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CAP2 contributes to Parkinson’s
disease diagnosed by neutrophil
extracellular trap-related
immune activity
Xiaohe Li †, Meiling Luo †, Hangrui Xu, Lei Jia, Yanan Liang,
Qianxi Xu and Yonghui Wang*

Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
Introduction: Neutrophil extracellular traps (NETs) constitute a crucial element

of the immune system, and dysfunction in immune responses is implicated in the

susceptibility and progression of Parkinson's disease (PD). Nevertheless, the

mechanism connecting PD and NETs remains unclear. This study aims to

uncover potential NETs-related immune biomarkers and elucidate their role in

PD pathogenesis.

Methods: Through differential gene analysis of PD and NETs in GSE7621 datasets,

we identified two PD subtypes and explored potential biological pathways.

Subsequently, using ClusterWGCNA, we pinpointed pertinent genes and

developed clinical diagnostic models. We then optimized the chosen model

and evaluated its association with immune infiltration. Validation was conducted

using the GSE20163 dataset. Screening the single-cell dataset GSE132758

revealed cell populations associated with the identified gene.

Results: Our findings identified XGB as the optimal diagnostic model, with CAP2

identified as a pivotal gene. The risk model effectively predicted overall diagnosis

rates, demonstrating a robust correlation between infiltrating immune cells and

genes related to the XGB model.

Discussion: In conclusions, we identified PD subtypes and diagnostic genes

associated with NETs, highlighting CAP2 as a pivotal gene. These findings have

significant implications for understanding potential molecular mechanisms and

treatments for PD.
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1 Introduction

Parkinson’s disease (PD), first described by James Parkinson in

1817 (1), stands among the most prevalent neurodegenerative

disorders. In 2016, over six million individuals worldwide were

afflicted by PD, and this figure is anticipated to rise with the aging

global population (2). Manifesting primarily as motor symptoms

such as bradykinesia, rigidity, and tremor, PD also involves

significant non-motor impairments (3). Noteworthy pathological

changes encompass the absence of synaptic nucleoprotein a-
positive inclusion bodies within neurons and axons, coupled with

the loss of dopaminergic neurons in the substantia nigra and other

brain regions (4). Besides, the role of genetic factors in PD has been

paid more and more attention, and in recent years, a number of PD-

GWAS results have been published in the world, revealing more than

90 risk gene loci. Hence, understanding genetic susceptibility and risk

factors sheds light on the implicated pathogenic pathways (3, 5). PD

exhibits substantial clinical variability and diverse prognoses,

suggesting potential subtypes (6). Recognizing the importance of

subtype identification, the National Institutes of Health has

designated it as a top clinical research priority in PD (7).

Consequently, delineating distinct PD subcategories is pivotal for

comprehending underlying disease mechanisms, predicting disease

progression, and designing effective clinical trials (8). However,

methods for subtype identification and individual prognosis

prediction remain elusive.

Dysregulation of the immune system is considered a pivotal

factor in both the susceptibility and progression of PD. Numerous

studies on Parkinson’s patients have documented markers of

inflammation and immune cell populations that may initiate or

worsen neuroinflammation, perpetuating the neurodegenerative

process (9, 10). Moreover, growing evidence supports the role of

an altered immune environment in PD pathogenesis (11). This has

led to the hypothesis that intricate gene-environment interactions,

combined with immune system activity, contribute to the ‘perfect

storm,’ facilitating the development and progression of PD (12, 13).

In consistent with this, analyses of blood from people with PD

showed increased neutrophils and decreased lymphocytes many

years before diagnosis, thus associating a higher neutrophil-to-

lymphocyte ratio (NLR) with PD risk (14). This innate and

adaptive compartment imbalance appears to be disease relevant,

because the NLR correlates with the severity of motor defects,

especially for tremor-dominant PD, and with striatal PET

dopaminergic signal (15). Another study, in which people with

PD were divided according to cognitive performance, further

showed that those with mild cognitive impairment had a higher

level of lymphocytes (i.e., lower NLR) compared with those with

normal cognition (16). Although little is known about the role of

neutrophils in PD, it seems to play a significant role in PD (14).

