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1Medical School of Shihezi University, Shihezi, China, 2Department of Preventive Medicine, Medical
School of Shihezi University, Shihezi, China
With the increasing number of people with HIV (PWH) and the use of

antiretroviral treatment (ART) for PWH, HIV has gradually become a chronic

infectious disease. However, some infected individuals develop issues with

immunologic non-responses (INRs) after receiving ART, which can lead to

secondary infections and seriously affect the life expectancy and quality of life

of PWH. Disruption of the gut microbiota is an important factor in immune

activation and inflammation in HIV/AIDS, thus stabilizing the gut microbiota to

reduce immune activation and inflammation and promoting immune

reconstitution may become a direction for the treatment of HIV/AIDS. This

paper, based on extensive literature review, summarizes the definition,

mechanisms, and solutions for INRs, starting from the perspective of

gut microbiota.
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1 Introduction

Acquired immunodeficiency syndrome (AIDS) is an infectious disease with immune

deficiency caused by infection with HIV (1, 2). CD4+T cells are the target cells of HIV, the

intestinal tract is a reservoir of HIV, Without using ART, resulting in low immune function

of patients and subsequent death of various diseases (3, 4), for example, tumors,

opportunistic infections. Recently, in ART used for PWH, HIV replication is suppressed,

even HIV load below the detection level, but still about 15% -30% of patients in INRs (5),

seriously affect the quality of life and life expectancy, INRs patients have higher non-AIDS

events, such as the occurrence of malignant tumor (6, 7). With the development of research
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on INRs, more and more mechanisms of INRs have been

discovered, treatments for INRs have been proposed, and better

therapeutic results have been achieved in recent years. Therefore,

this paper aims to provide direction for future solutions of INRs

in PWH.
2 Definition of the INRs

Since the introduction of ART for PWH, the condition of PWH

has been effectively controlled, resulting in improved quality of life

and increased life expectancy (8). Additionally, there has been a

significant reduction in viral load and a restoration or near

normalization of CD4
+ T cell counts, approaching levels seen in

healthy individuals. However, there is still a subset of individuals in

whom the CD4
+ T cell count fails to increase or increases at a slow

pace. This phenomenon is referred to as INRs (9, 10).

Currently, it is generally recognized that individuals who have

been receiving ART for one year and have achieved undetectable

viral RNA copies in plasma, but still have a CD4
+ T cell count below

200 cells/ul, or have a CD4
+ T cell count that has not increased by at

least 20% from baseline, are classified as INRs. Additionally, there

are individuals who, after receiving ART for 4-7 years, still have a

CD4
+ T cell count below 350 cells/ul, also considered as INRs (11,

12). However, the precise definition of INRs remains unclear.
3 The mechanism of the INRs

3.1 Time of infection and timing
of treatment

Numerous studies have indicated that compared to younger

patients, elderly patients are more likely to experience INRs (13).

Research by Kiros et al. (14) demonstrated that the probability of

INRs occurring in patients aged 50 and above is 1.97 times higher.

This may be due to the thymic atrophy and function decline in

elderly individuals, resulting in reduced immune function and

diminished production of CD4
+ T cells (15). Moreover,

individuals with larger thymic volume are more likely to

experience a recovery in CD4
+ T cell counts, contributing to a

lower likelihood of INRs. Additionally, the timing of initiating ART

also impacts the occurrence of INRs. Thus, early initiation of ART is

beneficial in reducing the incidence of INRs.

Zhang et al. (16) conducted a large-scale retrospective cohort

study, which indicated that early initiation of ART is more

advantageous in reducing the occurrence of INRs in PWH.

Furthermore, the World Health Organization (WHO)

recommended in 2016 that once diagnosed with HIV/AIDS,

immediate initiation of ART is essential (17). The rationale

behind this recommendation is that early initiation of ART is

advantageous in reducing inflammatory responses and

disturbances in gut microbiota, thereby lowering CD4
+ T cell

depletion and promoting immune restoration. Therefore,

immediate treatment upon diagnosis of HIV/AIDS is crucial to

prevent the occurrence of INRs.
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3.2 Translocation of the gut microbiota

In individuals infected with the HIV, there is a significant

increase in apoptosis of T cells in the intestines, leading to

damage to the intestinal mucosal barrier and increased

permeability. This imbalance ultimately results in dysbiosis of the

gut microbiota and abnormalities in metabolite production,

potentially causing increased intestinal permeability, chronic

inflammation, and overactivation of the immune system (18).

