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Mouse models of chronic
lymphocytic leukemia and
Richter transformation: what we
have learnt and what we
are missing
Maria Teresa Sabrina Bertilaccio1 and Shih-Shih Chen2*

1Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center,
Houston, TX, United States, 2Institute of Molecular Medicine, The Feinstein Institutes for Medical
Research, Manhasset, NY, United States
Although the chronic lymphocytic leukemia (CLL) treatment landscape has changed

dramatically, unmet clinical needs are emerging, as CLL in many patients does not

respond, becomes resistant to treatment, relapses during treatment, or transforms

into Richter. In the majority of cases, transformation evolves the original leukemia

clone into a diffuse large B-cell lymphoma (DLBCL). Richter transformation (RT)

represents a dreadful clinical challenge with limited therapeutic opportunities and

scarce preclinical tools. CLL cells are well known to highly depend on survival signals

provided by the tumor microenvironment (TME). These signals enhance the

frequency of immunosuppressive cells with protumor function, including

regulatory CD4+ T cells and tumor-associated macrophages. T cells, on the other

hand, exhibit features of exhaustion and profound functional defects. Overall

immune dysfunction and immunosuppression are common features of patients

with CLL. The interaction between malignant cells and TME cells can occur during

different phases of CLL development and transformation. A better understanding of

in vivo CLL and RT biology and the availability of adequate mouse models that

faithfully recapitulate the progression of CLL and RT within their microenvironments

are “conditio sine qua non” to develop successful therapeutic strategies. In this

review, we describe the xenograft and genetic-engineered mouse models of CLL

and RT, how they helped to elucidate the pathophysiology of the disease

progression and transformation, and how they have been and might be

instrumental in developing innovative therapeutic approaches to finally eradicate

these malignancies.
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Introduction

Chronic lymphocytic leukemia (CLL) is a disease with remarkable

complexity that can evolve into Richter transformation (RT), an

aggressive lymphoma with a dismal prognosis (Figure 1). CLL cells

are enriched not only with old/quiescent cells, but also with a small

fraction of recently born/proliferating cells. Division of CLL cells

mainly occurs in lymph nodes (LNs) but not in the bone marrow or

blood (12), highlighting the importance of the tumor

microenvironment (TME) in the pathophysiology of this

malignancy. CLL is also a disease with genetic complexity; CLL

patients have common mutations involved in driving disease

progression (13–15) and RT (6, 7, 16, 17). These genetic

abnormalities are already present in CLL patient bone marrow

CD34+ hematopoietic stem cells (HSCs) (1, 18, 19) and in the pre-

leukemic stage of monoclonal B-cell lymphocytosis (MBL) (20–22). In

contrast, the nonmalignant immune cells within TME revealed

transcriptional similarity across patients (21, 23).

Developing mouse models faithfully mimicking CLL would

facilitate the understanding of disease mechanisms, especially

those driven by the crosstalk between the tumor and the TME.

Preclinical mouse models that closely represent patient disease are

also indispensable to improve treatments. Here, we review the

recently developed genetic-engineered (GEMMs) and patient-

derived xenograft (PDX) mouse models of CLL and RT.

GEMMs have contributed significantly to the field of CLL

research. With the recently developed CRISPR-Cas9 technique,
Frontiers in Immunology 02
multiplexed-GEMMs have been established (11, 24–28). These

GEMMs capturing driver mutations of CLL develop de novo

tumors. Tumors arising from multiplexed-GEMM mice closely

mimic the genetic heterogeneity of their human counterparts (11,

24) and are capable of spontaneously transforming into RT (26–28).

Because GEMMs capture both extrinsic factors from TME and the

intrinsic properties of CLL, these mice are suitable for in vivo

validation of candidate cancer-driven genes and therapeutic agents

targeting the crosstalk between tumor and TME. However, the

current GEMMs still have drawbacks; for example, none of the

GEMMs of CLL recapitulate the development of IgHV-mutated

versus unmutated CLL, or are capable of modeling responses to

existing treatment history in CLL patients.

The usefulness of PDXs in studying CLL and RT depends on the

level of relatedness of the disease characteristics between these

models and patients. There are several features of xenografts to

consider for the successful translation into clinics. First, they must

faithfully recapitulate the spectrum and the heterogeneity of

lymphoproliferation observed in patients. Second, xenografts

should have the genetic, phenotypic, and clinical features of the

human disease. Third, all relevant CLL and RT events occur in

permissive tissue microenvironments, and xenograft systems must

fully mimic the co-evolution of malignant clones with

nonmalignant cell types. This is especially a problem with PDXs

that require serial adoptive transfers after the first inoculation. PDX

capture clonal selection and evolution in an immunodeficient

murine microenvironment that do not reflect human
FIGURE 1

Schematic model of CLL initiation, progression, and Richter transformation. Initial genetic events occur during the B-cell development at the stage
of hematopoietic stem cells HSC (1–3). Additional genetic abnormalities, within either a T-cell-dependent or -independent phase, then trigger the
progression into CLL (4, 5). Finally, through the acquisition of independent genetic events, Richter transformation (RT) occurs (6–9). A complex
network of reactive cells of the immune microenvironment plays a critical role within every phase of the biology of the disease, before and after
transformation, either in the lymphoid tissues or peripheral blood (9). HSC, hematopoietic stem cell; DC, dendritic cell; MDSCs, myeloid-derived
suppressor cells; TREG, CD4