Notably, neutrophil extracellular traps (NETs) have entered the

field of attention as a new concept of immunization. NETs, reticular

structures released by neutrophils, play a crucial role in the immune

response to infections. During NETosis, neutrophils release DNA

strands along with antimicrobial proteins into the extracellular

space, forming NETs. These structures trap and neutralize

pathogens, preventing their spread and aiding in destruction (17).
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NETs production is implicated in various inflammatory,

cardiovascular, and chronic diseases, making NETs not only a

pathogenic factor but also a potential diagnostic or prognostic

biomarker (18). Different types of exDNA such cfDNA or NETs

have been identified under various pathophysiological conditions

( including hyperinflammation, tumor progress ion or

neurodegeneration) in the brain and can contribute to disease

onset and progression in various ways (19–21). A common

denominator in the pathogenesis is the release of mtDNA and

cfDNA, the latter being particularly available in NETs, whereby

both parameters may serve as disease biomarker (22). At present,

studies in neurodegenerative diseases, such as multiple spinal

sclerosis (23) and Alzheimer’s disease (24) have been investigated

in relation to NETs, as well as PD has been reported to demonstrate

a link between mtDNA-induced inflammation and PD (25), while

the mechanism of the association with NETs is still unknown.

In this study, we utilized PD-related datasets from the GEO

database and curated NRGs from the literature to identify DE-

NRGs through analysis. We employed the GSVA algorithm to

assess alterations in NETs-related signaling pathways in PD

patients. Using ClusterWGCNA and machine learning

algorithms, we identified DE-NRGs strongly correlated with PD.

Clinical diagnostic models were then constructed to facilitate PD

diagnosis and treatment. The CIBERSORT algorithm was employed

to quantify immune cell infiltration percentages in PD patients. Our

objective is to redefine PD classification using NETs as a risk

predictor, uncover risk-associated genes, and investigate their

relationships with immune cell populations.
2 Result

2.1 Differential gene analysis and principal
component analysis

In comparison to the normal group, the PD and NETs groups

exhibited 292 differential genes (Figure 1A). To enhance the study

of PD, we applied principal component analysis (PCA) to reclassify

the differentially expressed genes, leading to the identification of

two distinct subtypes, labeled as C1 and C2 (Figures 1B, C).
2.2 The biological pathways in which the
two subtypes are involved

The potential biological subtypes of the two identified subtypes

were further elucidated through Gene Set Variation Analysis

(GSVA). Notably, C2 showed significant enrichment in primary

immunodeficiency, chronic granulocytic leukaemia and a-linolenic
acid metabolism compared to C1, especially in the case of primary

immunodeficiency. Additionally, pathways related to gap junction,

long-term potentiation, phosphatidylinositol signaling system,

myocardial contraction, Alzheimer’s disease, proximal tubule

bicarbonate recovery, and amyotrophic lateral sclerosis exhibited

decreased expression in C2. In particular, gap junction and long-

term potentiation showed prominent suppression, compared to a
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slight decline in melanogenesis and Biosynthesis of heparan sulfate

aminoglycans (Figure 1D).
2.3 ClusterWGCNA

To probe the highly correlated genes among the overlapping

anoikis-related genes, we performed ClusterWGCNA to identify

highly correlated gene modules (Figures 2A, B). Three gene
Frontiers in Immunology 03
modules were identified based on the gene tree: blue module,

brown module, grey module, turquoise module, and yellow

module (Figures 2C, D). A heat map showing the correlation

between different modules in which there is a strong correlation

between the occurrence of Parkinson’s and the turquoise module

(coefficient 0.77, p-value 4E-04, Figure 2E). In addition, gene

saliency (GS, i.e., correlation between genes and clinical traits)