Studies indicate that following HIV infection, there is a shift in

the predominant bacterial species in the gut from Bacteroidetes to

Prevotella (19), influenced more by sexual behavior patterns (such

as men who have sex with men) (MSM)rather than HIV infection

itself (20). Additionally, HIV leads to decreased microbial diversity,

enrichment of g-b-Proteobacteria, and reduction in members of the

Clostridia genus (21).

Overall, the gut microbiota in HIV-infected individuals shows a

reduction in beneficial bacteria and an increase in harmful bacteria.

Furthermore, HIV attacks the intestinal mucosa, further

compromising the intestinal barrier and resulting in dysregulated

microbial distribution, exacerbating inflammation and immune

activation. Harmful bacteria such as Catenibacterium ,

Prevotellaceae, and Enterobacteriaceae can metabolize tryptophan,

with metabolites such as indole and quinolinic acid associated with

adverse health outcomes (22). Conversely, beneficial bacteria

enhance intestinal barrier function by producing short-chain fatty

acids, thereby reducing intestinal permeability and inflammation

levels. Additionally, L-methylsulfonylmethane helps to reduce

oxidative stress in the intestines (22). Beneficial bacteria also

modulate host immune responses by affecting tryptophan

metabolism rate and availability, producing beneficial metabolites

like indole-3-acetic acid, which protects the host from the negative

effects of excessive tryptophan on health (23) (Figure 1).

Heterotopic gut microbiota is an important factor affecting the

degree of immune recovery after ART. Prevotellaceae is enriched in

INRs, and its abundance is positively correlated with the activation

of mucosal T cells (24). In addition, Ruminococcus is significantly

reduced in INR, positively correlated with CD4+ T cell counts, and

negatively correlated with serum pro-inflammatory cytokine levels

(25). In addition, gut microbiota is also involved in the

differentiation of T cell subsets (Th17 and higher regulatory T

cells (Tregs)), and INRs has higher regulatory Tregs and lower Th17

percentage compared to immunological responders (IRs). The

Th17/Treg ratio is negatively correlated with the levels of

intestinal fatty acid binding proteins. Due to the continuous entry

of bacterial lipopolysaccharides from the intestine into the

bloodstream, immune activation and inflammation are

exacerbated, leading to poor immune reconstitution.
3.3 Hyperactivation of the immune system

The disordered gut microbiota is characterized by an increase in

pro-inflammatory bacterial species and a decrease in anti-

inflammatory bacterial species (25, 26). Furthermore, bacterial

lipopolysaccharides and inflammatory factors can both promote
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excessive immune system activation, virus replication, and the

progression of HIV/AIDS, leading to damage to CD4
+ T cells and

the onset of non-AIDS defining illnesses (NADIs), thereby accelerating

the course of HIV/AIDS. Excessive immune system activation is closely

associated with mortality in HIV infection, and systemic chronic

immune activation is considered to be a driving force behind CD4
+

T cell depletion (27). Therefore, inhibiting excessive immune system

activation may represent a new approach to addressing NADIs.
3.4 Platelet-T cell complexes

Dai et al. utilized flow cytometry analysis and immunofluorescence

microscopy to observe that during HIV-1 infection, platelet-CD4
+ T cell

aggregates increase in treatment-naïve HIV-1-infected individuals

(TNs) and INRs compared to healthy controls. However, the

aggregation of platelet-CD4
+ T cells in the INRs group did not

decrease significantly compared to TNs and was associated with

severe immune dysfunction. Platelet-CD4
+ T cell aggregation

positively correlated with HIV-1 viral load and negatively correlated

with CD4
+ T cell count and CD4

+ T cell/CD8
+ T cell ratio. CD45RO,

HIV co-receptors, high levels of caspase-1 and caspase-3, and low levels

of anti-apoptotic protein Bcl-2 were highly expressed in platelet-CD4
+ T

cell aggregates, which may contribute to CD4
+ T cell depletion and

sustained chronic inflammation in INRs (28). Zhu et al. recently

demonstrated that platelets containing HIV in INRs can induce
Frontiers in Immunology 03
metabolic changes in CD4
+ T cells through non-infectious

