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Editorial on the Research Topic

Quantification and prediction of T-cell cross-reactivity through
experimental and computational methods
T-cell receptor (TCR) molecules play a central role in adaptive cellular immunity,

enabling T-cell lymphocytes to recognize peptide-loaded Major Histocompatibility

Complexes (pMHCs) at the surface of other cells (Figure 1). In turn, this molecular

interaction can trigger T-cell activation and function (e.g., cytotoxicity or

immunomodulation) (1). The specificity of the TCRpMHC interaction is essential for

the efficiency of cellular immunity against infectious pathogens and cancer cells, as well as

for the safety of new game-changing T-cell-based immunotherapies (2). However, it is well

established that the same TCR can recognize multiple pMHC complexes with varying

affinities/avidities (3–6), and such “promiscuity” has several biomedical implications,

related to mechanisms of self-tolerance (1), heterologous immunity between pathogens

(7, 8), autoimmunity, transplant rejection (1, 9), allergies (10), and off-target toxicity in T-

cell based immunotherapies (11–13). Unfortunately, the complexity and diversity of the

molecules involved in these interactions has slowed the development of both experimental

and computational methods to detect, quantify, and predict these T-cell cross-reactivity

events. But this picture has been changing in recent years, with exciting developments in

both high-throughput experimental methods (5, 14, 15) and scalable computational

approaches (16–21) for the study of TCRpMHC interactions. This Research Topic

highlights recent studies in this field, including further analysis of T-cell cross-reactivity

in antiviral immunity, and new computational approaches to predict TCR specificity and

off-target toxicity.
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TCR cross-reactivity is an intrinsic feature of T-cell biology,

required to maximize immunity against an overwhelming diversity

of antigenic peptide-targets (4, 13, 22, 23). The benefits of cross-

reactivity for antiviral immunity are further evidenced by Petrova et al.

They analyzed the recall CD8+ T-cell response to variants of the well-

characterized Influenza A M158−66 peptide, to show how cross-reactive

T-cells can be selected by naturally occurring non-infective variants or

quasispecies of RNA viruses. Since immunological history also affects

the selection of these cross-reactive cells, Tarabini et al. leveraged

existing immunoinformatics methods to investigate the potential link

between BCG vaccination and reduced severity of COVID-19 cases.

Building upon previous work on image-based analysis of modeled

pMHC complexes (6, 24–26), they screened over 13.5 million possible

cross-reactive peptide pairs from BCG and SARS-CoV-2, identifying

multiple high-density “neighborhoods” of cross-reactive peptides

which could be driving heterologous immunity induced by BCG

vaccination. Similarly, Antonio et al. used pMHC structural

modeling to investigate how previous infections may produce

heterologous immunity in a global scale, therefore mitigating the full

lethal potential of the COVID-19 pandemic. They identified similar

structural fingerprints across peptides derived from other

coronaviruses and from unrelated viruses involved in endemic

human infections, which could trigger cross-reactive T-cell responses

against SARS-CoV-2 variants. In fact, cross-reactivities with SARS-
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CoV-2-derived peptides have been since reported in multiple studies

(27, 28).

These efforts to leverage pMHC structural data represent a

more recent trend among computational methods to interpret or

predict T-cell cross-reactivity, as previously reviewed by others (6,

29, 30). Attesting to the fast progress in the field, our Research Topic

includes three additional computational tools for cross-reactivity

prediction guided by structural data. First, Mendes et al. leveraged

the analysis of electrostatic potentials over the TCR-interacting

surfaces of pMHC complexes to develop MatchTope. The tool relies

on a modified version of PIPSA (31) to enable the structure-based

clustering of similar pMHC structures, which are in turn more

likely to be recognized by the same TCR. Second, Hall-Swan et al.

implemented PepSim, a webserver for T-cell cross-reactivity

prediction based on a novel similarity score for pMHC structures.

PepSim represents the pMHC solvent-accessible surface as a

triangular mesh, which is then annotated with biochemical

features, including electrostatic potential, hydrophobicity, and

hydrogen bond potential. Finally, Fonseca and Antunes

introduced CrossDome, an R-based tool to predict the risk for

off-target toxicity in T-cell-based immunotherapy. By default, the

tool performs a sequence-based peptide-centered search for

biochemically similar off-targets, leveraging publicly available

multiomics data from healthy tissues (e.g., immunopeptidomics

and gene expression data). However, the authors also demonstrate

how structural data of TCRpMHC complexes can be used to

perform a TCR-centered prediction, enabling to refine the list of

putative off-targets for a specific T-cell clone. This is an important

direction for future development, considering the greater

availability of TCR sequences (e.g., single-cell TCRseq), and the

growing interest in analyzing TCR specificity across T-cell

repertoires (32). For now, analyses at that scale are mostly limited

to sequence-based methods, as reviewed by Ghoreyshi and George.

But the authors also describe the emergence of hybrid quantitative

computational approaches for studying TCR specificity, with

emphasis on the growing role of deep learning architectures

behind these methods.

This Research Topic highlights a transition to a new age in the

study of T-cell cross-reactivity, in which AI-powered structure-

guided computational prediction of TCR specificity for polyclonal

T-cell repertoires, and high-throughput experimental validation of

T-cell activation, will be used to guide the development of better

and safer vaccines and T-cell-based immunotherapies (13, 33).

However, there are still challenges ahead, as we try to incorporate

in these scalable computational methods a more refined

understanding of the forces and dynamics driving the affinity,

avidity and specificity of TCRpMHC interactions (34, 35).
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FIGURE 1

Artistic representation of the key molecules involved in T-cell
recognition of an antigenic target. TCR chains (a and b) depicted in
shades of purple, CD3 chains in shades of green, MHC chains (a and
b2m) in shades of blue, and the peptide-target in red. Cell
membranes are depicted in grey. Image obtained with UCSF
ChimeraX, using PDB codes 6JXR and 5BRZ.
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