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The role of dendritic cells in
MASH: friends or foes?
Antonio T. Pinto and Veronika Lukacs-Kornek*

Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the
Rheinische Friedrich-Wilhelms-University, Bonn, Germany
Dendritic cells (DCs) are major antigen-presenting cells that connect innate and

adaptive immunity. Hepatic DCs are less activated and contribute to maintain the

tolerogenic environment of the liver under steady state. Several studies indicated

DCs in metabolic dysfunction-associated steatohepatitis (MASH), representing a

substantial burden on healthcare systems due to its association with liver-related

morbidity andmortality. Studies highlighted the potential disease-promoting role

of liver DCs in the development of MASH while other experimental systems

suggested their protective role. This review discusses this controversy and the

current understanding of how DCs affect the pathogenesis of MASH.
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Introduction

Metabolic dysfunction-associated steatohepatitis (MASH) has recently become a significant

health issue, presenting as a progressive and potentially severe form of metabolic dysfunction-

associated fatty liver disease (MAFLD) (1, 2). This intricate condition is characterized by hepatic

inflammation and liver cell damage and association with liver-related morbidity and mortality

(3). During the progression of MAFLD caused by liver steatosis, patients are at risk for multiple

complications, including hypertension, atherosclerosis, and other diseases (4). In addition,

MASH has the potential to progress to a more advanced form of liver disease, such as cirrhosis

and hepatocellular carcinoma (HCC) (5).

The pathogenesis of MASH is a multifaceted process involving hepatocyte triglyceride

accumulation followed by additional triggering factors, including oxidative stress,

lipotoxicity, mitochondrial dysfunction, and pro-inflammatory cytokine release, that
Abbreviations:MAFLD, Metabolic dysfunction-associated fatty liver disease; MASH, Metabolic dysfunction-

associated steatohepatitis; HCC Hepatocellular carcinoma; ILCs, Innate lymphoid cells; LSECs, Liver

sinusoidal endothelial cells; HSCs, Hepatic stellate cells; DCs, Dendritic cells; cDCs, Conventional

dendritic cells.; pDCs, Plasmocytoid dendritic cells; ECM, Extracellular matrix; HSD, High-sucrose diet;

CDHFD, Choline-deficient high-fat diet; IL-10, Interleukin-10; TGF-b Transforming growth factor-beta;

BATF3, Basic leucine zipper ATF-like transcription factor 3; H2S, Hydrogen sulfide; LN, Lymph node; EVs,

Extracellular vesicles.
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contribute to the worsening of the condition (6). Hepatic lobular

inflammation is a defining characteristic of the transition from

simple steatosis to steatohepatitis. Presently, it is recognized as the

primary factor driving the progression of MAFLD to MASH (7), as

well as the development of cirrhosis and its specific contribution to

extrahepatic complications associated with the disease (5, 8).

Prolonged inflammation aggravates tissue damage and may lead

to an abnormal response in tissue healing, thereby contributing to

the emergence of MASH and liver fibrosis. In this context, as a

response to metabolic-related stress, both the innate and adaptive

immune system become activated. Understanding the interaction

between immune and parenchymal cells is the key challenge in

deciphering the pathogenesis of the disease (6, 9).
Liver as a multipurpose organ with
complex immune and dendritic
cell network

The liver is well known for its complex metabolic function and its

role in the maintenance of homeostasis. Structurally, the liver is

composed of repeating functional units that are defined by the

vascular supply structures. These structures form a network of

sinusoidal vessels that provide blood to the metabolic cellular units

of the liver: hepatocytes and cholangiocytes (10). The hepatocytes are

separated from the bloodstream by non-parenchymal cells, including

a layer of fenestrated liver sinusoidal endothelial cells (LSECs) that

lack a basement membrane. Hepatic stellate cells (HSCs) are also

present in the small space of Dissé between LSECs and hepatocytes

(10). Besides these parenchymal cells, the liver is home for multiple

subsets of immune cells, e.g., macrophages, dendritic cells (DCs),

classical T and B lymphocytes, and innate lymphoid cells (10–12).

Recent years of scRNAseq and multiparameter flow cytometry

analyses revealed diverse immune cell types present in the liver, but

more importantly, it highlighted the manifold subset variety that

could be identified (13–15). Based on extensive single-cell analyses,

novel tools have also been developed such as the Liver Cell Atlas that

are available for scientists to survey their molecule of interest (13, 14).

It is becoming more evident that the presence of such complex

immune network forms an interconnected functional unit with the

metabolic and parenchymal liver tissue under both physiological and

pathological conditions.