and module members (MM, i.e., correlation between genes and

modules) in the turquoise module were highly correlated, indicating
B

C

D

A

FIGURE 1

(A) The heat map showed that there were 292 differentially regulated genes, among which blue indicated down-regulated expression and red
represented up-regulated expression; (B, C) PCA analysis re-divided the differentially differentiated genes into two isoforms, and when divided into
two isoforms, K=2 had the best quality; (D) GSEA analysis pathway, red indicated expression enrichment in the pathway, and blue indicated that the
biological pathway showed a state of inhibition.
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that the genes in this module had the most significant correlation

with Parkinson’s (Figure 2F). Finally, we extracted 127 genes from

the turquoise module for further analysis.
2.4 Construction of Parkinson’s related
clinical diagnostic models

Utilizing the aforementioned 127 genes, LASSO, RF and SVM-

RFE calculations were conducted, leading to the construction of

four clinical diagnostic models—SVM, XGB, RF, and GLM. Higher

accuracy in diagnosis was associated with lower residual values.
Frontiers in Immunology 04
Consequently, XGB and GLM demonstrated superior accuracy,

while SVM and RF accuracy were comparatively lower

(Figures 3A, B). The high-quality clinical diagnostic models were

further refined, and the functional importance of related genes was

analyzed using the SVM, XGB, RF, and GLM models. Combining

this analysis with Receiver Operating Characteristic (ROC) curves

—0.5, 0.75, 0.5, and 0.56, respectively—the XGB model was

ultimately selected as the clinical diagnostic model (coefficient

0.75, Figures 3C, D). Subsequently, the XGB model was validated

using the GSE20163 dataset ROC curve, achieving an AUC of 1,

indicating robust performance for auxiliary diagnosis (Figure 3H).

High-risk genes in the XGB model, including CAP2, GABRA1,
B

C D

E F

A

FIGURE 2

(A) Dendrogram and trait heat map of the sample, classification of the sample and its expression in the two subtypes of C1 and C2; (B) Soft
thresholds for ClusterWGCNA enrichment analysis; (C, D) Gene dendrogram and gene co-expression network diagram; (E) Heatmap of the
relationship between different traits and modules; (F) Gene significance in the emerald module, cor=0.74, P<1e-200.
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GAD2, KCND2, and SCN1A, were identified. In the healthy and

Parkinson’s groups, the expression of CAP2 gene in high-risk

patients showed a significant down-regulation compared with

low-risk patients (Figures 3E, F). q-PCR results confirmed that

mRNA CAP2 expression in the Parkinson’s group was lower than

that in the healthy group, aligning with the earlier analysis

(Figure 3I). The nomogram illustrated that risk scores played

a key role in predicting the total risk of CAP2, GABRA1,

GAD2, KCND2, and SCN1A (Figure 3G). In conclusion, a NETs-

related diagnostic risk model was successfully established,
Frontiers in Immunology 05
demonstrating robust performance in predicting the overall

diagnosis of PD.
2.5 Enrichment analysis of GSEA

We conducted Gene Set Enrichment Analysis (GSEA) to evaluate

the signaling pathways associated with the characteristic genes.

CAP2 exhibited a positive correlation with endocrine and other

factor-regulated calcium reabsorption, GABAergic synapse,
B

C

D E F

A

G H I

FIGURE 3

(A, B) The box plot shows that the differential genes are divided into four clinical diagnostic models - SVM, XGB, RF and GLM, where the red dot
represents the root mean square of the residuals, and the smaller the residual value, the higher the diagnostic correctness; (C, D) The functional
importance analysis of related genes in four clinical diagnostic models, SVM, XGB, RF and GLM, combined with the RCO curve, showed that the PF
coefficient was 0.5, the SVM coefficient was 0.5, the XGB coefficient was 0.75, and the GLM coefficient was 0. 562; (E) The difference of the key gene
CAP2 in the XGB model in the PD and normal groups was 0.019; (F) The survival curve shows that the AUC of CAP2 in the validation set is 0.847;
(G) Risk Rating Scale: When the total score is less than 100, the risk of developing the disease is less than 0,1, and when the total score is between 100-
150, the risk of developing the disease is 01-0.99, when the total score is greater than 160, the risk of disease is greater than 0.99; (H) ;The survival curve
shows that the AUC of XGB is 1; (I) CAP2 mRNA expression between blank group and PD group (n=4, ****P<0.0001, t=11.78, df=6).
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glycosaminoglycan biosynthesis, nicotine addiction, and synaptic