mechanisms, specifically by forming platelet-CD4
+ T cell aggregates

(29–31). Enhanced glycolysis in immune cells and its contribution to

ATP production are directly correlated with poor immune

reconstitution. This effect specifically occurs in CD4
+ T cells

interacting with INRs platelets containing HIV. However, the

mechanism behind this correlation may be due to INRs having a

greater capacity for platelets to form aggregates with CD4
+ T cells

compared to IRs (28). Increased glycolysis is a crucial hallmark of T cell

activation (32). Increased energy metabolism induced by platelets on T

cells via INRs may contribute to the hyperactivation of CD4
+ T cells,

leading to CD4
+ T cell exhaustion and triggering immune senescence

associated with immune failure. Several mechanisms have been

proposed to explain the immune modulation caused by platelet

interaction with CD4
+ T cells. Gerdes et al. suggest that platelet

interactions with lymphocytes inhibit T cell proliferation and drive

initial or memory CD4
+ T cells towards regulatory (Treg: FoxP3+) or

inflammatory (e.g., Th17) differentiation, thereby leading to immune

failure (33). Platelets can induce polarization and/or secretion of

chemotactic factors in lymphocytes through direct contact and

interaction (34). Platelets can also release extracellular vesicles

(microparticles) that directly interact with these lymphocytes, as well

as myeloid cells and epithelial cells (35, 36). Functionally, these platelet-

derived microvesicles can transfer active mRNA and microRNA

(miRNA) to target cells, promoting the differentiation of Treg (34, 37)

(Supplementary Figure S1).
FIGURE 1

Translocation of the gut microbiota. (This figure is made by Figdraw.) (The patterns in the figure are only for effective differentiation and do not
represent the actual appearance of the things referred to).
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3.5 Co-infection

Negash, Hadush et al. (38) have shown that the rate of immune

reconstitution failure in HIV-infected individuals co-infected with

tuberculosis is significantly higher compared to those without co-

infection. In addition to Mycobacterium tuberculosis, studies have

also indicated that co-infection with hepatitis viruses is a

contributing factor to NADIs in PWH (39). The mechanisms

through which co-infections result in NADIs involve

inflammatory cytokines, which trigger excessive immune system

activation. Moreover, elevated plasma lipopolysaccharides lead to

dysbiosis and translocation of gut microbiota, reducing the quantity

and diversity of anti-inflammatory bacteria, which compromises

the integrity of the intestinal mucosa. As a result, this reduction in

intestinal T cell populations contributes to the development

of NADIs.
3.6 Adipose factor

In obese PWH, inflammation, fat accumulation, and

dysfunction interact with each other. In recent years, adipose

tissue has been found to play a crucial role in regulating immune

function in the body (40, 41). In fact, adipose tissue is considered a

potential reservoir for HIV, and the persistent presence of the virus

in adipose tissue may be related to metabolic and immune

dysfunction in adipose tissue cells (42, 43). Elena Yeregui et al.

conducted a multicenter prospective study evaluating the

association of adipose factors such as apelin, apelin receptor

(APLNR), and zinc-alpha-2-glycoprotein (ZAG) with poor

immune recovery in PWH undergoing ART. The study found

that concentrations of APLNR and ZAG were significantly lower

in immunological INRs compared to responders, and these lower

levels persisted during the treatment follow-up period. Levels of

ZAG were positively correlated with levels of retinol-binding

protein 4 (RBP4), and low circulating RBP4 concentrations were

associated with poor CD4
+ T cell recovery (44). ZAG is a novel

adipokine primarily expressed in visceral and subcutaneous adipose

tissue (45). Its role in the immune system may be mediated through

its anti-inflammatory effects on T cells and macrophages (46). In

addition, pro-inflammatory adipokines like leptin and resistin

released into circulation may suppress the expression of anti-

inflammatory ZAG protein through activation of inflammatory

pathways such as TNF signaling. Therefore, the imbalance

between circulating anti-inflammatory and pro-inflammatory

adipokines in untreated and treated PWH may be crucial for the

reconstruction of CD4
+ T cell counts and subsequent immune

responses. Apelin is the endogenous ligand for the apelin receptor

(APLNR), which is a protein receptor secreted by adipocytes.

