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Introduction: Increasing evidence from human and animal model studies indicates

the significant role of microRNAs (miRNAs) in pancreatic beta cell function, insulin

signaling, immune responses, and pathogenesis of type 1 diabetes (T1D).

Methods:We aimed, using next-generation sequencing, to screen miRNAs from

peripheral blood mononuclear cells of eight independent Kuwaiti-Arab families

with T1D affected siblings, consisting of 18 T1D patients and 18 unaffected

members, characterized by no parent-to-child inheritance pattern.

Results: Our analysis revealed 20 miRNAs that are differentially expressed in T1D

patients compared with healthy controls. Module-based weighted gene co-

expression network analysis prioritized key consensus miRNAs in T1D

pathogenesis. These included hsa-miR-320a-3p, hsa-miR-139-3p, hsa-miR-200-

3p, hsa-miR-99b-5p and hsa-miR-6808-3p. Functional enrichment analysis of

differentially expressed miRNAs indicated that PI3K-AKT is one of the key

pathways perturbed in T1D. Gene ontology analysis of hub miRNAs also

implicated PI3K-AKT, along with mTOR, MAPK, and interleukin signaling pathways,

in T1D. Using quantitative RT-PCR, we validated one of the key predicted miRNA-

target gene-transcription factor networks in an extended cohort of children with

new-onset T1D positive for islet autoantibodies. Our analysis revealed that hsa-miR-

320a-3p and its key targets, including PTEN, AKT1, BCL2, FOXO1 and MYC, are

dysregulated in T1D, along with their interacting partners namely BLIMP3, GSK3B,

CAV1, CXCL3, TGFB, and IL10. Receiver Operating Characteristic analysis highlighted

the diagnostic potential of hsa-miR-320a-3p, CAV1, GSK3B and MYC for T1D.

Discussion: Our study presents a novel link between hsa-miR-320a-3p and T1D,

and highlights its key regulatory role in the network of mRNA markers and

transcription factors involved in T1D pathogenesis.
KEYWORDS

hsa-miR-320a-3p, miRNA, type 1 diabetes, Kuwait, genetics, next-generation
sequencing, weighted gene co-expression network analysis
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1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized

by an unfavorable immune response against pancreatic beta cells,

which leads to insulin deficiency and overt hyperglycemia. The

etiology of T1D remains unclear, yet several genetic,

immunological, and environmental factors are associated with the

disease. A genetic basis for T1D has been evidenced by 78 genome-

wide regions associated with the disease (1–4). Human leukocyte

antigen (HLA) is by far the strongest predictor and accounts for at

least 50% of the heritability in T1D (5). The familial aggregation of

T1D, especially clustering among first-degree relatives, indicates

strong genetic basis for the disease (6, 7). However, only a negligible

percentage of T1D cases represent monogenic forms characterized

by either a dominant, recessive, or X-linked pathogenic variant (8–

10). The occurrence of T1D phenotypic discordance in

monozygotic twins and the incidence of T1D sporadic cases with

no parent-to-child inheritance pattern suggest a greater role for

gene–environment interactions in triggering the disease (7).

Accordingly, several environmental and lifestyle factors, such as

viral infections, toxicity exposure, microbial dysbiosis and dietary

choices during infancy, have been associated with T1D onset (11),

but these have not been unequivocally proven to be causal.

Recent years have witnessed a growing interest in studies

utilizing microRNA (miRNA) as biomarkers for the early

prediction of T1D. Dysregulation of miRNA is associated with

pancreatic beta cell function, insulin signaling, and immune

response (12). Studies using peripheral blood mononuclear cells

(PBMC) from patients with T1D have observed dysregulation of

key miRNAs, such as miR-21, miR-93 and miR-326, and thereby

indicated their potential impact on inflammatory and autoimmune

responses (13). In T1D animal models, overexpression of miR-21

interferes with the b-cell development (14). Upregulation of miR-29

in both animal and human pancreatic islets has been observed to

disrupt the beta cell function and glucose-induced insulin secretion

(15–18). Similarly, miRNAs have also been implicated in cytokine-

mediated beta cell destruction, as evidenced by the deregulated

expression of miR-21-5p, miR-30b-3p, miR-34, miR-101a and miR-

146a-5p in response to inflammatory cytokines such as IL-1b and

TNF in MIN6 cells and human pancreatic islets (19, 20). These

studies collectively indicate that miRNAs play a potential role in

T1D pathogenesis and warrant further in-depth studies on the

dysregulation of miRNAs in T1D pathogenesis.

To gain further knowledge on the role of miRNA in T1D

pathogenesis, we aimed to identify the key miRNAs involved in

T1D by utilizing next-generation sequencing technologies in a

familial cohort consisting of siblings with T1D characterized by

no parent-to-child inheritance pattern. As miRNA expression is
Abbreviations: PTEN, Phosphatase And Tensin Homolog; AKT1, AKT Serine/

Threonine Kinase 1; BCL2, BCL2 Apoptosis Regulator; FOXO1, Forkhead Box

Protein O1A; MYC, Proto-Oncogene C-Myc; GSK3B, Glycogen Synthase Kinase-

3 Beta; CAV1, Caveolin 1; CXCL3, Chemokine (C-X-C Motif) Ligand 3; TGFB,

Transforming Growth Factor-Beta-Induced Factor; IL-10, Interleukin 10;

GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase.
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confounded by several factors such as diet, environment, lifestyle,

and ethnicity (21, 22), we considered that adopting a sib-pair study

design may, by way of minimizing the impact of confounders and

enriching for disease parameters, lead to the identification of unique

genetic markers associated with T1D. We also aimed to validate the

shortlisted miRNA markers in a unique set of sporadic T1D cases,

with no vertical or horizontal transmission of the disease, to ensure

generalizability of the results. We further aimed to identify, by way

of performing module-based weighted gene co-expression network

analysis (WGCNA), the key regulatory network consisting of

miRNA markers, mRNA markers, and transcription factors (TFs)

involved in T1D pathogenesis.
2 Methods

The Schematic workflow of this study is shown in Figure 1.
2.1 Study design and clinical recruitment

This study was approved by the ethical committee of Dasman

Diabetes Institute and was performed in accordance with the

principles of the Declaration of Helsinki, as revised in 2008.