vesicle cycle. Conversely, it showed a negative association

with complement and coagulation cascades, legionellosis, malaria,

NF-kappa B signaling pathway, and pertussis (Figures 4A,

B). Additionally, GABRA1 demonstrated associations with

alanine, aspartate and glutamate metabolism, glycosaminoglycan

biosynthesis, and GABAergic synapse (Figures 4C, D). GAD2 was
Frontiers in Immunology 06
linked to endocrine and other factors, glycosaminoglycan biosynthesis,

and drug metabolism (Figures 4E, F). KCND2 participated in signaling

pathways related to endocrine and other factor-regulated calcium

reabsorption, nicotine addiction, and synaptic vesicle cycle

(Figures 4G, H). SCN1A was involved in African trypanosomiasis,

AGE-RAGE signaling pathway in diabetic complications, and

complement and coagulation cascades (Figures 4I, J).
B
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FIGURE 4

(A, B) GSEA analysis of biological signaling pathways associated with CAP2; (C, D) GSEA analysis of biosignaling pathways associated with GABRA1;
(E, F) GSEA analysis of GAD2-related biological signaling pathways; (G, H) GSEA analysis of KCND2-related biological signaling pathways; (I, J) GSEA
analysis of signaling pathways associated with SCN1A.
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2.6 Immunoinfiltrate-related analysis

To further investigate the correlation between infiltrating

immune cells and the XGB clinical diagnostic models, we observed

a particularly strong positive correlation between CAP2 and T cells

CD8. Following this, T cells CD4 naïve, neutrophils, NK cells resting/
Frontiers in Immunology 07
activated, and B cells memory demonstrated involvement in the

promotion of CAP2. Additionally, T cells CD8 were implicated in the

activation of GABRA1, GAD2, KCND2, and SCN1A, with GABRA1

notably associated with T cells CD4 naïve. Furthermore, B cells naïve

were identified as having a suppressive effect on CAP2, GABRA1,

GAD2, KCND2, and SCN1 (Figure 5A).
B

C D

E

F G

A

FIGURE 5

(A) Correlation of immune-infiltrating cells with key genes in the XBG clinical diagnostic model, red indicates active expression in immune cells in
this gene, and blue indicates decreased expression in this cell; (B) Single-cell datasets were analyzed for standard variance; (C) Heat map of the
genes associated with the genes of the 20 cells identified in this single-cell dataset, with red indicating upregulation and blue indicating
downregulation; (D) The expression of the 20 identified cells in different types of cells, with high expression in yellow and low expression in blue;
(E) Expression levels of cellular markers in different cell types of cells identified for 20 types of cells, with larger gardens indicating higher
percentages, red indicating high expression, and yellow indicating low expression; (F, G) Expression of key genes in cells in the XBG clinical
diagnostic model. .
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2.7 Single-cell dataset validation

The cellular distribution of CAP2, GABRA1, GAD2, KCND2,

and SCN1A, along with the involved cell types, was confirmed using

single-cell data. The data revealed a total of 20 cell types, and the heat

map displayed the highly expressed genes for each type. Notably,

CD34, IL7R, NRP1, GZMB, FGF7, and ENO2 exhibited significant

expression in cancer stem cells, CD4+ memory cells, regulatory T

cells, NK cells, fibroblasts, and neurons, respectively (Figures 5B–G).
3 Discussion