Among DCs, we distinguish different DC subtypes based on

their origin and phenotypic criteria (16). Conventional DCs (cDCs)

develop from hematopoietic stem cells in the bone marrow via

intermediate stages as common DC progenitor (CDP) and pre-

cDCs. This process is dependent on Flt3L–Flt3 interaction (17).

Pre-DCs leave the bone marrow and colonize lymphoid and non-

lymphoid organs and become conventional DC type 1 (cDC1) and

conventional DC type 2 (cDC2) cells. The two subsets depend on

different transcription factors for their development. cDC1s need,

e.g., Irf8, Batf3, Id2, and Nfil3 while cDC2s need Irf4 and Irf2 (18).

They also differ in their surface markers used to identify and

distinguish these cells (Table 1). cDC1s in murine lymphoid

organs express CD8a, but in non-lymphoid organs, they are
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rather positive for CD103 or CD24. Murine cDC2s are more

abundant than cDC1s but represent a very heterogeneous cell

population (16, 18). Using scRNAseq analyses, studies identified

DCs expressing BDCA-3 (blood dendritic cell antigens 3) and

XCR1 (X-C motif chemokine receptor 1) as cDC1s in humans

(19–21). Human cDC2s lack the above canonical markers and

exhibit heterogeneous populations with different gene expression

profiles across tissues (19–23). High-resolution scRNAseq

identified further putative cell clusters that may correspond to

additional human cDC subsets (16, 22, 24). A recent study

demonstrated DC3 population derived from Ly6C+ monocyte-

dendritic cell progenitors representing a novel DC subtype (24).

Further studies are necessary to clarify these clusters and how do

they relate to other DC subsets.

Resting DCs receive environmental signals (e.g., type I IFNs) that

maintain their homeostasis and survival (25, 26). cDCs are able to

sense the environment via innate immune receptors such as

pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs) or respond to various

cytokines (e.g., Il1b) (27, 28). Response to such danger signals is

key in the initiation of immune responses (29). DCs upon danger

signal become activated, a process referring to the ability of DCs to

become capable of delivering information to other immune and/or

non-immune cells (16). DCs are sampling the environment and able

tomigrate to draining lymph nodes to present antigens themselves on

MHC-I or on MHC-II molecules or hand over antigens to resident

cDCs for presentation (30, 31). Based on their processing machinery,

cDC1s were considered to be superior in CD8 T-cell priming and

specialized in cross-presentation while cDC2s favored CD4 T-cell

priming (32). Several studies indicated that these differences are not

due to intrinsic ability but rather differences in location and antigen

access and both subsets of cDCs are able to activate both types of T

cells (33, 34).

In addition to their role as initiators of adaptive immunity,

cDCs are involved in immune tolerance both in the thymus and at

the periphery (35). Notably, tolerogenic DC activation was

considered as a semi-activated state compared to the fully

activated DCs evolved upon PAMP engagement. Growing lines of

evidence suggest that tolerogenic DC activation represents not a

different level of quantitative activation but an entirely complex

gene expression profile enabling cDCs to use a different set of

effector capacities to interact with the environment (36, 37).

One of the most distinguished ability of cDCs is the activation

of naïve and memory T cells and thereby the initiation of adaptive

immune responses. They also can directly present antigens to B

cells, leading to humoral response and antibody production.

Additionally, DCs interact with NK and NKT cells and connect

innate and adaptive immunity (16, 38). Besides immune cells, DCs

connect the immune and non-immune compartment to orchestrate

the organ-specific responses. cDCs communicate with fibroblastic

reticular cells and help adjust the stromal compartment during

priming (39). They also produce VEGF or IL31 for endothelial and

neuronal crosstalk (40, 41). Thus, cDCs represent a central

component in the interconnective immune and non-immune

network during immune responses.
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Plasmacytoid DCs (pDCs) were long considered as a third

subtype of DCs originating from a lymphoid progenitor distinct

from the one that gives rise to cDCs (42). pDCs are capable of

producing a large amount of type I IFNs upon infection, and their

role in T-cell activation and tolerance is still debated. Recently, they

have been suggested for re-classification as innate lymphocytes (43).

Monocyte-derived DCs (Mo-DCs) are positive for CD11c and

MHCII and they were believed to serve as antigen-presenting cells

especially during inflammation (44, 45). Mo-DCs express genes

associated with inflammation, but their role in T-cell priming is

questionable. A recent study demonstrated that highly purified Mo-

DCs are unable to perform these tasks (46).