Interestingly, apelin inhibits HIV entry into human cells by

binding to the co-receptor APLNR in both T-tropic and HIV-1

strains (44). In this context, both apelin and APLNR are positively

correlated with CD4
+ T cell counts, supporting their association

with HIV replication. Therefore, lower circulating concentrations of

apelin and apelin receptor in PWH with immune failure may

suggest a lack of inhibition of HIV entry into cells, thereby
Frontiers in Immunology 04
indirectly linking immune failure to the “reservoir” of persistent

HIV in adipose tissue (47, 48).
3.7 Host metabolic levels

Although viral load decreases to a certain extent after ART,

incomplete immune reconstitution and the associated chronic non-

AIDS-related diseases remain a focal point in the treatment and

recovery of PWH. Changes in host metabolic levels accompany

HIV infection, raising questions about whether they can return to

normal after ART and their relationship with immune recovery,

which is a critical research area in immunoreconstitution. Previous

studies have observed high accumulation of plasma acylcarnitines

in INRs (49), and a persistent decline in the activity of sphingosine-

1-phosphate phosphatase 1 (50). Lu et al. conducted a

metabolomics and machine learning analysis comparing the

metabolic profiles of healthy controls and PWH, both before and

after long-term ART. They found that disruptions in lipid and

nucleotide metabolism observed during HIV infection did not

return to normal levels post-treatment. Only three metabolites—

maltose, N,N-dimethyl-5-aminovalerate, and decadienoic acid—

showed significant differences between IRs and INRs.

Additionally, Qian S et al. discovered significant increases in

medium-chain acylcarnitine, palmitoylcarnitine, stearoylcarnitine,

and oleoylcarnitine levels in INRs (49). Another study found that

high-density lipoprotein cholesterol and larger-sized low-density

lipoprotein particles contribute to better immune recovery post-

treatment (51). However, the sample sizes of identified metabolites

in both studies were less than 20, and their conclusions were

inconsistent, lacking generalizability. Additionally, the pathogenic

reasons remain unclear. Therefore, the potential biological

mechanisms of the metabolites described in the above studies in

immune rebuilding still require further robust validation.
3.8 Other factors

Ge, Y et al. (52) conducted a retrospective cohort study and

found that the mode of sexual transmission can influence the

immune reconstitution after ART. It was observed that

heterosexual men are more likely to experience NADIs compared

to men who have sex with men. The bone marrow and thymus are

vital for T cell production, and their impaired functionality can

result in impaired T cell output, thereby affecting immune

reconstitution (12).
4 The solution to the INRs

4.1 Gut microbiota intervention

As mentioned earlier, obesity plays a significant role in

inflammation and immune regulation. The use of ART has

aligned the obesity rates among PWH with those of the general

population (53). Additionally, research by Gogokhia et al. indicates
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that regardless of the ART regimen used, the incidence of obesity

continues to rise (54). However, different ART drugs have varying

impacts on weight gain due to their effects on the gut microbiota

(55). Therefore, investigating the influence of different drugs on the

gut microbiota is crucial.

Imahashi et al. demonstrated that NRTIs significantly increase

the b-diversity of the gut microbiota while reducing its a-diversity
in PWH. Long-term use of NRTIs also leads to an enrichment of

Prevotella species bacteria and a reduction in Bacteroides species

bacteria (56). Prevotella species are known as pro-inflammatory

bacteria and currently dominate the gut microbiota of PWH. The

increase in Prevotella abundance raises the pH of the gut, creating a

more favorable environment for HIV infection and replication,

thereby enhancing the potential for bacterial colonization and

transmission amplification (57). On the other hand, Bacteroides

species are typical anti-inflammatory bacteria. Additionally, PWH

treated with NNRTIs or INSTIs also exhibit reduced a-diversity
and increased b-diversity of their gut microbiota (58, 59).