Written informed consent was obtained from all study

participants. In cases of children, informed consent was obtained

from the parents/legal guardians, and assent was obtained from

children aged seven years and more.

Samples used in this study were obtained from the Childhood-

Onset Diabetes eRegistry (CODeR) (23) maintained by Dasman

Diabetes Institute in collaboration with the Ministry of Health

(MOH) of Kuwait. A total of eight families consisting of 18

people with T1D and 18 unaffected first-degree relatives were

recruited for the present study (Table 1). Selection criteria

included the following: (i) families with a minimum of two T1D

cases exhibiting a horizontal transmission of the disease, (ii)

diagnosis of T1D confirmed using World Health Organization

criteria, which include fasting hyperglycemia and absolute insulin

deficiency, as defined by low C-peptide concentration (<0.3 nmol/l),

(iii) T1D characterized by presence of one or more autoantibodies

against pancreatic islet cells, and (iv) T1D people of Kuwaiti-

Arab origin.

The validation cohort consisted of 110 T1D sporadic cases and

15 controls without T1D. Selection criteria included: (i) sporadic

cases with no parent-to-child or horizontal transmission of the

disease (ii) diagnosis of T1D confirmed based on World Health

Organization criteria, (iii) T1D characterized by the presence of

autoantibodies against pancreatic islet cells, and (iv) people of

Kuwaiti-Arab origin. This cohort included 60 male, and 50 female

sporadic T1D cases with an average age of 12 ± 3.5 years, body

mass index (BMI) of 20.6 ± 4.9 kg/m2, glycated hemoglobin A1c

(HbA1c) of 9.4 ± 1.71%, and plasma glucose of 12.1 ± 5.49 mmol/l

at baseline. The healthy control subjects were ethnically matched

Kuwaiti-Arab individuals (n=15) with no prior medical history of

any chronic debilitating disease. This included 10 male and 5

female volunteers with an average age of 27± 5.3 years, BMI of
frontiersin.org
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30.2 ± 6.4 kg/m2 and plasma glucose of 5.4 ± 0.54 mmol/l. Of the

samples from this validation cohort, miRNA samples were

available in sufficient quantities in a set of 52 sporadic T1D

children and 10 ethnically matched controls. While the miRNA

markers were validated in this subset of validation cohort, the

mRNA markers were validated in the entire validation cohort.

Blood samples were collected at the clinics of Dasman Diabetes

Institute. The date of the first insulin injection was taken as the

date of the onset of T1D. The collected data included age, sex,

BMI, nationality, date of birth, date of T1D diagnosis, family

history of diabetes in first-degree relatives, and measurements of

HbA1c, plasma glucose, blood pressure, serum uric acid, blood

urea nitrogen, and creatinine concentrations.
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2.2 miRNA isolation, libarary preparation,
sequencing and identification of
differentially expressed miRNAs

The extraction of miRNA from PBMCs was performed using

the miRNeasy kit (Qiagen, Hilden, Germany) according to the

manufacturer’s protocol. Quantification of miRNA was carried out

using the miRNA assay kit on a qubit fluorometer (Thermofisher

Scientific, Massachusetts, United States).

A total of 10ng of purified miRNA samples was used for library

preparation. miRNome-wide sequencing libraries were prepared

using the QIAseq miRNA Library Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions (24, 25). The protocol
FIGURE 1

Flowchart depicting the steps of miRNA sequencing data used to identify key miRNAs, followed by downstream functional enrichment analysis.
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TABLE 1 Clinical characteristics of individuals with T1D from eight recruited families.

T. Chol.
(mmol/l)

LDL
(mmol/l)

HDL
(mmol/l)

TGL
(mmol/l)

Uric
acid
µmol/L

U. MA/
Cr.
(mg/g
creat.)

5.3 3 1.52 1.62 198 11.1

172 6.9

4.8 3 1.58 0.47 121

4.6 2.5 1.31 1.76 200 5.9

4.7 3 1.29 0.87 124 9.8

4.4 2.5 1.66 0.47 158 47.5

4 2.6 1.01 0.76 294 2.7

4.2 2.5 1.48 0.5 112

4.2 2.7 1.28 0.49

5 2.9 1.43 1.4 199 4.2

4 2.1 1.33 1.28 148

5.7 3.1 2.35 0.49 206 8.1

4.6 3 1.35 0.47 188 5.6

5 3.4 1.24 0.9 243 5.1

3.5 2.1 1.26 0.3 156 2.9

5.1 2.5 2.08 1.06 176 10.6

5.7 3.2 2.32 0.34 98
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Family
No

No. of
Affected/Unaf-
fected
members

Relationship
(status)

Age Age at
onset
of T1D

T1D
duration

Sex BMI
(kg/m2)

BP HbA1C (%) Plasma
glucose
(mmol/l)Systolic/

diastolic

(mmHg)

F1 3/3 Daughter
(Affected)

12.6 6 6.6 F 26.6 126/69 11

Daughter
(Affected)

12.6 6 6.6 F 20.9 122/71 10.2

Son (Affected) 7 5 2 M 17 124/63 10.1

F2 2/3 Son (Affected) 13.6 2 11.6 M 25 124/76 8.4 24.4

Daughter
(Affected)

20 12 10 F 18.8 115/70 7 3.7

F3 2/1 Daughter
(Affected)

10.1 3 7.1 F 18.4 103/58 8.2 11.1

Son (Affected) 21.2 3 18.2 M 24.2 129/67 7.3 12.7

F4 2/2 Son (Affected) 8 3 5 M 18.9 109/50 9.3 13

Son (Affected) 12.4 9 3.4 M 24.4 126/71 8.6

F5 2/3 Son (Affected) 14.7 6 8.7 M 26.7 128/60 10.3 15.6

Son (Affected) 4.7 4 0.7 M 14.4 97/66 8.7 19.5

F6 3/1 Daughter
(Affected)

8.7 1.4 7.3 F 13.5 123/57 9.7 17.8

Son (Affected) 11.7 6 5.7 M 19.2 114/58 10.3 13.9

Daughter
(Affected)