While DC physiology is well studied in lymphoid organs, it is

less understood in the liver microenvironment.
Frontiers in Immunology 03
Hepatic dendritic cells: functional
dichotomy under steady state

Under steady state, hepatic DCs are relatively sparse in the liver

(make up approximately 1% of the non-parenchymal cells) and

mostly located in the periportal area. Here, they form an

interconnected network where cDC1s mostly localized along the

lymphatic vessels, while cDC2s surround the biliary tree (10, 47),

suggesting functional division among subsets. DCs closely interact

with the microenvironment in the portal area, respond to

extracellular matrix (ECM) signals with maturation, and migrate

to draining hepatic lymph node (48, 49). In this context, DCs as

sentinels of the immune system play a central role in the initiation,

modulation, and resolution of hepatic inflammation (10). Being

strategically positioned within the liver allows liver DCs to survey

and respond to changes in the hepatic microenvironment, making

them indispensable contributors to the orchestration of immune

responses in the liver. The liver, as most non-lymphoid organs, also

possesses DC precursors with the capacity to differentiate towards

all three DC subtypes (10, 50). Additionally, it has been reported

that CD11c+ CX3CR1+ DCs, representing an additional DC subset

in the liver, are located at the subcapsular area and replaced by

monocytes from the circulation (51). What is the exact role of these

cells and how they relate to other conventional DC subsets in liver

homeostasis and pathology remain to be elucidated.

Liver cDCs under steady state have a lower capacity to

endocytose antigen and are less efficient in allogenic T-cell

activation than lymphoid DCs. They express immunosuppressive

cytokines such as interleukin-10 (IL-10) and transforming growth

factor-beta (TGF-b). To complement the liver tolerogenic

environment, they respond less to LPS (and other TLR) stimuli: a

phenomenon referred to as endotoxin tolerance (10, 50, 52, 53).

pDCs, on the other hand, primarily promote Treg responses in the

liver and are crucial in the tolerogenic response to oral antigens (10,

52, 53). Thus, overall, these specialized DC subsets in the liver act as

APCs and modulate immune responses by promoting the

generation/function of Tregs, by inhibiting pro-inflammatory T-

cell responses, and by supporting the maintenance of immune

tolerance under steady state via their unique cytokine profile.

MASH and the adaptive arm of the
immune response

A large body of evidence suggests that the activation of adaptive

immune components contributes significantly to the progression

and modulation of inflammation in MASH, influencing the disease

pathogenesis and outcomes. It is well acknowledged that patients

with MASH exhibit notably elevated levels of hepatic cytotoxic

CD8+ T cells in comparison to healthy individuals (54–56). This is

accompanied by the elevated presence of Th17 and reduced

numbers of Tregs in the liver, promoting a pro-inflammatory

milieu (57, 58). Rag1KO animals that lack mature B cells, T cells,

and NKT cells are unable to mount adaptive T-cell responses and
TABLE 1 The summary of surface markers of DC subsets.

Mouse Human

cDC1 CD8a+ (lymphoid organs)
CD103+, CD24+ (non-
lymphoid organs)
CD11c+

MHCII+

XCR1+

CLEC9A+

CD11b-

SIRPa-

HLA-DR+

CD141/BDCA-3+

CD123-

CD11c+

CD14-

XCR1+

CLEC9A+

SIRPa-

CD1a-

cDC2 CD11c+

MHCII+

CD11b+

SIRPa+

XCR1-
CLEC9A-

HLA-DR+

CD1c/BDCA-1+

CD123-

CD11c+

CD14-/+

XCR1-

CLEC9A-

SIRPa+

CLEC10A+

CD16-

CD32hi

CD5+/-

CD14-

CD272hi

CD36low

DC3 SIRPa+

Lyz2+

CD16/32+

CD163+

CD36hi

CD14+/-

CD16-

pDC (ILCs)? BST2+

B220+

SiglecH+

CD11low

CD11b-

HLA-DR+

CD303/BDCA-2+

CD123+

CD11c+

CD45RB+

CD304/Neuropilin+

Mo-DC
(inflammatory DCs)

CD11c+

MHCII+

CD11b+

SIRPa+

Ly6C+

CD206+

FceR1+

CD64+

F4/80+

HLA-DR+

CD1c/BDCA-1+

CD1a+

CD14+

CD11c+

CD11b+

FceR1+

SIRPa+
ILCs, innate lymphoid cells.
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have greatly attenuated MASH (59). Mice deficient in b2m, lacking