Interestingly, current studies on the effects of Protease

Inhibitors (PIs) on gut microbiota yield inconsistent results. Some

suggest that compared to NNRTIs or INSTIs, PIs have minimal

impact on gut microbiota (60), while others indicate that PI

treatment significantly affects microbiota, correlating with higher

plasma levels of soluble CD14 and I-FABP (61). These differences

may be influenced by confounding factors such as diet, antibiotic

use, lifestyle habits, and ethnicity affecting gut microbiota.
Frontiers in Immunology 05
Moreover, as mentioned earlier, the predominant gut microbiota

shifts from Bacteroides to Prevotella in adult infection cases linked

to sexual behavior (MSM), whereas in children with HIV infection,

Prevotella enrichment is a microbiological feature (62). Therefore,

future studies need to correct for these confounding factors to

determine how microbiota influences HIV capabil i ty

and transmission.

In conclusion, ART significantly reduces HIV viral load and

restores CD4
+ T cell counts, but immune function recovery remains

limited in some patients. Thus, addressing immune restoration

strategies from the perspective of gut microbiota is crucial for

optimizing ART (Figure 2A).

The gut is a target organ for HIV infection as it contains a large

number of CD4
+ T cells, making it a reservoir for the virus. HIV

alters the abundance and composition of the gut microbiota,

characterized by a reduction in beneficial bacteria, such as

Bifidobacteria, and an increase in pathogenic bacteria. The gut

microbiota plays a crucial role in maintaining the integrity of the

gut mucosa and the functionality of the gut mucosal barrier, which

is closely associated with the development of Th17 helper T cells.

Accordingly, improving the gut microbiota by increasing the

abundance of anti-inflammatory bacterial species and reducing

the quantity of pro-inflammatory bacteria may enhance CD4
+ T

cell count and improve immune reconstitution.

In a clinical randomized controlled trial, d’Ettorre et al. (63)

administered probiotics to HIV-infected patients twice daily for 48
FIGURE 2

The relationship between gut microbiota and INRs. (This figure is made by Figdraw.) (The patterns in the figure are only for effective differentiation
and do not represent the actual appearance of the things referred to). INRs, Immunologic non-responses; n-3 PUFAs, n-3 polyunsaturated fatty
acids; FMT, fecal microbiota transplantation; SCFAs, short-chain fatty acids; TCM, Traditional Chinese Medicine; PWH, people living with HIV.
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weeks, resulting in a decrease in T lymphocyte immune activation

and inflammatory markers. Additionally, in a randomized double-

blind study by Mortezazadeh et al. (64), the consumption of

probiotic yogurt was found to increase T cell levels. However, the

impact of probiotic supplementation on T cell count remains

inconsistent in different meta-analyses, with some studies

suggesting a positive effect while others demonstrating

contradictory results (65, 66).

Although the supplementation of probiotics or prebiotics alone

cannot reduce HIV viral load, they can contribute to the reduction

of immune system overactivation and inflammation caused by gut

permeability. Therefore, supplementing with probiotics or

prebiotics is beneficial for restoring gut barrier function (67),

thereby slowing down the progression of HIV, reducing the

occurrence of NADIs, increasing patient survival expectancy, and

improving overall quality of life (68–73).

Some studies have indicated that the effects on T cells vary

between the use of individual probiotics and combination therapies.

Concurrent use of probiotics and IL-21 during probiotic

supplementation has been shown to be more favorable for

immune reconstitution. Hence, future research may consider

exploring the ratio of relevant probiotics or prebiotics and their

combination, as well as the effects of different types of probiotics

and interleukins on immune reconstitution (Figure 2D).

It is important to note that different probiotics have varying

effects, and the aforementioned meta-analyses did not classify the

types of probiotics used, which may introduce bias. Moreover,

current research standards for probiotics are not yet well-defined,

such as intervention durations, which have varied from weeks to

years across different studies. Thus, future research should establish

clear guidelines regarding probiotic types, intervention durations,

and other relevant criteria.

Some studies have suggested that metabolites produced by the

gut microbiota can have different effects on the host’s immune

system. Short-chain fatty acids (such as butyrate) produced by

probiotics can help maintain gut mucosal barrier integrity, decrease

inflammatory responses, and reduce immune system activation.

This, in turn, can help prevent the loss of CD4
+ T cells and

contribute to immune reconstitution (74). On the other hand,

uric acid produced by the gut microbiota can disrupt the gut

mucosa, impair gut immunity, and contribute to INRs. Therefore,

increasing the levels of short-chain fatty acids in the body, as an

adjunct to ART therapy, may potentially reduce the occurrence of

INRs (Figure 2D).