In this investigation, we centered our attention on the influence

of NETs-related genes on PD progression. A clinical diagnostic

model was devised, enabling an exploration of the correlation

between infiltrating immune cells, prognostic genes, and risk

scores. To refine PD subtypes for improved treatment planning,

we leveraged the latest immunological discovery, NETs, to reclassify

PD into two subtypes, namely C1 and C2. Subsequently, key genes

linked to C1 and C2 were identified using ClusterWGCNA, leading

to the creation of four clinical diagnostic models. Among these

models, the XGB clinical model exhibited superior diagnostic value,

with the CAP2 gene showing significant differences. Biological

processes and immune cell infiltration within the subtypes were

dissected using GSVA and GSEA, unveiling GABAergic synaptic

activation, spinocerebellar ataxia, and calcium reabsorption. Lastly,

we explored the correlation between infiltrating immune cells and

prognostic genes, discovering significant correlations between risk

scores and most immune cells, as well as strong correlations

between prognostic genes and most immune cells. In conclusions,

our findings propose that NETs-associated genes offer insights into

the prognostic significance and potential for immunotherapy in PD.

GSVA analyses unveiled that the new isoforms were

predominantly enriched in biological pathways related to gap

junction ns, long-term potentiation, and myocardial contraction.

This aligns with a prior report on multimodal imaging methods for

PD, which identified dysfunction in the gut, heart, brainstem (locus

coeruleus), and nigral projections (26). The GSVA analysis results

indicated that the new subtypes were largely enriched in pathways

associated with gap junctions, long-term potentiation, and

myocardial contraction, suggesting a connection to both motor

and cardiac symptoms of PD. Previous subtypes commonly

exhibited debilitating motor and non-motor symptoms associated

with adaptive changes at the cellular and synaptic levels within

neural circuits (27). Exercise-enhanced neuroplasticity has been

recognized for its potential to target motor and cognitive circuits in

PD (28, 29). Moreover, the reclassification of PD revealed related

enrichment manifestations in Alzheimer’s disease and amyotrophic

lateral sclerosis, highlighting a common feature of dyssynaptic

function in various brain diseases, including the mentioned

neurodegenerative diseases (30). However, past research has

lacked an exploration of associations between disease types, with

few studies investigating potential links and mechanisms.

The genomics era has brought rapid advancements in

understanding the genetic causes and risk variants of PD (31).
Frontiers in Immunology 08
Validating clinically defined disease subtypes requires objective

biological measures or biomarkers indicating differences in

underlying disease mechanisms or pathology (32, 33). Our

reanalysis based on the PD subtypes described above disclosed

inhibition of the phosphatidylinositol signaling pathway in PD

patients, aligning with previous studies demonstrating genetic risk

factors for PD with lipid-related functions (34). Furthermore, we

assessed the signaling pathways of genes associated with the XGB

clinical diagnostic model through GSEA. Positive circuits in

endocrine and other factor-regulated calcium uptake included

calcium uptake, GABAergic synapses, nicotine addiction, and

synaptic vesicle cycling. Conversely, negative regulation was

observed in complement and coagulation cascade responses,

malaria, and NF-kB signaling pathways. These findings

resonate with previous studies emphasizing abnormal a-
synuclein aggregation, mitochondrial dysfunction, lysosomal or

vesicular transport issues, synaptic transport problems, and

neuroinflammation as contributors to the pathophysiological

changes in PD (4). Established pathways include the link between

a-synuclein and lysosomal acid GCase forming a positive feedback

loop, potentially leading to a self-propagating disease. Additionally, a

pathological cascade commencing with mitochondrial oxidant stress,

resulting in oxidized dopamine accumulation, reduced lysosomal acid

GCase activity, and subsequent a-synuclein accumulation (35–37).