+regulatory T cells; Th, CD4+ helper T cells. Published datasets are from Patten et al. (10), Chiang et al. (11), and Playa-
Albinyana et al. (8).
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counterparts. Thus, the reliability of such models has been

hampered in the past by the availability of proper humanized

recipient mice able to fully reconstitute the human tumor

immune microenvironment.
Mouse models of CLL

Xenograft models of CLL patient-derived
bone marrow CD34+ hematopoietic
stem cells

Accumulated evidence suggests that CLL is a stepwise disease,

preceded by a pre-leukemic state. Driver mutations such as SF3B1

commonly seen in CLL tumors are also present in CLL patient bone

marrow CD34+CD19- HSCs (1, 18, 19, 29) and MBL patient B cells

(22, 30, 31). Functionally, BM-HSCs from both early- and late-stage

CLL patients display increased protein levels of HIF-1a, GATA-1,

PU.1, and GATA-2, and are poorly responsive to colony-forming

unit (CFU) assays (2). In 2011, Kikushige et al. (3) injected CLL

patient BM-HSCs in NOD-SCID/IL-2Rgnull (NSG) and NOD-

Rag1nullIL2rgnull (NRG) mice (Table 1) and found the CLL-like

mono- or oligo-clonal B cells in the recipients; however, B cells

implanted in mice were not clonally related to the original patient

cells. Similarly, in 2022, Chiang et al. intra-femorally injected CLL-

BM HSCs in busulfan pre-conditioned NSG xenografts (11) and

obtained CLL-like cells with VDJ rearrangements distinct from

those of the originally transplanted CLL patient cells. Notably, the

renewal and survival of HSCs were dependent on GATA2 and

IKZF2 (11). Altogether, current xenografts of CLL BM-HSCs

support the differentiation of CLL-like B cells that are clonal

unrelated to patients, and none of the mice develop a full-blown

CLL disease (Figure 1).
Xenograft models of primary CLL
patient cells

The first xenografts using primary CLL patient cells were

established by Berrebi and Reisner (32, 38) using irradiated BALB/c

mice pre-conditioned with SCID mouse bone marrow (Table 1),

followed by Dürig et al. using NOD/SCID mice intraperitoneally

injected with primary tumors obtained from CLL patient blood mice

(33, 39). Both studies evidentiated a disease-stage-dependent CLL cell

engraftment; PBMCs from late-stage patients consistently engraft

better in mice. Similar results were also observed when Chiorazzi’s

group inoculated CLL PBMCs together with autologous T cells in

nonobese diabetes/severe combined immunodeficiency/gc (null)

mice (34). This model was the first to report the reproducible

engraftment of CLL cells in the mice and uncover the requirement

of autologous T cells for the growth of CLL B cells (34). Chiorazzi’ s

group further modified the model by injecting NSG mice with pre-

activated autologous T cells and CLL-PBMCs at the ratio of 1:40, and

again discovered T-dependent CLL B-cell proliferation in murine

spleens (10, 35). CLL B cells were present in mouse spleens, but the

percentage of CLL B cells was decreasing over time. In contrast, T-cell
Frontiers in Immunology 03
population increased and became the major population of total

human lymphocytes (10). The predominant T cells but not CLL B

cells at the late stage occurred even in mice injected with CLL PBMCs

without pre-activated T cells (10).

Similar results were also shown by Wiestners’ group when they

inoculated 60 million CLL PBMCs in NSG mice; again, none of the

mice died from CLL (40, 41). However, CLL B cells engrafted in

murine spleens highly resembled their original donor LN

counterparts for the gene expression profiles, BCR, and NF-kB

signal signatures (40, 41).

The feature of T cell-dependent CLL cell growth in NSG

xenografts allows one to test novel therapies in the context of
TABLE 1 Xenograft models of CLL and RT.