Currently, sequencing techniques for the gut microbiota mainly

rely on genomics and metabolomics, with limited use of proteomics.

Future research may require the integration of multiple “omics”

approaches to determine the roles of different metabolites in HIV

immune reconstitution. This comprehensive approach could

provide new insights and potential solutions for addressing INRs.

In recent years, fecal microbiota transplantation (FMT) has shown

promising results in improving the gut microbiota. FMT has been

found to significantly increase the alpha diversity of the gut

microbiota, which is decreased in HIV-infected individuals (75).

Furthermore, individuals with lower CD4+ T cell counts also exhibit
Frontiers in Immunology
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reduced alpha diversity of their gut microbiota, indicating a significant

correlation between gut microbiota diversity and immune status.

Moreover, studies have demonstrated that FMT can significantly

increase CD4+ T cell counts (76), suggesting that transplanting

probiotics into the gut of HIV-infected individuals may reduce the

occurrence of INRs. Plasma levels of inflammation-associated proteins

in INRs were significantly higher than those in IRs. Moreover, these

biomarkers were negatively correlated with the CD4+ cell count and

positively correlated with the HIV viral load (77). A recent

authoritative omics study published by Diaz-Garcia, C. et al.

demonstrated that FMT could change the gut microbiota by

targeting (the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae

families, and the Clostridium genus, etc.) to effectively reduce the

levels of 46 inflammatory proteins such as IL6 in PWH (78). Repeated

oral FMT significantly enhanced the levels of intestinal fatty acid-

binding protein (IFABP), which has been demonstrated to be an

independent predictor of mortality as a biomarker of intestinal

damage (79). Therefore, the more stable intestinal barrier and the

lower inflammation level formed by FMT might further decrease the

level of INRs in PWH or reduce the early occurrence of INRs. With a

stricter and more standardized study design and a more innovative

proteomic assay, this research constitutes an important step in the

exploration of longitudinal associations between fecal bacteria and

plasma-associated proteins. However, considering the complex

immune system regulation and the unclear influence mechanism of

FMT on PWH, we should further clarify the regulatory mechanism

and functional level of the targeted gut microbiome in PWH

inflammation through transcriptomics and metabolomics in the

future. However, there are still many selective and controversial

issues that need to be addressed regarding FMT. For example, it is

essential to investigate whether the newly formed microbiota after

transplantation can be maintained in a stable state for the long term,

rather than just in the short term. Additionally, it is important to

determine if the transplanted microbiota is highly compatible with the

host, rather than exacerbating immune reactions and stimulating

immune system activation. Factors influencing the stability of the

transplanted microbiota also need to be studied. Therefore, large-scale

longitudinal studies are needed in the future to explore the role of

FMT in immune reconstitution in HIV-infected individuals. However,

neither FMT nor the intervention of probiotics and prebiotics has

provided clear evidence for reducing chronic inflammation and

immune system activation in HIV. Further research is still required

to explore these areas. Additionally, the gut microbiota consists not

only of bacteria and fungi but also of viral communities. Compared

with non-pathogenic SIV, enteric virome expansion has been found in

pathogenic SIV, and plays a role in immune deficiency (80).

Transplanting the gut viral community from healthy individuals has

shown benefits in treating recurrent Clostridium difficile infection,

alleviating diet-induced obesity, and preventing necrotizing

enterocolitis in premature infants (81). Therefore, whether immune

deficiency is involved in PWH by enteric virome expansion. However,

there are currently no reports on the transplantation of the viral

community in PWH. Therefore, investigating the effects of viral

community transplantation on the immune deficiencies of PWH

should be explored in the future (Figure 2C).
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4.2 Traditional Chinese
medicine intervention

TCM can enhance patients’ immune function, providing a new

potential solution for individuals with INRs (82). The

gastrointestinal tract serves not only as an immune organ but also

as a digestive organ. Following absorption in the gastrointestinal

tract, TCM can impact the metabolism of the gut microbiota.

Simultaneously, the gut microbiota influences the bioavailability

of TCM, promoting the proliferation of beneficial bacteria while

reducing the abundance of harmful bacteria (83, 84).

Mechanistic studies on TCM therapy for PWH primarily focus

on alterations in the gut microbiota, damage to the intestinal

mucosal barrier, and changes in CD4
+ T lymphocytes (85, 86).