Cyclase-associated proteins (CAPs) are evolutionarily conserved

actin-binding proteins crucial for regulating actin dynamics,

governing the spatiotemporal assembly and disassembly of actin

filaments (F-actin) (38–40). Mammals have two family members

with different expression patterns (CAP1 and CAP2). Unlike most

other tissues, both CAPs are expressed in the brain and present in

hippocampal neurons. Among them, CAP2 is the main family

member in striated muscle (41). It interacts with the actin

depolymerization protein Cofilin1, a key regulator of synaptic actin

dynamics, spine morphology, synaptic plasticity, brain function and

behavior (27, 29, 34, 42–44). In fact, CAP2 can control dendritic spine

morphology and synaptic plasticity (45). In this study, we found that

the expression of CAP2 was upregulated in the low-risk group

compared to the high-risk group. In addition, the results of the

validation cohort showed that the expression of CAP2 in the

Parkinson’s sample was downregulated compared to the normal

sample. When the expression of CAP2 is reduced in PD, synaptic

plasticity, brain function and motor function will be affected, and

related symptoms such as cognitive dysfunction and tremor will

appear. Therefore, combined with our research, it can be inferred that

CAP2 may affect Parkinson’s motor function limitation by affecting

the connection between the long-term potentials and gaps of

synapses, resulting in a series of related motor function changes

such as bradykinesia, rigidity, and tremor.

Dopamine is a pivotal factor in PD development and serves as a

key immunomodulator. Various immune cells express dopamine

receptors and dopaminergic proteins, participating in dopamine

ingestion, production, storage, and release (13). Besides, dopamine-

induced extracellular traps (ETs) are functional (46). There are two

main functional regions of NETs present: the generation of

oversized NETs scaffolds (consisting of whole decompressed

nucDNA, histones, and various antimicrobial proteins and
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enzymes) used to trap and kill microorganisms in the initial

immune response when neutrophils are stimulated; and the other,

where activated platelets also act as an inducer of NETosis by

providing adhesive interactions with neutrophils, which ultimately

results in the immediate formation of cellular aggregates, from

which the NETs are released to stimulate prothrombotic functions

(22). Meanwhile, not only neutrophils but also mast cells,

eosinophils, basophils, macrophages and also microglial cells as

the resident immune cell of the CNS have been described to release

nucDNA-containing ETs in response to various stimuli (47, 48).

When neuronal function is compromised in PD, neuronal cell death

is preceded by activation of microglia (49). The study of microglia

has been shown in multiple occasions in several PD models (50, 51).

Furthermore, strong dysregulation of peripheral monocytes in

PD patients, including subpopulation shifts and impaired secretion

of inflammatory molecules in response to stimulation. Previous

studies on Parkinson’s brains and peripheral T cell subsets revealed

CD3 T cell infiltration in the brains of Parkinson’s patients (52).

Moreover, CD4 and CD8 T cells are found in substantia nigra dense

bodies in Parkinson’s patients, exhibiting higher levels than in the

normal group (53). CD4+ and CD8+ lymphocytes were found in the

blood and cerebrospinal fluid of idiopathic patients, indicating

peripheral activation of lymphocytes in addition to elevated levels

of IL-1 b, TNF-a and IL-2 (54). Our investigation identified a

strong positive correlation between CAP2 and T cells CD8, as well

as T cells CD4 naïve. Similarly, altered peripheral CD4+, CD8+,

CD3+, and CD4+/CD8+ levels have been reported in cognitively

impaired PD patients (55). Parkinson’s patients also displayed

increased HLA-DR T cells and CD45RO memory T cells, with a

simultaneous decrease in naïve CD4 T cells compared to healthy

controls (56, 57). In accordance with it, Parkinson’s patients with

more severe trajectories of cognitive deterioration exhibited higher

levels of circulating lymphocytes (16). Additionally, our study

revealed that CAP2 positively regulates neutrophils, natural killer

(NK) cells, and B cells memory. Notably, NK cells which are

responsible for clearing a-synuclein aggregates, the primary

component of Lewy bodies, has been reported to play a crucial

role in PD. Systemic depletion of NK cells in mouse models of a-
synucleinopathy leads to neuropathological deterioration,

highlighting their relevance in PD. However, the exact role of NK

cells in PD remains unclear. Single-cell dataset analysis further

indicated that cancer stem cells, CD4+ memory cells, regulatory T

cells, NK cells, fibroblasts, and neurons participate in the regulation

of related genes, with GZMB serving as a marker for NK cells.