Model Description Reference

Xenograft models of CLL patient-derived CD34+ hematopoietic
stem cells (HSC)

NOD-
SCID/IL-
2Rgnull

(NSG)

Transplantation of bone marrow-derived HSCs
into newborn mice (facial vein injection)

Kikushige
Y (3)

NOD-
SCID/IL-
2Rgnull

(NSG)

Transplantation of bone marrow-derived HSCs
in busulfan pre-conditioned xenograft (intra-
femoral injection)

Chiang
CL (11)

Xenograft models of primary CLL patient cells

Human/
mouse
chimera

Transplantation of CLL PBMCs into irradiated
BALB/c mice pre-conditioned with SCID mouse
bone marrow

Shimoni
A (32)

NOD/
SCID

Transplantation of CLL PBMCs into NOD/
SCID mice

Durig J (33)

NOD-
SCID/IL-
2Rgnull

(NSG)

Co-transfer of CLL PBMCs with allogeneic
APCs (CD14+ or CD19+ cells)

Bagnara
D (34)

NOD-
SCID/IL-
2Rgnull

(NSG)

Co-transfer of CLL PBMCs with pre-activated
autologous T cells

Patten PE
(10, 35)

Patient-derived xenograft (PDX) models of
Richter transformation

NOD-
SCID/IL-
2Rgnull

(NSG)

Subcutaneous injection of RT patient-derived
lymph node cell suspensions with matrigel

Vaisitti T (36)

NOD-
SCID/IL-
2Rgnull

(NSG)

Subcutaneous injection of RT patient-derived
lymph node cell suspensions with matrigel

Fiskus W (27)

NOD-
SCID/IL-
2Rgnull

(NSG)

Subcutaneous injection of RT patient-derived
lymph node cell suspensions with matrigel

Vaisitti T (37)

NOD-
SCID/IL-
2Rgnull

(NSG)

Co-transfer of B and T cells from the peripheral
blood of a CLL patient known to undergo
transformation into clonally related Richter

Playa-
Albinyana
H (8)
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CLL B cell–T cell interaction. Clinically, anti-CD19 chimeric

antigen receptor (CD19.CAR) T cells reject CLL tumors by

overcoming immunological tolerance; however, the efficiency is

low compared to other B-cell malignancies (42, 43). CD19. CAR T

cells therefore have been tested in NSG-xenografts (42–44).

CD19.CAR T cells (TDN) and control untransduced T cells

generated from PBMCs obtained from three treatment-naive CLL

patients were injected intravenously into NSG xenografts.

Compared to the untransduced T-cell cohort, CD19.CAR T cell-

treated mice have significantly increased the percentage of CD8 T

cells and reduced CLL B cells in the spleens, suggesting that the

model is suitable for developing strategies to improve the efficacy of

CARs in CLL (Figure 1).
Genetic-engineered mouse models of CLL
for studies in TME

Different from xenografts, GEMMs of CLL allow the

preclinical TME intervention studies. GEMMs of CLL have

shown the critical functions of non-malignant cells such as T

cells including Foxp3+ CD4+ T-regulatory cells (TREG),

monocytes/macrophages, dendritic cells, and stromal cells,

including specialized antigen-presenting cells and follicular

dendritic cells (FDCs) (Figure 1). Majority of these studies are

based on Em-TCL1 transgenic mouse model (Table 2), the mostly

utilized GEMM for CLL, characterized by overexpression of

human TCL1 specifically in B cells (45). TCL1 oncogene is

common in CLL patients (55). These mice develop aggressive

disease similar to IGHV-unmutated patients. Importantly, the
Frontiers in Immunology 04
malignant TCL1 CLL B cells are serial transferrable, allowing one

to identify key factors within TME that impact CLL disease

progression (56).

CLL disease is known to have dysfunctional immunity due to

impaired activities of myeloid cells, neutrophils, dendritic cells, and
TABLE 2 Genetic-engineered mouse models (GEMMs) of CLL.

Model Description Reference

Em-TCL1
transgenic
(tg) mice

Exogenous expression of the human TCL1
oncogene under the control of the IGHV
promoter and IGH enhancer (Em) results in the
clonal expansion of CD5+ IgM+ B cells with
unmutated IGHV genes, stereotypic IGHV and
IGLV genes.

Bichi R (45)

minimal
deleted
region
(MDR)−/
− mice

MDR−/− mice lack mir-15a/16–1, dleu2 and
dleu5 genes and develop MBL, CLL, and CD5-

NHLs. MDR−/− mice develop CLL with 22%
penetrance and unmutated and stereotypic
IGHV genes.

Klein U (46)

mir-15a/
16–1−/
− mice

Genetic inactivation of mir-15a and mir-16–1 in
mice results in the development of MBL, CLL,
and NHLs. mir-15a/16–1−/− mice develop CLL
with 20% penetrance and unmutated and
stereotypic IGHV genes.

Lia M (47)

Model Description TME
key findings

Reference

Em-TCL1
tg
adoptive
transfer
model

Investigation of the
epigenetic and
functional consequences
of antigen-specific T-cell
responses by

Impairment of
CD8+ T-cell
responses through
epigenetic
reprogramming

Martens
AWJ (48)

(Continued)
TABLE 2 Continued

Model Description Reference

Model Description TME
key findings

Reference

transplanting OT-I
CD8+ T cells in the Em-
TCL1 adoptive
transfer model.