13.5 5 8.5 F 22 122/69 11.3 17.2

F7 2/2 Daughter
(Affected)

17.4 1.8 15.6 F 23.2 113/63 8.2 14.2

Daughter
(Affected)

15.2 2.2 13 F 22.9 110/65 11.4 15

F8 2/3 Daughter
(Affected)

8.2 8 0.2 F 18.2 120/71

Daughter
(Affected)

5 4 1 F 15.1 120/66 11.2 4.1
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involves sequential ligation of 3′ and 5′ end adapters followed by

universal cDNA synthesis with unique molecular index assignment,

cDNA cleanup, library amplification and library cleanup using

QMN beads. The prepared libraries were validated and quantified

using bioanalyzer (Agilent, California, United States) and qubit

fluorometer (Thermofisher Scientific, Massachusetts, United

States), respectively. Sequencing was carried out on MiSeq system

using MiSeq 150-cycle version 3 kit (Illumina Inc. USA).

GeneGlobe data analysis tool is a supportive RNA-seq data analysis

solution powered by Qiagen, included with the small RNA seq library

kits. The portal initially removes low quality bases and reads without 3’

adaptersusing cutadapt (cutadapt.readthedocs.io/en/stable/guide.html);

reads with less than 16 bp insert sequences or less than 10 bp unique

molecular indices (UMI) sequences are excluded from the analysis. The

obtained reads are mapped against miRBase V21 (https://mirbase.org/)

where up to two mismatches are tolerated using bowtie (bowtie-

bio.sourceforge.net/index.shtml). Normalization is carried out

based on UMI with a p-value threshold of <0.05 and |log fold

change (FC)| ≥ or < 1.0. The resulting Fastq files were used for

differential miRNA expression analysis using the GeneGlobe data

analysis tool. We performed both family-based distinct and

concatenate analysis to identify DE miRNAs in T1D individuals

compared with unaffected family members using the GeneGlobe

data analysis tool based on unique molecular indices with a p-value

threshold of <0.05 and |log fold change (FC)| ≥ or < 1.0. The

resulting data were visualized by generating volcano plots and

heatmaps using ggplot2 and pheatmap packages, respectively.
2.3 Functional enrichment analysis of
key miRNAs

Enrichment analysis of DE miRNA data to identify the target

regulatory genes was carried out using MIENTURNET (26–28),

which is a web tool that predicts miRNA-target interactions by

performing statistical analysis on computationally predicted, and

experimentally validated data from miRTarBase (29), miRDB (30)

and TargetScan (31) databases. Significantly correlated pairs of

interacting DE miRNAs and mRNAs were included to create co-

expression networks using Cytoscape 3.6.1 (32). Pathway analysis of

DE miRNAs was performed using the MIENTURNET tools (26). A

p-value < 0.05 was used as a cut-off for false discovery rate (FDR) to

detect significantly enriched pathways. The statistically most enriched

Gene Ontology (GO) terms were visualized in ggplot2 (33).
2.4 Co-expression network analysis and
module detection

The WGCNA R (34) software package was used to perform

weighted gene co-expression network analysis on DE miRNA data

to construct a co-expression network, identify the key modules, relate

them to clinical data, and delienate the key biomarkers involved in the

pathogenesis of T1D. Prior to performing network construction and

module detection, samples were clustered and visualized in a heatmap

to examine how clinical traits relate to the sample dendrogram
Frontiers in Immunology 05
(Supplementary Figure S1). In co-expression analysis, biologically

meaningful gene pairs are characterized by high correlations (signal)

compared to random gene pairings that are usually characterized by

low correlation (noise). Firstly, the miRNA expression similarity

matrix was constructed by calculating the absolute value of Pearson’s

correlation coefficient between miRNA pairs. This similarity matrix

was then converted into an adjacency matrix using a power adjacency

function, which encodes the strength of the connection between node

pairs. According to the scale-free topological algorithm, the adjacency

matrix met the scale-free topology criterion when the R2 value

approximated 0.80 (Supplementaryry Figures S1B, C). The adjacency

matrix was subsequently converted into a topological matrix, using the

topological overlap measure (TOM) to describe the degree of

association between miRNAs. TOM indicates the degree of

dissimilarity between miRNA pairs. Hierarchical clustering was

performed using 1-TOM as a distance measure, and modules of co-

expressed miRNAs were identified using the dynamic tree cut

procedure with a minimum size cutoff of 5. Highly similar modules

were then merged using the Merge Dynamic function.

The Eigengene network tool was utilized to investigate module

associations with biological data. We used module eigengene (ME),

the first principal component of module expression, to represent the

expression profile of module miRNAs. Relevance of each miRNA is

assessed by computing the following parameters: the gene

significance (GS), the module membership (MM), and Module

Connectivity (MC). MC is typically calculated by averaging the

gene significance (GS) of all the genes within the module. Gene

significance reflects the correlation between the expression of a gene

and the trait of interest. A value of 0 for gene significance indicates

that the gene is not significant with regard to the biological question

of interest. GS can take on positive or negative values. Module

significance measures how strongly the genes within a particular

module are associated with a specific trait or phenotype. A higher

value for module significance suggests that the module, as a whole, is

more strongly associated with the phenotype, making it biologically

relevant. Module Membership (MM, also known as KME or

Eigengene-based Connectivity) quantifies how well each individual

gene correlates with the eigengene of its module. An eigengene is the

first principal component of the module’s gene expression data and

serves as a representative profile of the module. MM is calculated as

the correlation between the expression profile of a gene and the

module eigengene. Genes with high MM values (close to 1 or -1) are

considered highly connected or as core genes within the module and

are likely to play a central role in the module’s biological functions. In

this study, potential key miRNAs were identified as those within a

given module that were highly connected (having the highest absolute

MM) and showed the strongest correlation with the trait of interest

(having the highest absolute GS). A threshold of 0.7 was applied for

both MM and GS. Module connectivity refers to the degree of

connection a gene has with other genes within the same module,

indicating how central a gene is within the module’s co-expression

network. Connectivity is computed as sum of adjacencies (co-

expression similarity) between a gene and all other genes in the

module. Genes with high intramodular connectivity are considered

hub genes. These hub genes are important because they may regulate

key biological processes within the module.
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Therefore to validate module-trait relationships (MTRs), defined as

the correlation between MEs and clinical features of miRNA modules,

we categorized miRNAs into matching modules according to the

constructed modules (34, 35). We calculated the ME of each module

and included the related clinical features.We further calculatedmiRNA

significance defined as the log10-transformation of p-value in the linear

regression slope between gene expression and clinical features), and

module significance (MS) (described as the average miRNA

significance of all miRNAs in the module) to further assess

correlation intensity between a miRNA module and clinical features

such as age, BMI, HbA1C, plasma glucose, alanine aminotransferase

(ALT), aspartate aminotransferase (AST), serum total cholesterol, low-

density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL)

cholesterol, and calcium.
2.5 Feedforward loops of miRNA-
transcription factor-gene network