Overall, we identified CAP2 as a key gene via the establishment

of two NET-associated PD subtypes, C1 and C2, and a diagnostic

model for XGB. These findings have important implications for

understanding potential molecular mechanisms and therapeutic

approaches for degenerative brain disorders.

While our study represents a pioneering effort in identifying

subgroups and prognostic genes related to NETs in PD, several

limitations should be acknowledged. Firstly, the total cohort size

and available sequencing data are limited. Secondly, this study lacks

extensive basic experiments to validate the expression of prognostic

genes in Parkinson’s cell lines and to elucidate the involvement of

associated immune cells, necessitating further research.
Frontiers in Immunology 09
4 Materials and methods

4.1 Data collection and processing

We downloaded PD expression profile data (GSE7621) (PD

sample=16, normal sample=9, substantia nigra tissue), validation

group expression profile data (GSE20163) (PD sample=8, normal

sample=9, substantia nigra tissue), and single-cell expression profile

data (GSE132758, perivascular-like cells in stem cell-derived grafts)

from NCBI GEO.
4.2 Differential gene and principal
component analysis

We used the edge R package to analyze the difference between

the two sets of data (the threshold was set to log2|FC=>1,p < 0.05).

In order to directly display the deg between the PD sample and the

normal sample, a heat map is drawn using the p heatmap package.

We use Principal Component (PC) Analysis (PCA) to identify the

set of signals that vary in concert (called covariances) across many

NETs. This method generates thousands of PCs, each capturing

different patterns of covariance across many NETs. We then used

penalized regression to exclude PCs that were not relevant to PD

(including those driven primarily by noise), obtaining a PD with

only 2 PCs.
4.3 Subclusters analysis with two NETs
-related genes

The “ConsensusClusterPlus” R package (58) and the mRNA

expression of two Unsupervised hierarchical cluster analysis of PD

samples was performed using NETs-related genes as input

information. When we looked at the subclusters using a PCA

plot, we could see the geometrical distance between them. GSVA

(59) was applied to clearly state the functional distinctions between

the subclusters found via previous cluster analysis.
4.4 Enrichment analysis of GSEA

Gene set enrichment analysis (GSEA) was performed on

GSE20163 using the “GSEA” R software package to study the

relevant pathways of candidate diagnostic genes, and the

reference gene set was KEGG. The number of random sample

permutations was set to 1000 and p<0.05 was considered

significant enrichment.
4.5 Enrichment analysis of ClusterWGCNA

The gene co-expression network of PD and NETs in the dataset

was GSE7621 constructed using the WGCNA of the expression
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profile of “WGCNA” in the R package. The network construction

process mainly consists of the following steps: 1. Define the

similarity matrix. 2. Select the weight factor b = 12 to convert the

similarity matrix to an adjacency matrix. 3. Convert the adjacency

matrix to a topological overlap matrix (TOM). 4. The dissTOM is

stratified based on Tom clustering to obtain a hierarchical clustering

tree. 5. Use the dynamic tree cutting method to identify modules

from the hierarchical clustering tree. 6. Calculate the module

characteristic genes (MEs) for each module, where MEs represent

the overall expression level of the module. The Pearson correlation

coefficient between the MEs of each module has been calculated,

and the 1-Pearson correlation coefficient is defined as the average

distance between the MEs of each module. The average linkage

hierarchical clustering method has been used to cluster the MEs of

all modules, and the minimum value (genome) was set to 100.