Em-TCL1
tg mice

Changes in regulatory
T-cell phenotype and
related expansion at
different stages of
leukemia have been
evaluated in the Em-
TCL1 tg mice

Role of regulatory T
cells in
CLL progression

Goral A (49)

Em-TCL1
tg
adoptive
transfer
model

The Em-TCL1 adoptive
transfer model has been
utilized to evaluate the
interrelation between
regulatory T cells and
neutrophils in the
CLL TME.

Immunosuppressive
role of regulatory T
cells and neutrophils
in CLL

Goral A (50)

Em-TCL1
tg
adoptive
transfer
model

The Em-TCL1 adoptive
transfer model was
instrumental to
demonstrate that
macrophage targeting
via CSF1R blockade
sensitizes leukemic cells
to apoptosis and
significantly impacts the
whole TME

Role of
macrophages and
related targeting
strategies in
leukemia
progression

Galletti G (51)

Em-TCL1
tg mice

Skewing of myeloid cell
populations with CLL
development was
documented in the Em-
TCL1 tg mice with
particular focus on the
monocytes and
protumor macrophages

Role of patrolling
CLL-associated
monocytes and
macrophages and
related depletion in
disease development

Hanna BS (52)

Em-TCL1
tg mice

CXCR5-controlled
access to follicular
dendritic cells (FDCs)
confers proliferative
stimuli to CLL cells in
the Em-TCL1 tg mice

The role of FDCs in
leukemia B-cell
activation
and proliferation

Heinig K (53)

Em-TCL1
tg mice
and Em-
TCL1 tg
adoptive
transfer
model

The Em-TCL1 tg mice
and the Em-TCL1
adoptive transfer model
allowed researchers to
characterize the
evolution of the stromal
microenvironment
during CLL progression
and to identify the
involvement of the
retinoid signaling

The role of the
retinoid-signaling in
leukemia-stroma
crosstalk and
CLL progression

Farinello
D (54)
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T cells. CLL cells impact non-malignant supporting cells to alter

their functions and phenotype in favor of leukemic growth.

Recently, Martens et al. explored the antigen-specific response of

naïve OT-I CD8+ T cells to antigen mCMV-OVA and showed that

TCL1 leukemic B cells induced epigenetic modifications and

skewing of short-lived effector cells in these antigen-specific T

cells (48). CLL infiltration also alters the subsets of T cells. Using

the TCL1 mouse system (49), Goral et al. discovered impacted

neutrophils and TREG including the subset of CD44lowCD25low

TREG after CLL B-cell infiltration; CLL tumors activate TREG to

block CD62L and IL-4 receptor expressed on neutrophils, and

further suppress neutrophil functions. Depletion of TREG cells

restores the impaired neutrophils and induces changes in the CLL

TME (50). In TCL1 mice, CLL cells initially accumulate in the

peritoneal cavity; this also triggers the infiltration of monocytes and

macrophages mainly expressing protumor signature, including

CD206, CD124, and ARG-1 molecules in the peritoneum. At later

stages, when CLL cells accumulate in the enlarged spleens,

patrolling monocytes expressing high levels of PD-L1 were found

accumulating in spleens (52). Targeting macrophages sensitizes

CLL to apoptosis and delays disease progression (51).

Stromal cells clearly regulate the dynamic behavior of CLL cells,

contributing to homing and trafficking in and out of the tissues,

even during treatment. In 2014, Heinig et al. (53) demonstrated the

key function of FDCs in the Em-TCL1 transgenic mouse model.

Heinig et al. (53) knocked out CXCR5 in TCL1 CLL B cells and

uncovered the CXCR5-regulated access of CLL cells to FDCs;

CXCR5-expressing CLL cells further stimulate CXCL13 secretion

and stromal cell remodeling. In 2018, Farinello et al. (54) discovered

that TCL1 CLL B cells induce CXCL13 expression in the remodeled

stromal microenvironment; this process is dependent on the

induction of retinoid (RA) signaling in stromal cells; targeting RA

signaling delays disease progression and prolongs overall survival.

Consistent with these observations, the expression of RA nuclear

receptors (54) and plasma levels of CXCL13 (57) correlates with bad

prognosis in CLL patients.

Bone marrow niche is the site where CLL malignancy begins

with primary genetic mutations followed by antigen-driven

expansion (58, 59). The TME of BM is known to contribute not

only to the survival of malignant cells (60), but also to the

development of drug resistance (61, 62). In CLL, the BM

infiltration of CLL cells causes the bone erosion and thinning of

the femoral cortex in a xenograft NSG mouse model via the

activation of the RANK/RANKL signaling (63). The BM

environmental RANKL-RANK signaling provides the survival of

CLL cells, shown by Alankus et al. in mice that express hyperactive

RANKk240E transgenic gene in B lymphocytes; ex vivo, RANKL-

expressed BM stromal cells also support the survival and

proliferation of TCL-1 murine CLL cells and MEC-1 cells (64).