We further constructed miRNA‐Transcritpion Factor (TF)

feedback loops and miRNA‐TF‐gene Feedforward loops (FFLs)

using FFL tool webserver (36) and visualized their regulatory

networks using Cytoscape 3.6.1 (32). The miRNA-long noncoding

RNA (lncRNA) interaction analysis was carried out with DIANA-

LncBaseV3.0 tool using Ensembl and Refseq databases (37).
2.6 Validation of key targets by quantitative
real-time PCR

Regulatory target genes of miRNA were validated using

specific TaqMan gene expression assays (Thermofisher Scientific,

Massachusetts, United States) on a quantitative real-time PCR

system (Quant Studio6, Thermofisher Scientific, Massachusetts,

United States). RNA was extracted from peripheral blood

using Qiagen RNA blood mini kit (Qiagen, Hilden, Germany),

reverse transcribed using ABI reverse transcriptase kit (Applied

Biosystem, USA) and quantitative real-time PCR was performed

using pre-designed ready-to-use miRCURY LNA miRNA PCR

assay (hsa-miR-320a-3p, #YP00206042) relative to 5S rRNA

(#YP00203906). Target gene validation was performed using

TaqMan gene expression assays PTEN (Hs02621230_s1),

AKT1 (H s00 17828 9_m1 ) , BCL2 (H s0 49863 94_ s 1 ) ,

FOXO1 (Hs00231106_m1), MYC (Hs00153408_m1), BLIMP3

(Hs00153357_m1) , GSK3B (Hs00275656_m1) , CAV1

(Hs00971716_m1) , CXCL3 (Hs00171061_m1) , IL-10

(Hs00961622_m1), TGFB (Hs00998133_m1) and relative to

GAPDH (Hs02786624_g1) as endogenous control on ABI 7500

real-time PCR system following manufacturer’s protocol.
2.7 Statistical analysis

The fold change (FC) was calculated using the 2 − DDCT
method, and differences in the expression levels between the two
Frontiers in Immunology 06
tested groups were detected using Mann-Whitney U-test.

Correlation between variables were calculated using Spearman’s

rank correlation test and were considered statistically significant at

p-value <0.05. Receiver Operating Characteristic (ROC) analysis

was based on a logistic regression (38) considering the shortlisted

hsa-miR-320a-3p and its interactive mRNA partners, such as

CAV1, GSK3B and MYC, as potential predictors. To determine

the ideal biomarker combinations, both a single marker and a

combinatorial analysis were used. A cross-validation (CV)

procedure was employed to provide an unbiased estimate of

biomarker performance (39). Multiple rounds of CV were

conducted resulting in a series of ROC curves, to ensure a reliable

performance estimate by using R.4.4.1. The performance results

were averaged over these rounds and a 10-fold CV strategy was

adopted to compare different models.
3 Results

A total of eight Kuwaiti-Arab T1D families, who showed no

parent-to-child transmission of the disease, were initially examined in

this study. This included 18 people with T1D, 10 of whom were

female and eight were male. The clinical characteristics of 18 people

with T1D are shown in Table 1. The average age at the time of

recruitment and age at onset of T1D cases were 12 ± 4.7 and 4.7 ± 3.0

years, respectively. The in-family control set included 18 individuals

(10 females and 8 males) with an average age of 31 ± 16.6 years and

were with no prior medical history of chronic debilitating diseases.

The average duration of T1D among our patients was 7.1 ± 5.1 years.

The average body mass index of T1D case and control subjects were

20.5 ± 4.1 kg/m2 and 26.4 ± 7.9 kg/m2, respectively.

None of our patients showed elevated levels of lipids though

minor variations were observed within the borderline range. Only a

10-year-old female patient from family 3 was observed to be positive

for anti-endomysial Ab (AEA), anti-TPO antibodies (363.4 IU/ml),

anti-Tissue Transglutaminase IgG (15.2 IU/ml), and anti-Tissue

Transglutaminase (IgA >200 IU/ml) tests indicating the presence of

Hashimoto thyroiditis and Celiac Disease. The patient also showed a

high urine albumin-creatinine ratio (47.5 mg/g) indicative of an

early-stage kidney disease. None of the other tested patients was

positive for anti-endomysium antibody, anti-thyroid peroxidase

antibody and anti-tissue transglutaminase tests. Similarly,

hyperuricemia was also not reported in any of the tested patients.