TCM has the capacity to enhance patients’ immune function,

reduce complications, and improve survival rates and quality of

life (87).

The combined use of traditional Chinese medicine and ART for

PWH can offer complementary advantages (88). Adopting an

integrated approach to treatment involving both TCM and ART

can provide valuable insights into immune reconstitution and viral

reservoir clearance in PWH (89).

Moxibustion therapy mainly achieves its therapeutic effects

through the warmth and stimulation produced by the burning of

moxa, as well as the absorption of moxa particles and aroma by the

skin or through inhalation. Moxibustion offers the advantage of

multi-targeted and bidirectional immune regulation in the human

body. It can correct abnormal immune responses in the intestines,

increase the population of beneficial probiotics in the gut

microbiota, and reduce the permeability of the intestinal mucosa

through the metabolic byproducts of probiotics (90). Additionally,

it can lower the occurrence of abnormal immune responses,

maintain intestinal stability, and prevent excessive T-cell

activation. Therefore, moxibustion has a direct or indirect impact

on the intestines of PWH. Moxibustion can increase the CD4
+ T cell

count in patients, while also reducing the number of CD8
+ T cells,

restoring the normal ratio of CD4
+ T cells to CD8

+ T cells,

enhancing immune function, reducing the production of

inflammatory factors, and improving INRs. Furthermore,

moxibustion is a non-invasive treatment that can effectively

prevent healthcare-associated infections caused by bloodborne

pathogens in the context of HIV (Figure 2E).

In recent years, research on the use of Artesunate for PWH has

become increasingly frequent. Chen et al. (91) conducted a clinical

randomized controlled trial, administering Artesunate orally to

PWH. After 48 weeks, the study found a reduction in T-cell

activation markers and a decrease in T-cell apoptosis levels.

However, there was no improvement in T-cell count. On the

other hand, Artesunate also improved the gut microbiota of

infected individuals, increasing the abundance of probiotics such

as Actinobacteria and Bifidobacterium. Moreover, a higher level of

CD4
+ T cells in peripheral blood was associated with an increased

level of Actinobacteria in the gut microbiota. Additionally,

Artesunate appeared to have no significant clinical effect on

immune reconstitution in younger individuals, but had a more
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pronounced effect in middle-aged and older individuals, suggesting

that Artesunate may improve thymic atrophy and therefore

contribute to the improvement of INRs.

Liu et al. (92) administered Tripterygium wilfordii to PWHwith

immune non-response for 17 months, and observed an increase in

CD4
+ T cell count along with a decrease in T cell activation.

Through multi-omics studies, the mechanism was found to

involve the inhibition of the interferon signaling pathway.

Genomics is currently widely used in research on the role of the

gut microbiota in HIV/AIDS. However, genomics has focused

excessively on microbiota differences, and genomics and

transcriptomics are primarily used for functional predictions.

Nevertheless, predicted functions do not necessarily translate into

actual expression. Therefore, future research should incorporate

transcriptomics and proteomics to specifically investigate their roles

and underlying mechanisms (93).
4.3 Dietary intervention

Diet is also an important pathway for altering the gut

microbiota. Manzano et al. (94) compared the differential effects

of the Mediterranean diet and the Western diet for PWH treatment

and found that the Mediterranean diet can reduce inflammation

levels while preserving beneficial bacteria. Although no specific

dietary pattern has been found to increase CD4
+ T cell counts,

dietary changes can lower inflammation levels and slow the

progression of HIV/AIDS. Currently, there is a lack of specific

dietary interventions for the treatment of PWH, and further

research is needed to explore this area in the future.