Although the potential effects of anti-RANKL in counteracting

chemoresistance or targeted therapy resistance has not been

tested, the contact of CLL cells and stromal cells is known to lead

to drug resistance (65, 66). Thus, modulation of the BM

microenvironment might provide opportunities to improve

treatment outcome. However, a suitable animal experimental
Frontiers in Immunology 05
model that can recapitulate the significance of BM TME in CLL

patients is still lacking.

Besides TCL1 oncogene, deletion of 13q14 (del13q14) is the

most frequent genetic lesion in CLL; 60% of CLL patients carry

del13q14. The 13q14 region encodes genes highly conserved in

human and mice; the minimal deleted region (MDR) includes the

DLEU2 long non-coding RNA (ncRNA), and themiR-15a/miR-16–

1 cluster. Klein et al. elegantly recapitulated the 13q14 deletion and

CLL phenotype in MDR (46) and miR-15a/16–1-deleted mice (47).

In 2023, Ten Hacken et al. created del(13q)-Cd19-Cas9 LSK cells,

introduced control guide RNAs, and demonstrated CLL

development already in mice carrying only del(13q)-B cells (26).

In contrast, the generation of single loss-of-function (LOF) lesion

using sgRNA targeting Atm, Tp53, Birc3, Chd2, Mga, or Samhd1

was not sufficient to drive CLL disease development (25).
Mouse models of
Richter transformation

Xenograft models of
Richter transformation

The impact of the TME in CLL progression is more evident

when the disease transforms into RT with dramatic LN

involvement. RT is characterized by an evolution of CLL into an

aggressive lymphoma. Two percent to 10% of patients with CLL

develop diffuse large B-cell lymphoma (DLBCL)-RT with a median

overall survival of less than 12 months (67). The whole genome,

epigenome, and transcriptome of patient-derived RT cells have

been extensively investigated by several independent groups. New

driver alterations and a B-cell receptor (BCR)LOW-signaling

transcriptional axis in RT cells have been identified (6, 7, 68, 69).

Targeted therapies have not shown good responses in RT. Though

CD19.CAR-T cell therapy is an established treatment for de novo

DLBCL (70–72), data on the efficacy of CD19.CAR-T cell therapy in

RT are limited and need better investigation (73, 74). High levels of

PD1/PD-L1 checkpoint molecules have been observed on selected

immune cells and encouraging results recently came from a phase 2

trial based on the combination of nivolumab and ibrutinib with an

overall response rate of 42% (75). The evidence that checkpoint

inhibitors show clinical activity in patients with RT compared to

patients with CLL highlights the critical difference in the TME

between RT and CLL that should be better investigated to improve

outcomes in patients. Distinct immune signatures have been

described in CLL and RT (76, 77). Patients with RT show a more

diverse T-cell repertoire, lower T-cell TCR clonality, and increased

infiltration of TREG cells compared to patients with CLL (76).

CD68+CD163+ protumor macrophages have been found at

increased levels in LN sections of patients with RT compared to

CLL (76).

The interaction between malignant cells and TME can occur

during different phases of CLL progression and RT (Figure 1). How

and when selected immune cells become dysfunctional and acquire

a protumor phenotype during leukemia progression and whether
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this phenotype is exacerbated in patients undergoing RT

is unexplored.

The availability of mouse models recapitulating the human RT

with a fully reconstituted immune microenvironment is crucial to

identify and preclinically develop therapeutic strategies for these

uncurable malignancy.

To date, two PDX models of RT have been established in NSG

mice (Table 1) by two independent groups (27, 36). Vaisitti et al.

reported for the first time the development of two PDX models of

RT documenting extensive involvement of the spleen (SP), bone

marrow (BM), peripheral blood (PB), and extra-nodal organs (36).

LN cell suspensions were injected subcutaneously with matrigel,

and after the first engraftment, tumor cells were retransplanted in

vivo for at least 10 passages to stabilize the PDX models. These

models preserved the phenotypes, and the genomic and

biomolecular features of the original RT in the patients. Targeted

deep sequencing, whole-exome sequencing (WES), and RNA

sequencing were exploited to characterize the two models that

appeared to share 80% of their transcriptome with the original

patient samples. Of note, one of the models maintained in vivo the

BTKmutation associated to ibrutinib resistance (p.C481S) found in

the original primary sample. Primary and PDX samples shared the

same IGHV gene mutational status and were EBV negative, thus

ruling out the possibility of EBV-driven non-malignant B-cell

proliferation in vivo.