The flowchart indicating the steps from miRNA sequencing to

identification of key miRNAs followed by downstream functional

enrichment analysis is presented in Figure 1. An average of

1,961,698 sequencing reads were obtained per sequenced sample

and 615 unique miRNAs were detected in each of the tested case

and control groups (Supplementary Table S1). Volcano plots

representing significant DE miRNAs between T1D affected and

unaffected members are shown in Figure 2A (Supplementary Table

S2). We visualized the top 50 DE miRNAs using heatmaps

(Figure 2B). Significant differences were observed in the

expression levels of miRNA between people with T1D and non-

diabetic controls. We identified 20 unique miRNAs that are

significantly DE between members of T1D affected versus
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unaffected groups with a p-value cut-off of <0.05, and |log fold

change (FC)| ≥ or < 1.0. (Figure 2B). The miRNA-gene expression

analysis of the key DE miRNAs predicted 10 hub genes, namely

PTEN, MYC, AGO1, HASPA1B, BCL2, EEEF1A1, AKT1, CPEB4,

FASN, and PRPF8, that are significantly deregulated in T1D

individuals (FDR p-value ≤0.05) (Figure 3A). PTEN and MYC are

the top two genes impacted by the DE miRNAs. The key miRNA–

mRNA target interaction network retrieved from MIENTURNET

are presented in Figure 3B (Supplementary Table S3). Functional

enrichment analysis revealed 41 significant pathways that were

differentially regulated by the shortlisted miRNAs (FDR p-value

≤0.05) (Figure 3C; Supplementary Table S4). PI3K-Akt signaling

was the top enriched pathway shortlisted by our NGS-based

pathway analysis. In addition, we depicted the differences in

the expression profiles of key shortlisted miRNAs in tested

individual families. The heatmap presents fold change calculated

for every case-control pair from each distinct families tested,

indicating log fold changes of 20 miRNAs that were differentially

expressed (Figure 3D).
3.1 Module-based computational analysis
of miRNA in T1D

We performed weighted gene co-expression network analysis to

identify key modules and hub miRNAs involved in T1D

(Supplementary Table S5). Correlation was used as a measure of

miRNA expression on the data set consisting of 615 unique miRNAs

detected across all the tested samples to identify significantly enriched
Frontiers in Immunology 07
modules (. The highly representative miRNA in each module was

referred to as the module EigenmiRNA (MEM). Figure 4 presents the

co-expression module visualized as hierarchical cluster dendrograms

and trait heatmap (Figures 4A, B). The clustering and dynamic tree

cut algorithm resulted in five color-coded modules corresponding to

grey, brown, blue, turquoise and yellow. The grey module was

excluded from the analysis as it represents unassigned miRNAs.

The blue module represents a total of 114, turquoise 76, yellow 80,

and brown 84 distinct miRNAs; thus a total of 354 miRNAs were

seen to form significant Eigen miRNA modules. Clinical traits (such

as age, BMI, HbA1C, plasma glucose, serum alanine transaminase

(ALT), aspartate transferase (AST), total cholesterol, LDL, HDL, and

calcium) correlated with the miRNA expression in these five

modules. For each miRNA in these four modules, the module

significance (MS), module membership (MM), and intra-module

connectivity (KME) were calculated to draw the scatterplots. Results

indicated that MS was positively correlated with MM in all the four

modules (Figures 4C–F) with correlation coefficients of 0.96, 0.94,

0.89, and 0.76 for the turquoise, yellow, brown, and blue module,

respectively. Results from the analysis of DE miRNAs between T1D

individuals and healthy individuals can be integrated with results

from correlation network analysis to identify more precise targets

(Figure 4G). A total of 5 miRNAs were seen common between the 18

DE miRNAs in T1D patients compared to healthy subjects and the

354 miRNAs forming the four significant Eigen miRNA modules.

These 5 miRNAs could be considered as playing a potential

regulatory role in T1D (Figure 4G). These miRNAs were hsa-miR-

200-3p, hsa-miR-139-3p, hsa-miR-320a-3p, hsa-miR-6808-3p and

hsa-miR-99b-5p.
FIGURE 2

Classification of miRNA based in T1D affected versus non-diabetic individuals. (A) The volcano plot presenting differential expression of miRNA with a
threshold of false discovery rate (FDR) p-value< 0.05 and |log2 fold change (FC)| ≥ or < 1.0. The red dot represents upregulated, the blue dot
represents downregulated and the grey dot represents unaffected miRNA targets. (B) Heatmap of the top 50 circulating miRNAs across all samples
for unaffected T1D and affected T1D groups. Red color shows the upregulated and blue color shows the downregulated miRNAs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1376416
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nizam et al. 10.3389/fimmu.2024.1376416
3.2 Mapping the key regulatory network
in T1D

We further investigated one of the shortlisted hub miRNAs,

namely hsa-miR-320a-3p (MIMAT0000510), for its regulatory

role by constructing the miRNA‐TF and the miRNA‐TF‐gene

FFLs. The biological connectivity of 3-node motifs in TF, mRNA,

and miRNA key regulatory networks are shown in Figure 5A. The

highest-order network motif consisted of hsa-miR-320a-3p with

MYC and FOXO1 as the key transcription factors regulating the

expression of miRNA target genes including PTEN, BCL2,

and AKT1.

We measured the expression levels of the shortlisted hub

miRNAs in an extended cohort of sporadic T1D children and

ethnically-matched healthy children using targeted quantitative

miRNA expression analysis. Expression of hsa-miR-320a-3p was

observed to be significantly downregulated in children with T1D

compared with non-diabetic controls (p-value=0.005) (Figure 5B).

GO analysis of the hsa-miR-320a-3p hub miRNA shows

enrichment of PI3K-AKT, MAPK and RAP1 signaling pathways.
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Results of the ROC analysis (Figure 5C) indicated the suitability of

hsa-miR-320a-3p as a biomarker for T1D with an area under the

curve (AUC) of 0.83, and asymptomatic p-value=0.005.

We further validated miRNA‐TF feedback loops and miRNA‐

TF‐gene FFLs by targeted gene expression (Figure 5B). We observed

significantly increased expression of key transcription factors

namely MYC (p-value<0.001) and FOXO1 (p-value=0.006) in

people with T1D compared with non-diabetic controls. In a

similar manner, we observed a significant increase in the

expression of hub genes such as PTEN (p-value=0.02), AKT (p-

value=0.02), and BCL2 (p-value=0.009) in people with T1D

compared with non-diabetic controls. Expression fold change of

tested targets failed to show any significant correlation with clinical

characteristics of study subjects such as age, sex, BMI, HbA1c, and

autoantibody titers of IA-2 or GAD (p-value<0.05) at mRNA level

(p-value>0.05).