Modules with high similarity are combined to obtain a co-

expression network.
4.6 Machine learning algorithm for
candidate genes

After identifying the DEGs, we performed three machine

algorithms, namely Minimum Absolute Shrinkage and Selection

Operator (LASSO) logistic regression, random forest (RF), and

support vector machine recursive feature elimination (SVM-RFE)

to screen PD candidate genes using “glmnet”, “randomforest”, and

“e1071” packages, each located in the R software. We then

performed further analysis using genes from LASSO, RF and

SVM-RFE algorithms. Expression of candidate genes was first

verified in GSE7621 datasets, and both sides of P < 0.05 were

considered statistically significant. Ultimately, the area under the

receiver operating characteristic (ROC) curve (AUC) was calculated

to assess the accuracy of the selected gene in diagnosing patients

with PD.
4.7 Immunoinfiltrate-related analysis

CIBERSORT performed immunoinfiltration analysis of the

difference in GSE20163 to observe the difference between PD and

normal tissue immune cell infiltration, and visualized it through bar

graphs, correlation plots, thermal images and violin plots.

Correlation analysis of hub genes with immune-infiltrating cells.

Taking the median gene expression as the boundary, the five hub

genes were divided into high and low groups, and the box plot was

used to visually observe whether there was any difference in the

expression of immune-infiltrating cells between the high and

low groups.
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4.8 Single-cell dataset validation

To further explore the relationship between immune cells and

diagnostic model genes, we performed single-cell data analysis on

GSE132758 datasets and calculated mitochondrial gene expression

using the Percent Feature Set function of the Seurat software

package (60). Cells with >25% UMI in the mitochondrial genome

are removed by quality control. The integration matrix is then

scaled and the first 30 dimensions of principal component analysis

(PCA) are used for t-distribution random neighborhood

embedding (t-SNE) visualization. We apply the same scaling,

dimensionality reduction, and clustering processes to specific

datasets for sub-clusters. We used the Wilcoxon rank-sum test to

identify significantly differentially expressed genes (DEGs) in each

cluster by comparing other clusters. Single R and primary marker

genes for the identification of cell types (61). DEGs significantly

upregulated by Top100 were imported into the STRING website

(http://string-db.org/) for further analysis to screen for hub

differential genes in Cytoscape software. In general, the genes

with the most connections are the most important genes in

the module.
4.9 q-PCR

Total mRNA was extracted from the Parkinson’s cell lines

LUHME. After purification, the RNA is eluted with enzyme-free

water and its concentration and purty are determined. Reverse

transcription and amplification reactions were performed using

reverse transcription kits and fluorochrome kits. The primers are

designed based on sequences found in GenBank. The sequence of

primer nucleotides used in this study is shown in Table 1. The q-

PCR system is 20 mL and includes 7 mL of DEPC water, 10 mL of TB

Green ® Premix Ex TaqTM II, 0.4 mL of PCR forward primer (10

mM), 0.4 mL of PCR reverse primer (10 mM), and 1 mL of cDNA.

This should be repeated for each well. Reverse transcription

reaction conditions: 37°C, 15 min, 85°C, 5 sec, amplification

conditions: 95°C, 30 sec, 95°C, 30 sec: 95°C, 30 sec, 95°C, 5 sec,

60°C, 30 sec, 40 cycles. Using GAPDH as an internal control, the CT

values of each group were counted, and the data were analyzed with

2-DD CT (Livak method).
4.10 Data analysis

All analyses were performed using R software (version 3.6.2),

and a P value of less than 0.05 was considered statistically

significant. The qRT-PCR data obtained are expressed as mean ±

standard error (SEM). Student’s t-test or one-way ANOVA was
TABLE 1 The sequence of primer nucleotides used in this study.

FORWARD REVERSE

CAP2 TGTCAGCCGCCTGGAGTCG TGGATGCTACAGGACCCTCGTG

GAPDH CTGGAGAAACCTGCCAAGTATG GGTGGAAGAATGGGAGTTGCT
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used to compare differences between groups. GP software was used

for statistical analysis. P < 0.05 was statistically significant.
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