Three additional DLBCL-RT PDX models (HPRT1, HPRT2,

and HPRT3) with similar pathophysiology features have been

reported more recently in NGS mice (27). Immunoglobulin gene

analysis performed on the PDX and the original samples allowed

one to identify clonally related or unrelated models; the HPRT3

model was documented as clonally related to the original CLL/RT

patient-derived sample, while HPRT2 was defined as clonally

unrelated. Additionally, based on a detailed phenotypic

characterization, two out of three PDX lines were identified as

ABC-DLBCL type due to the expression of MUM/IRF4. The

HPRT1 PDX line was described as GCB-DLBCL type expressing

high levels of CD10 and BCL6. The RT-DLBCL cells were found

growing in the BM, SP, and liver with marked splenomegaly and

hepatomegaly (27). These RT-PDXs were found to display active

enhancers, and protein expression of IRF4, TCF4, and BCL2,

together with high sensitivity to BET inhibitors. Unlike RS9737

and RS13160, HPRT PDXs have been stabilized as cell lines for in

vitro cytotoxicity studies. When exploited in survival experiments,

these HPRT PDX models allowed one to preclinically test and

demonstrate the activity of the combination based on BET-

PROTAC and venetoclax, thus uncovering the potentiality of a

novel treatment for patients with RT (27).

Two additional PDX models (RS1050 and IP867/17) have been

reported by Valsitti et al. (37) using the same experimental strategy

(36). IP867/17 was developed from an untreated patient. These

PDX models were evaluated in flow cytometry for the expression of

the Receptor tyrosine kinase-like orphan receptor 1 (ROR1), a

known tumor-specific target (78). The antibody–drug conjugate

VLS-101 combining the ROR1 targeting moiety and monomethyl

auristatin E (MMAE) has been preclinically tested in these PDX

models and showed a favorable impact on the in vivo growth and
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survival of RS PDX models (37). These results performed in the RT

PDX models supported the development of the phase 1 trial

NCT03833180 in patients with RT. Of note, further preclinical

studies in the RT PDX models RS1316 and IP867/17 helped

demonstrate in vivo the synergistic effect of the dual

phosphatidylinositol 3-kinase-d/g (PI3K-d/g) inhibitor duvelisib

and the Bcl-2 inhibitor venetoclax and allowed the enrollment of

patients with RT in the trial NCT03892044 combining the two

agents. More recently, Deaglio’s group preclinically evaluated the

targeting of the surface antigen CD37 in the all the PDX models

developed by her group (79). Three amanitin-based ADC anti-

CD37 agents were tested in four established RT PDX models and

significantly prolonged the mice survival.

Very recently, Playa-Albinyana H et al. generated an RT-PDX

model (Case 12, Figure 1) mimicking the evolution of CLL into RT

by injecting B cells and T cells from the peripheral blood of a patient

with CLL, known to undergo transformation into clonally related

Richter 20 years later after ibrutinib treatment (8). An additional

RT-PDX was developed by the same group by transplanting B cells

and T cells from a patient with RT (Case 19). Of note, they

characterized over time in vivo the dynamics of the subclonal

architecture and identified in the xenotransplanted mice the

engraftment of a small subclone originally present in the patient

RT19 that acquired later in the mice relevant alterations including

BCL2 andMYC (8). As in the previous PDXmodels, they confirmed

in the mice the RT transcriptional profile. This study confirms the

concept of early seeding of RT subclones in the circulation of

patients with CLL and elegantly described in vivo the evolutionary

process of transformation (7).

Overall, these models (27, 36) maintain the malignant

phenotype, genomic architecture, and biomolecular signature of

the original tumors and have been successfully exploited in vivo and

in vitro to preclinically test the activity of new agents. However, they

do not recapitulate LN dissemination, which is a typical feature of

RT in patients in the context of a fully immune reconstituted

patient-derived microenvironment.
Genetically engineered mouse models of
Richter transformation

In 1992, the first mouse model of RT was documented by E.S.

Raveche and her group within the context of the NZB mouse strain

(Table 3). Multiple passages through successive F1 recipients of a

clonal line originating from an old NZB mouse resulted in a

transformed clone localizing to the LNs and liver with the distinct

features of the human RT (80, 88, 89). Unlike the original CLL-like

clone, the murine secondary transformation recapitulated the

pathology of RT with the disruption of the normal tissue

architecture and the massive infiltration of the spleen, LNs, and

liver by large cells with cleaved nuclei and evident nucleoli (88).

Almost two decades later, two TCL1-driven models of high-risk

CLL have been generated with the conditional B-cell-specific

deletion of Tp53 that displayed occasionally the features of RT

with the occurrence of large CD5- blastoid cells in the splenic

infiltrates (81).
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Then, a mouse model resembling RT, the double transgenic Eµ-

TCL1xMyc, has been reported with features of concurrent CLL and

highly aggressive lymphoma (82). This model was exploited in

preclinical studies to test the BTK inhibitor ARQ531 and helped

demonstrate its superior activity over ibrutinib in survival

experiments (90).

More recently, the B-cell-specific deletion of either the

transcription factor NFAT2 (83) or its target gene tyrosine kinase
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LCK (84) in the TCL1 transgenic mice was shown to induce the

acceleration of CLL and the development of an RT-like phenotype.

RT has been associated with somatic mutations involving TP53,

CDKN2, MYC, EGR2, and NOTCH1. Kohlhaas et al. demonstrated

that high levels of AKT phosphorylation occur in patients with

high-risk CLL and RT with TP53 and NOTCH1 mutations (85).