We observed an inverse correlation between expression fold

change of hsa-miR-320a-3p and shortlisted candidate genes such as

MYC (p-value=0.005) and BCL2 (p-value=0.034) (Supplementary

Table S2; Figure 5F). The hsa-miR-320a-3p also showed significant
FIGURE 3

Genetic Perturbations Revealed by Regulatory Networks analysis. (A) miRNA–mRNA target interaction network obtained from the DE miRNAs
shortlisted from the eight tested families with T1D. The bar plot represents each target gene resulting from the enrichment analysis along with the
count of interacting miRNAs. Colors of the bars represent the adjusted p-values (FDR). (B) Significant miRNA–mRNA target interaction network
retrieved from MIENTURNET based on DE miRNAs form the eight tested families with T1D. The miRNAs are represented by red diamond shaped
nodes and the target genes are represented by blue dots. (C) Dot plots resulting from functional enrichment analysis indicating the pathways that
are significantly dysregulated. The y-axis reveals the annotation classifications, the x-axis presents the miRNAs, and the plotted data points as circles
represent the count of identified targets. Sizes of the circles correspond to the count of DE miRNAs whereas the colors of the circles indicate the
adjusted p-values. (D) The heatmap shows family-based analysis wherein the log fold changes in the expression of the 20 DE miRNAs in individual
T1D families, and a pooled analysis is depicted. F1-F8 represents each individual family. Red colors represent upregulated, blue colors show
downregulated miRNAs and black colors represent miRNAs that are not expressed.
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inverse correlation with insulin receptor-mediated signaling targets,

such as GSK3B (p-value=0.002) and CAV1 (p-value=0.003), and

additionally with the anti-inflammatory marker IL-10 (p-value=0.03).

We further observed a moderate to strong direct correlation between

the expression of MYC, FOXO1, PTEN, AKT and BCL2 and the

expression of B-cell differentiation marker BLIMP1 (p-value<0.001)

and the macrophage inflammatory marker CXCL3 (p-value<0.001)

and additionally with the insulin signaling marker such as GSK3B (p-

value<0.001). Consistently, the expression of MYC and PTEN also

showed significant direct correlations with CAV1 (p-value<0.003).

Expressions of AKT, BCL2, and FOXO1 were inversely correlated

with TGFB1 (p-value<0.008) (Figure 5F).

CAV1, GSK3B, and MYC are three potential markers that are

differentially expressed at mRNA level, and their expression levels

are significantly correlated with hsa-mir-320a-3p in T1D. ROC

analysis (Figure 5C) indicated a predictive potential for CAV1

(AUC: 0.88, p-value<0.001), GSK3B (AUC:0.87, p-value<0.001),

and MYC (AUC: 0.84, p-value<0.001) for T1D at the

transcriptional level. A linear combination of hsa-miR-320a-3p

with CAV1, GSK3B and MYC led to an enhanced predictive

accuracy of 0.92 (Figures 5D, E).
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We tested further whether the difference in the expression of hsa-

miR-320a-3p stem from abnormal glucose and lipid metabolism by

way of examining correlations between miRNA expression and the

metabolic trait measurements in the study cohort. We observed no

significant correlation between miRNA expression and any of the

tested glucose or lipid parameters, with an exception of triglyceride

(TGL) level. A moderately positive correlation was observed between

hsa-miR-320a-3p expression and TGL (r=0.555, p-value=0.026).

Given the fact that obesity and insulin secretion are

interdependent, any correlation of hsa-miR-320a-3p seen with key

glycemic and obesogenic targets may indicate its parellel role in

diabetes and other metabolic complications.

Recent advances in long non-coding RNA (lncRNA) research

indicate that lncRNA competes mRNA targets for miRNA binding

sites, impacting gene expression. However, the role of lncRNA in

T1D etiology is inadequate; as a preliminary attempt, we aimed to

identify the key lncRNAs that interact with the shortlisted hsa-miR-

320a-3p in human pancreatic tissue using DIANA-LncBaseV3.0

webtool. The hsa-miR-320a-3p was detected to target the

expression profiles of MEG3, NEAT1 and AC015813.1 lncRNA

genes, by way of adopting direct validation type and high
FIGURE 4

Identification of key modules by weighted gene co-expression network analysis. (A) Clustering dendrogram of miRNAs, with dissimilarity based on
topological overlap, together with assigned module colors. Relationships of consensus module Eigen miRNAs (MEMs) and clinical traits status (age,
BMI, HbA1C, Glucose, ALT, AST, Total cholesterol, LDL, HDL and calcium). Each row in the table corresponds to a module and each column to a
clinical trait. The table is color-coded for correlation: red color indicates a positive while blue indicates a negative correlation. (B) Eigengene
adjacency heatmap of different co-expression modules. (C–F) Correlation between module membership (MM) and connectivity of all miRNAs in
each module. The scatter plot of eigengenes in tortoise, blue, yellow, and brown module, respectively. The figure shows the scatter plot of
connectivity (x-axis) vs. MM (y-axis) in each module. (G) Venn diagram representing intersections among key module miRNAs and DE miRNAs.
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confidence limit in human pancreatic tissue; this observation

possibly indicate the significance of post-transcriptional

regulatory events involving miRNA-lncRNA interaction in T1D,

which needs to be further validated.
4 Discussion

The complexity and heterogeneity of T1D pose major

challenges in identifying causative factors associated with the

disease. A vast majority of T1D cases follow a polygenic model

indicating a combined effect of multiple polymorphic genes and

complex cellular mechanisms in the etiopathogenesis of the disease.

In the present study, by way of examining both sib-pair and

sporadic T1D cases from Kuwait, we highlight the key consensus

miRNAs associated with T1D by primarily adopting differential

miRNA analysis followed by a computational approach based on
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weighted gene co-expression network analysis. We evaluated key

hub miRNA identified in the familial cohort for its potential to serve

as a biomarker for T1D by validating it in an independent cohort of

sporadic T1D cases by way of selecting the highest-order network

motif consisting of hsa-miR-320a-3p, withMYC and FOXO1 as the

key transcription factors regulating the expression of key miRNA

target genes such as PTEN, BCL2, and AKT1. We also provided

additional evidence for the involvement of their key interacting

partners such as BLIMP1, GSK3B, CAV1, IL10 and TGFB in

T1D pathogenesis.

The hsa-miR-320a-3p is one of the top prioritized miRNAs

shortlisted by concatenated analyses of familial T1D cohort.