CD8+ T cells, exhibit protection against both steatosis and MASH

upon choline-deficient high-fat diet (CDHFD) challenge. This

protection relates to a decrease in the production of LIGHT by

CD8+ T cells and NKT cells and the consequently reduced

hepatocyte damage (59). Accordingly, the increase in CD8+ T

cells and the reduction in the CD4 T-cell compartment contribute

not only to the progression of MASH but also to the transition of

MASH to HCC (59, 60). In recent years, it became clear as well that

CXCR6+granzyme-B+PD1+ effector/memory phenotype CD8 T

cells accumulate in the liver during MASH (61). These cells

became metabolically activated by acetate and extracellular ATP

in the microenvironment. This leads to their autoaggressive

behavior that resulted in hepatocyte death that was MHC-I

independent and mediated via purinergic receptor signaling

(P2X7) (61). Together, these data suggest that primed T cells

homing to the liver are responsible for the liver damage and

MASH. Metabolic activation of T cells is further promoted by B

cells independent of TCR signaling (62). B cells become activated

within the lamina propria independent of microbiota and home to

the liver where they affect CD8 T cells and further promote damage

and fibrosis via their IgA secretion (62). This phenomenon is

accompanied by the increased presence of autoantibodies

targeting oxidative stress-derived epitopes in approximately 40%

of adults and in 60% of children with MASH (63). These lines of

evidence suggest that MASH is highly mediated and dependent on

the adaptive immune response. The question is how DCs, which are

the major APCs linking innate and adaptive immunity, fit in

this picture.

The role of DCs in MASH: the
cDC1 controversy
The role of DCs is highly controversial and still remain not well

understood in MASH (Table 2). Increased DC (cDC1, cDC2, and

pDCs) infiltration is a hallmark of humanMASH (56, 68) and has been
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demonstrated in multiple animal models (64–66). The involvement of

cDCs in MASH has been established in the study conducted by

Henning et al., in which DCs exhibited a more activated phenotype

and the ablation of DCs using BM chimeric CD11c.DTR mice resulted

in a larger influx of inflammatory cells to the liver, increased

production of various cytokines associated with hepatic injury, and

accelerated hepatic fibrosis (64). These findings suggested that cDCs

may have a protective role in the context of disease. This was further

highlighted using animal model deficient in the transcription factor

Batf3 (basic leucine zipper ATF-like transcription factor 3) that lacks

CD103+ cDC1s. Batf3 KO animals demonstrated a switch towards

MASH from steatosis under high sucrose diet (HSD) including an

increased presence of inflammatory infiltrates, steatosis, and elevated

hepatocellular damage compared toWT animals (65). CD11c+CD11b+

myeloid cells showed increased frequency in Batf3 KO HSD fed

animals, and the production of cytokines including IL-1ra, CCL2,

CXCL1, CCL5, and TNF was also elevated (65). In addition, upon

adoptive transfer of bone marrow-derived CD103+ cDC1s, a notable

reduction was observed in the influx of pro-inflammatory monocytes

and TNF production by CD11c+ cells (65). Thus, both the above

studies identified DCs that balance the pro- and anti-inflammatory

environment and regulate the presence of the inflammatory infiltrates.

Both studies, however, used systems that were not exclusively specific

for DCs. CD11c is a marker that could also be expressed by, e.g., NK

cells, inflammatory monocytes, and neutrophils, while Batf3 could be

present in regulatory T cells, gamma/delta T cells, and type 9 helper T

cells (16, 69, 70). Therefore, the effect of Batf3 ablation or depletion of

CD11c+ cells could not be unequivocally regarded to DCs.

A recent study by Deczkowska et al. demonstrated the increased

frequency of CD103+ XCR1+ cDC1 and CD11b+ cDC2s in the liver

and showed elevated proliferation of DC-committed progenitors in

the bone marrow, leading to higher frequencies of circulating pre-

DCs in the bloodstream and in the liver (66). Importantly, blocking

the infiltration of hepatic cDC1 by using XCL1 antibody in mice fed

with CDHFD resulted in a moderate decrease in NASH pathology

as compared to the isotype control-treated group (66). These

changes included reduction in ALT and NAS score and reduced
TABLE 2 The summary of studies specifically addressing the role of DCs in MASH.

