, and chemotherapy.

However, tumor immunotherapy is influenced by various factors. The

metabolism of metal ions in the tumor microenvironment, particularly

their association with anti-tumor immunity, has been well-

demonstrated. Metal ions can improve the tumor microenvironment

and promote the activation and proliferation of immune cells. On the

one hand, they activate the innate immune system by enhancing the

presentation of DCs and the cytotoxicity of macrophages and NK cells

to augment their anti-tumor effects. On the other hand, metal ions can

also stimulate the activation and proliferation of adaptive immune cells,

especially T cells that recognize and kill tumors to improve the

effectiveness of tumor immunotherapy. With the continuous

deepening of research, it has been found that metal ions can also
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directly induce tumor cell death, such as ferroptosis and cuproptosis,

which mainly induce tumor cell death by changing their metabolic

mode. Finally, metal ions are also used to prepare nanomedicines that

can directly induce tumor death or exert anti-tumor effects by loading

anti-tumor drugs and small RNAs to stimulate the immune cells.

Although the application of metal ions appears to be a promising

method for improving the efficacy of tumor immunotherapy based on

existing results, making it a potential immune system agonist requires

more attention regarding its safety.
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