Consistent with the observation from the familial cohort, the

sporadic cases showed a significantly lower expression of hsa-

miR-320a-3p in T1D patients compared with non-diabetic

controls. Supportive evidence from literature also indicated a

dysregulated expression of miR-320 in glucose and lipid
FIGURE 5

Circulating miRNA-mRNA biomarkers shortlisted by our study (A) miRNA feedforward loop (FFL) consisting of transcription factors-hsa-miR-320a-3p
regulatory network. Nodes: The hexagonal shaped green nodes represent transcritpion factors (TFs), the triangle-shaped orange nodes represent
miRNAs, and the circular-shaped blue nodes represent the targeted genes; Edges: sharp arrow means activation; T-shaped arrow represents repression.
(B) Expression fold change of hsa-miR-320a-3p and other key targets in T1D versus healthy control, validated by quantitative real time PCR in
sporadic T1D cases. The fold change (FC) was calculated using the 2 − DDCT method, and differences in the expression levels between the two tested
groups were detected using Mann-Whitney U-test. (C) The ROC curve analysis indicating the diagnostic potential of hsa-miR-320a-3p (AUC 0.83,
p-value=0.005), CAV1 (AUC: 0.88, p-value<0.001), GSK3B (AUC: 0.87, p-value<0.001) and MYC (AUC: 0.84, p-value<0.001). (D, E) Depicts the
predictive power of hsa-miR-320a-3p in combination with CAV1, GSK3B and MYC. Using logistic regression, a linear combination of all four biomarkers,
hsa-miR-320a-3p with CAV1, GSK3B and MYC led to an enhanced predictive accuracy of 0.92. (F) Depicts the correlations between hsa-miR-320a-3p
and mRNA markers. Correlations between variables were calculated using Spearman’s rank correlation test and were considered statistically significant at
p-value <0.05. Blue dots indicate positive correlation and red indicates negative correlation. * indicates p-value <0.05, ** indicates p-value <0.01.
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metabolism (40, 41). Lower levels of hsa-miR-320 in blood have

been associated with pre-diabetes and type 2 diabetes (T2D) in the

Bruneck population in Italy (42). In contrast to these observations, a

study by Karolina et al. (41) observed upregulation of hsa-miR-320

and a direct correlation between hsa-miR-320 and fasting blood

glucose in the blood and exosomes of people with various metabolic

conditions. Additionally, hsa-miR-320 is associated with cardiac

dysfunction and lipotoxicity (40). Multiple studies have reported a

dysregulated expression of hsa-miR-320a-3p in different types of

carcinoma involving liver and pancreas (43, 44). Differences in the

direction of mir-320 expression in various metabolic conditions

hint towards the heterogeneity of the tested specimens and adopted

technical methodologies.

To our knowledge, our study is the first to suggest the plausible

association of hsa-miR-320a-3p with T1D etiology. Our results

suggest a regulatory network comprising hsa-miR-320a-3p, along

with key transcription factors and mRNA targets, to play a potential

role in T1D etiology (Figure 6). We observed a significantly increased

expression of two key transcription factors, namely FOXO1 andMYC

in our T1D cohort. Expression of hsa-miR-320a-3p was correlated

inversely with that of MYC. The transcription factor MYC plays a

detrimental role in intracellular glucose homeostasis and pancreatic

beta cell function (45). Overexpression ofMYC in cellular and animal

models has led to increased beta cell proliferation, apoptosis and

down-regulation of insulin gene leading to diabetes (46–49). MYC

also tends to be a key regulator of major metabolic pathways, such as
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aerobic glycolysis, glutaminolysis, polyamine synthesis, and HIF-1a/
mTOR (50). Similarly, the FOXO family of transcription factors plays

a significant role in B lymphocyte maturation/function as part of

adaptive immune response. Aberrant expression of FOXO family

members has been widely associated with B cell malignancies (51).

FOXO1 plays a definitive role in the recombination activating genes

(RAG) mediated immunoglobulin gene rearrangement (52). Though

an increased expression of FOXO1was observed in our T1D cohort, it

failed to show any significant correlation with that of hsa-miR-

320a-3p.

Further, we observed a significantly increased expression of

PTEN, BCL2 and AKT in people with T1D compared with non-

diabetic controls. The hsa-miR-320a-3p tended to be significantly

associated with a decreased expression of target genes such as PTEN,

BCL2 and AKT. PTEN is a potent negative regulator of PI3K-AKT

pathway, and its increased expression has been associated with key

metabolic events characterizing diabetes (53, 54). Muscle targeted

deletion of PTEN has been reported to protect mice from insulin

resistance and diabetes caused by high-fat feeding (55). Deletion of

PTEN in pancreatic beta cells leads to an increase in the beta cell

mass, further implying the role of such a deletion in increased beta

cell proliferation and diminished apoptosis (56). BCL2 and AKT have

been shown to have prominent roles in glucose and lipid metabolism

(57–59). Pharmacological and genetic knockout of BCL2 has been

shown to profoundly improve glucose-dependentmetabolic and ca2+

signaling in pancreatic cells (60).
FIGURE 6

Overview of insulin signaling pathway and the shortlisted key mRNA markers. Insulin receptor stimulates CAV1 and triggers a series of
phosphorylation events activating IRS/PI3K/AKT pathway leading to increased GLUT4 translocation, inhibition of glycogen synthesis, increased
myogenic growth transformation, and increased apoptosis. TGFB also appears to significantly contribute to IRS/PI3K/AKT pathway influencing cell
proliferation, differentiation, and growth. TL4R, cytokines and antigen specific responses lead to activation of STAT3 resulting in the translation of
PRDM1 to BLIMP1 protein. Arrow indicates the direction of gene regulation.
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GO analysis of the hsa-miR-320b hub miRNA also

demonstrated enrichment of PI3K-AKT, MAPK and RAP1

signaling pathways. PI3K-AKT pathway has been considered as

an emerging therapeutic target for T1D and beta cell dependent

diseases (61, 62). The PI3K-AKT pathway is involved in diverse beta

cell functions regulating the number of pancreatic islets, apoptosis,

and cellular functions (63). It also tends to play a key role in the

secretion of insulin by pancreatic beta cells (64). MAPK signaling

pathway has also been considered as one of the key regulatory

pathways involved in signal transductions related to viral

replication and inflammatory cytokine synthesis, specifically with

enterovirus infections (65) that are implicated in T1D pathogenesis

(66). RAP1 also plays a prominent role in glucose-stimulated islet

cell insulin secretion, beta cell size and proliferation (67).