DC subtype Diet Model Outcomes Reference

cDC1 MCD Cd11c.DTR mice ↑ Inflammation
↑ Fibrosis
↑ Hepatocyte apoptosis

(64)

MCD/HSD Batf3 KO mice ↑ Inflammation
↑
Macrovesicular steatosis

(65)

MCCD, CDHFD, WD -Xcr1.DTR mice
-WT mice + anti-XCL1
antibody
- Human samples

↓ Inflammation
↓ Hepatocellular damage
↑ DC subsets

(66)

Human samples (end-
stage liver disease)

↓ CD141+ population
↑ IFN-l production

(56)

Mo-DCs MCD WT mice received NaHS ↓ Hepatocellular damage
↓ Apoptosis

(67)
↑, Increase; ↓, Decrease.
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the presence of accumulated CD8 T cells with the activated/effector

memory phenotype (66). Additionally, using a mouse model of

XCR1-DTR mice, the loss of cDC1s attenuated immune

rearrangements and MASH pathology in the liver (66). Notably,

there was increased DC migration and priming activity in draining

hepatic lymph node, which suggests superior adaptive T-cell

activation that could feed the liver with effector/memory T cells

that can become autoaggressive in the metabolically altered milieu.

While the study is contradictory to the previous two DC studies, it

still could not explain how DCs actually act in MASH. The XCR1-

DTR model and DC ablation could simply affect draining LN

priming or the lamina propria environment where priming of

adaptive immune cells that home towards the liver is generated.

Besides cDCs, Mo-DCs are also increased in MASH liver, and

their contribution is even less understood than cDC1s. Specific Mo-

DCs expressing CX3CR1 seem to sustain hepatic inflammation by

producing TNF. Additionally, ablation of CX3CR1 by hydrogen

sulfide (H2S) donor NaHS alleviates parenchymal injury in MASH

(67). Notably, the H2S donor and the lack of CX3CR1 affected bone

marrow DC differentiation and precursor activity and questioned

how this phenomenon could be directly related to the

hepatic microenvironment.
Conclusions and outlook

The question “what role do DCs play in MASH?” remains. The

answer is most likely a combination of multiple factors (Figure 1).

Adaptive immune response is key for MASH, and DCs probably

contribute (a) as antigen-presenting cells for generating the army of

T cells that potentially can home to the liver and (b) in terms of

providing CD4 T-cell help for B-cell activation. This would relate to

the function of DCs from outside of the liver (in gut and draining

LN). Migratory DCs coming from the liver could have significance
Frontiers in Immunology 05
in bringing oxidative stress-derived antigens and prime naïve T

cells. It is also underlined by multiple animal and human studies

where the frequency of DCs and their activation state increase (48,

64–66). Increased DC activation has been associated with elevated

CCR7 levels, which are vital for DC migration to draining LN (16,

66). Within the liver microenvironment, specifically in the portal

region, DCs could regulate the lymphoid aggregates resembling

ectopic lymphoid structures as have been described in the lung

during flu infection (71). Such structures could feed further T-cell

priming without involvement of the lymph node. DCs positioned

within or outside of these aggregates, e.g., DCs scattered within the

parenchyma, could affect the balance in the inflammatory milieu via

secreted molecules or extracellular vesicles. The release of EVs is a

major hallmark of matured DCs (72), and secreted EVs have been

demonstrated to play a role in liver pathology (73). This could also

explain why a relatively low amount of cells (in the context of the

total cellularity of the liver) could impede such substantial role on

inflammation and disease outcome. Furthermore, DCs could

influence innate cells such as NKT cells to affect MASH and liver

pathology. It is also important to mention that we do not greatly

understand the pre-DC phenotype observed in MASH in the liver.

This could gain relevance in the light of other studies demonstrating

immensely altered bone marrow hematopoiesis in obesity and

during Western diet treatment (74).

Overall, the role of DCs in MASH is currently under

investigation, and recent studies have highlighted the potential

disease-promoting role of liver DCs in the progression of MASH

while other experimental systems suggest their protective role.

Further experiments are needed to clarify the exact and likely

complex role of DCs in MASH. It will be necessary to use novel

technologies such as spatial genomics, proteomics, and

metabolomics to better understand the cell-specific effects and

niche-specific reprogramming that can influence DCs and liver

pathology. Clarifying the role of DCs in MASH holds promise for
FIGURE 1

The role of DCs in MASH. DCs influence adaptive and innate immune cells in order to affect MASH pathology. Additionally, they might regulate the
pro-anti-inflammatory milieu via soluble molecules, EVs, or immune processes within the ectopic lymphoid structures. Figure was prepared using
BioRender.com.
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uncovering novel therapeutic targets and developing more effective

treatment strategies for this complex and increasingly prevalent

liver condition.
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