The genetic inactivation of Akt in the TCL1 transgenic mice led to

the development of a typical RT phenotype, with mice carrying

splenomegaly, emerging large blastoid cells with pleomorphic

nuclei, and high levels of lactate dehydrogenase (85). Of note,

Kohlhaas et al. showed that Akt-mediated control promotes cell–

cell interaction, the induction of CD4+ T cells, and the

overexpression of DII1, which induces NOTCH1 activation and

facilitates RT transformation. Overall, this model helped to

demonstrate that the potential inhibition of PI3K/AKT and

NOTCH1 might be a strategy to explore patients with high-risk

CLL and RT. This model validates several evidence observed in RT

PDX models and an ongoing multicenter trial with the PI3Kd,g
inhibitor duvelisib (86).

Additionally, an interesting model has been reported by the

group of D. Efremov (87). Unlike the above-described models, they

mimicked in mice for the first timemultiple genetic lesions associated

to RT, thus better recapitulating the genetic evolution of the disease.

By using the (CRISPR)/Cas9 technology, they demonstrated that the

simultaneous inactivation of CDKN2A, CDKN2B, and TP53 in

primary TCL1 transgenic-derived murine CLL cells induces

proliferation in vitro and accelerates tumor growth in the TCL1 tg

transplantation system. The administration of BCR and CDK4/6

inhibitors ibrutinib and palbociclib has a favorable impact on the

survival of mice transplanted with the CLL murine cells carrying the

CDKN2A, CDKN2B, and TP53 lesions (87). These data gave relevant

indications on the treatment of a subset of RT patients with TP53 and

CDKN2A/2B abnormalities, suggesting the combination of BCR

inhibitor with CDK4/6 inhibitors such as palbociclib. Overall, this

evidence highlights the importance of simultaneously mimicking in

vivo the genetic lesions observed in distinct subsets of patients with

RT to investigate the activity of new combination agents.

PRMT5 is known to regulate oncogenes such as NOTHC1, c-

MYC, and P53 that are often dysregulated in patients with RT.

Recently, Hing et al. demonstrated that PRMT5 is expressed in

patients with RT transformation leading to the hypothesis that it

might be involved in the transformation (68). Indeed, they

generated PRMT5/TCL1 double transgenic mice developing an

aggressive lymphoma with the clinical features of RT, including

lymphadenopathy and palpable splenomegaly (68).

Together with TP53, CDKN2A/B deletions, and NOTCH

activations, additional genetic lesions have been identified in

patients with RT, including the loss-of-function mutations and

deletions in Max gene associated (MGA), a MYC transcriptional

repressor (7). Iyer et al. established a new model of RT by knocking

out Mga in an Sf3b1/Mdr model of CLL (91). In detail, they crossed

the murine CLL line CD19cre/+Mdrfl/+Sf3b1 K700Efl/+ with a mouse

strain that conditionally expresses Cas9 to obtain a donor mouse

line Cd19-Crefl/+Sf3b1fl/+ Mdrfl/+Cas9fl/+. Murine hematopoietic

stem cells, Lin-cKit+Sca1+ cells (CD45.2+), were then isolated

from these mice and transduced in vitro with lentivirus
TABLE 3 Genetic-engineered mouse models (GEMMs) of RT.

Model Description and
key findings

Reference

B-1 line originating
from NZB mice

During serial passages, an aggressive
Richter-like lymphoma developed as
a result of transformation from the
original B-1 CLL clone

Peng B (80)

Em-TCL1Trp53−/
− mice

Em-TCL1 mice with conditional B-
cell specific deletion of Trp53 display
occasional transformation
into Richter

Knittel G (81)

Em-TCL1xMyc mice Em-TCL1 were crossed with Em-Myc
mice to investigate the clinical
phenotype associated with the
expression of these oncogenes. The
mice developed features of aggressive
lymphoma including
Richter transformation

Lucas F (82)

Em-TCL1 Nfat2−/− Deletion of Nfat2 in the context of
the Em-TCL1 tg mouse results in the
development of Richter-
like phenotype

Muller DJ (83)

Em-TCL1 LCK−/− Em-TCL1 tg mice with genetic loos of
LCK show acceleration of CLL with
RT-like features

Marklin
M (84)

Em-TCL1Akt-C Genetic overactivation of Akt in the
Em-TCL1 mouse model results into
transformation of CLL into RT with
reduced survival and aggressive
lymphoma phenotype.

Kolhaas
V (85)

Inactivation of
CDKN2A, CDKN2B,
and TP53 in the Em-
TCL1 tg adoptive
transfer model

Simultaneous disruption of
CDKN2A, CDKN2B, and TP53 in
the Em-TCL1 tg-derived cells leads to
aggressive disease with RT features.

Chakraborty
S (87).