Our study also reported a deregulated expression of key

interacting partners of hsa-miR-320a-3p namely BLIMP1, GSK3B,

CAV1, IL-10 and TGFB1 in T1D at mRNA level (p-value<0.05).

Higher levels of BLIMP1 significantly correlated with the expression

levels ofMYC, FOXO1, PTEN, AKT and BCL2 in T1D. BLIMP1 is a

candidate gene involved in key regulatory mechanisms involving T

cell and B cell differentiation, immunoglobulin secretion and

cytokine response (68–71). GSK3B is yet another candidate

marker that correlates inversely with hsa-miR-320a-3p and

directly with the target regulatory network highlighted in our

study. GSK3B tends to dysregulate glucose homeostasis and is

known for its potential role in promoting inflammation,

endoplasmic reticulum stress, mitochondrial dysfunction, and

apoptosis (72). Hence, we assume that the augmented expression

of GSK3B may critically contribute to impaired glycemic control in

people with T1D. Several lines of evidence indicate the role of CAV1

in insulin secretion and insulin signaling (73) in diabetes and

metabolic syndrome (73, 74). The hsa-miR-320a-3p tended to

correlate inversely with CAV1 in our study, further implying its

significance in the pathogenesis of T1D. An upregulation of IL-10

may possibly be a counter-mechanism to combat hyper-

inflammatory conditions (75). The reduction in the expression of

TGFB1 in T1D is significant; TGFB1 has a prominent role in the

development of pancreas and islet cell proliferation, differentiation,

and apoptosis (76). Supportive evidence from literature indicates

the protective effect of TGFB1 on diabetes development.

Overexpression of TGFB1 under a rat insulin promoter reduces

the risk of diabetes in T1D susceptible nonobese diabetic mice (77).

Additionally, our study highlights the interaction of hsa-miR-

320a-3p with key lncRNAs targeting MEG3, NEAT1 and

AC015813.1 genes in human pancreatic tissue. Interestingly,

MEG3 gene region was previously shown to be associated with

susceptibility to T1D (78). In mouse model studies, a reduced

expression of MEG3 lncRNA in pancreatic beta cells tends to

impact insulin synthesis and secretion (79). MEG3 has also been

shown to modulate key endothelial functions by interacting with

other candidate markers such as TGFB1 and FOXO1 (80, 81).

Increased circulating expression of NEAT1 lncRNA has been

reported in type 2 diabetic patients (82), while the role of

AC015813.1 lncRNA in diabetes is not known.

We highlight the possible role of hsa-miR-320a in T1D etiology,

which has not been previously reported in the literature. Our findings
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based on the cohort from Kuwait are interesting, given the fact that

the incidence of T1D is considerably increasing in the Arab region. A

previous study on systemic literature review on T1D (83), have

highlighted 11 consistently deregulated circulating miRNA markers

(such as miR-21-5p, miR-24-3p, miR-100-5p, miR-146a-5p, miR-

148a-3p, miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p, miR-

375 and miR-1275) associated with the disease. However, none of the

shortlisted miRNA markers from our study, with the exception of

hsa-miR-21-5p, overlaps with the above-mentioned markers

implying the possible relevance of ethnic factors and associated

clinical heterogeneity. One of the limitations of our study is that we

used peripheral blood mononuclear cells which may reflect

generalized systemic dysfunctions. Nevertheless, we assume that the

transcriptional deregulations in peripheral blood are possibly in

harmony with those in pancreas as supported by the increasing

evidences for the involvement of the shortlisted targets in the

pathophysiology of T1D. Although our sample size is relatively

small (discovery cohort: 8 Kuwaiti-Arab families, with 18 T1D

affected members and 18 unaffected members, characterized by no

parent-to-child inheritance pattern; validation cohort: 110 people

with T1D and 15 controls from which 52 sporadic T1D children and

10 ethnically-matched controls used for the validation of shortlisted

miRNAs; and the entire validation cohort used for the validation of

mRNA markers), there was sufficient power to reveal statistically

significant novel results. A Power analysis of DE genes specifically in

the control group showed an empirical power of >90%, presumably

due to higher abundance of transcripts represented by these targets. It

is noteworthy that these targets were shortlisted by way of adopting

independent analysis strategies involving NGS-based differential

expression analysis, module-based weighted gene co-expression

network analysis in equal number of sib-pairs with and without

T1D, and additionally by valdiation using targeted gene expression

analysis. Our study warrants further in-depth validation in larger

multi-ethnic age-matched cohorts, to reduce the confounding effect

of age and ethnicty on the obtained results.

In conclusion, our study highlights the prospective role of hsa-

miR-320a-3p in the pathophysiology of T1D by presenting known

evidences for dysregulated expression of miRNA target-

transcription factor network involving PTEN, AKT1, BCL2,

FOXO1 and MYC. The correlations of hsa-miR-320a-3p with

additional interacting partners indicate its wide potential in

insulin signaling and metabolic pathways characterizing the

development of T1D. We highlight hsa-miR-320a-3p, CAV1,

GSK3B and MYC as novel key biomarkers for T1D, and we

further portray predictive transcriptional signatures of the key

target mRNA-transcription factors associated with T1D. These

observations lay the foundation for further in-depth research on

catering to a better outcome and treatment of T1D.
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Determination of soft-thresholding power in the WGCNA. (A) Clustering

dendrogram of samples based on their Euclidean distance, along with a
heatmap of the clinical variables associated with each sample. (B) The plot

shows the scale-free topology fit index (y-axis) for different soft-thresholding
powers (b) (x-axis). (C) Analysis of the mean connectivity (degree, y-axis) for

various soft-thresholding powers (x-axis). Clustering dendrogram of samples

based on their Euclidean distance and heatmap of the clinical variables
associated with each sample.
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