4.3.1 Vitamin D
In recent years, multiple studies have demonstrated that

nutrient compounds such as vitamin D, which possess immune-

regulatory properties, play a significant role in maintaining

intestinal homeostasis through their effects on both innate and

adaptive immunity (95, 96). Vitamin D can induce the

antimicrobial peptide LL-37 from epithelial cells and immune

cells (97). LL-37 exhibits multifaceted protective effects that can

be enhanced by vitamin D (98). In the intestinal mucosal barrier,

the production of LL-37 serves as an important natural defense

mechanism primarily by activating autophagy to delay the

progression of HIV disease. Autophagy reduces intracellular HIV

replication (99). Alternatively, it can delay infection by inhibiting

HIV-1 transcription (100, 101). Additionally, vitamin D can

stabilize the tight junction structure of intestinal epithelial cells

(102). And may also regulate the composition of human gut

microbiota. Recent studies suggest that vitamin D may modulate

the relative abundance of pro-inflammatory Bacteroides species in

the gut (103, 104). Raftery et al. and Ponda et al. separately found

that vitamin D treatment is associated with reduced systemic

inflammation levels and disease activity in inflammatory bowel

disease and chronic kidney disease (105). However, Missailidis

et al., using randomized controlled trials, found that vitamin D +

phenylbutyrate supplementation did not improve markers of
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intestinal inflammation or gut microbiota composition in

treatment-naive individuals with active HIV-1 replication. This

lack of effect may be partly attributed to ongoing viral replication

in untreated HIV. Future studies should investigate the

supplementation of vitamin D in individuals receiving ART for

HIV infection more extensively, to better assess its regulatory role in

a controlled viral environment (106) (Figure 2B).

4.3.2 Reduction of the refined sugars and
saturated fatty acids

The progression of HIV infection is often associated with

various metabolic and cardiovascular complications (107). These

complications may be related to the side effects of ART, but HIV

infection itself, even during successful ART, can induce metabolic

changes through mechanisms such as chronic low-grade systemic

inflammation (108, 109). Fatty acids (FAs), whether free or as part

of other lipids such as triglycerides, phospholipids, sphingolipids,

and sterol lipids, play critical roles in cellular energy metabolism

and are essential components of cell membranes. FAs also have the

ability to signal through peroxisome proliferator-activated receptors

(110, 111). Disruption in the composition of FAs has been

recognized to impact the development of various metabolic,

cardiovascular, and inflammatory diseases (112). For example,

certain polyunsaturated fatty acids (PUFAs) such as arachidonic

acid (AA; C20:4n-6), eicosapentaenoic acid (EPA; C20:5n-3), and

docosahexaenoic acid (DHA; C22:6n-3) serve as precursors for the

synthesis of biologically active lipid mediators (e.g., prostaglandins

[PGs], leukotrienes [LTs], lipoxins, and resolvins) (113, 114),

mediating both inflammatory and anti-inflammatory effects (114,

115). There is also significant focus on the central role of fatty acids

in regulating immune cell function, emphasizing their direct impact

on many cellular processes involved in T cell responses and antigen

presentation (116–118). There is evidence suggesting that FA

metabolism is disrupted in PWH. Additionally, a recent meta-

analysis indicated that supplementing n-3 polyunsaturated fatty

acids (n-3 PUFA) may alleviate inflammation in PWH, as assessed

by levels of C-reactive protein in patients receiving ART (119). In an

earlier meta-analysis, it was shown that supplementation with n-3

polyunsaturated fatty acids can lower triglyceride levels in PWH

undergoing ART (120). Furthermore, several studies suggest that n-

3 polyunsaturated fatty acids (n-3 PUFA) may inhibit classical

inflammatory cytokines such as tumor necrosis factor (TNF),

interleukin (IL)-1, and IL-6 (121–123), and are associated with

HIV-related pathogenic mechanisms involving these cytokines

(124). Therefore, PWH at any stage should consume foods rich in

unsaturated fatty acids and minimize intake of refined sugars and

saturated fats commonly found in Western diets (125) (Figure 2B).
5 Summary

In recent years, the number of PWH has been increasing year

after year, and research in the area of INRs has gradually intensified.

In this paper, we formulated the definition of INRs, expounded the

mechanism underlying the association between gut microbiota

translocation, platelet-CD4
+ T cell coupling, and host metabolism
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with immune failure in INRs, and further explored potential

therapeutic interventions for INRs gut microbiota. In the future,

we will endeavor to provide a more distinct and comprehensive

definition of INRs. However, at present, there is a dearth of large-

scale data and evidence from evidence-based medical research to

support approaches targeting INRs. Therefore, future studies

should focus on the mechanism of the gut microbiota for

immune reconstitution in INRs and make use of advanced

technologies such as multi-omics analysis to conduct in-depth

research in all aspects of this field.
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