Em-TCL1/PRMT5 Em-TCL1 tg mice with
overexpression of hPRTMT5 develop
highly aggressive lymphoma with
histological features of RT.

Hing ZA (69)

MGA−/− MDR−/
− Sf3b1mut

Deletion of MGA in the MDR−/−

Sf3b1mut CLL mouse model leads to
a mouse model of RT, where cells
exhibit mitochondrial aberrations
with elevated oxidative
phosphorylation (OXPHOS)

Iyer (91)

Multiplexed in vivo
CRISPR-Cas9 B cell
editing of LOF in
ATM,TP53, CHD2,
BIRC3, MGA,
SAMHD1, combined
with del(13q)

Modeling the genetic heterogeneity
of CLL through multiplexed in vivo
CRISPR-Cas9 B cell editing of
recurrent CLL loss of function
drivers, recapitulates the
transformation of CLL into Richter

Ten Hacken
E (26)
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expressing single guide RNA (sgRNA) targeting Mga. Edited cells

were then transplanted into CD45.1+ recipient mice. When total

splenic cells were secondarily transplanted into CD45.1+ recipient

mice, rapid expansion of B220+ cells with CD5 loss and lymphoid

tissue infiltration was observed. Cells became larger and acquired

the morphology and phenotype of a more aggressive lymphoma

with high proliferation index and expression of CD21 and CD71.

Based on the immunoglobulin gene analysis, the CLL-like and RT

cells were clonal. Further characterization of this model led to the

identification of the MGA-NME1 axis as a driver of RT through the

OXPHOS upregulation and uncovered a potential new targeting

opportunity for patients with RT based on the simultaneous

targeting of MYC and OXPHOS pathways (91).

Very recently, a sophisticated way to model in vivo the genetic

complexity of CLL transformation into RT has been reported by Ten

Hacken et al. via the multiplexed introduction of well-known loss-of-

function CLL driver mutations (including Atm, Trp53, Samhd1, Mga,

Birc3, andChd2) into del(13q)murine B cells (26). Essentially, Lin- cKit+

Sca1+ cells from donor mice expressing homozygous del(13q) were

lentivirally transduced with sgRNA targeting six or five loss-of-functions

lesions. Trp53 was present or absent in the multiplex to evaluate Trp53

involvement in the transformation. Transduced cells were then

transplanted into either immunocompetent or immunodeficient NSG

mice. CLL and RT lymphomas were observed either in

immunocompetent or NSG mice; however, RT arose mainly in

CD45.1+ recipient mice compared to NSG mice. All features of

human RT histology were confirmed in murine RT. Further analyses

allowed one to identify the co-occurrence of Trp53, Mga, and Chd2

lesions in RT and a tonic PI3K signaling as a characteristic feature of RT.

Overall, this approach offers an interesting opportunity to model

complex disease phenotypes and opens new venues of preclinical

testing in uncurable malignancies (26).
Conclusion

The xenograft models of primary CLL BM-HSCs or CLL PBMCs

never gave a full-blown CLL disease, suggesting that additional

genetic editing might be required. Recurrent mutations such as

NOTCH1, MYC, SF3B1, BRAF, TP53, XPO1, MED12, NFKBIE, and

EGR2 are commonly seen in various subsets of CLL patients (14, 29,

92–95). However, because of the technique limitation to transfect

primary CLL patient BM-HSCs or primary CLL patient B cells,

modeling the driver mutations by the (CRISPR)/Cas9-based platform

was only applied in CLL cell lines such as MEC1 cells. These works

used (CRISPR)/Cas9-edited cell line-injected NSG mice for in vivo

validation of candidate cancer genes of interest and demonstrated the

critical roles of high-risk alterations such as del(11q), del(17p),

BIRC3, ATM, and TP53 mutations alone or in combination for

their biological effects (96, 97), BCR-targeted drug resistance (98),

and chimeric antigen receptor (CAR)-T cell therapy responses (99).

Thus, future studies on applying (CRISPR)/Cas9-based knock-out

and knock-in approaches in the primary CLL patient BM-HSCs or

CLL B cells are expected to accelerate the development of novel

mouse models of CLL.
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To fine-tune human CLL and RT in mice, approaches allowing

the engraftment of the entire human immune system are required.

Several next generations of humanized mouse strains such as NRG

(NOD-Rag2-IL2rgTm1/Rj) and NRGS (NRG-SGM3) mice (100),

MISTRG mice (expressing human M-CSF, IL-3/GM-CSF, and

THPO) (101), and MISTRG-6 (MISTRG with an additional

knock-in of the human IL-6 allele) (102) that express human

cytokines supporting the engraftment of human HSCs, myeloid

cells, and NK cells might enable the generation of CLL mouse

models that give a full-blown disease and allow the dissection of the

impact of the TME in vivo. Combining the (CRISPR)/Cas9

approach with the next-generation humanized mouse strains is

expected to facilitate the development of mouse models of CLL and

RT for mechanistic and preclinical studies.
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