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immunosenescence on solid
gastrointestinal tumors
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Shanghai, China
Solid gastrointestinal tumors often respond poorly to immunotherapy for the

complex tumor microenvironment (TME), which is exacerbated by immune

system alterations. Immunosenescence is the process of increased

diversification of immune genes due to aging and other factors, leading to a

decrease in the recognition function of the immune system. This process

involves immune organs, immune cells, and the senescence-associated

secretory phenotype (SASP). The most fundamental change is DNA damage,

resulting in TME remodeling. The main manifestations are worsening

inflammation, increased immunosuppressive SASP production, decreased

immune cell antitumor activity, and the accumulation of tumor-associated

fibroblasts and myeloid-derived suppressor cells, making antitumor therapy

less effective. Senotherapy strategies to remove senescent cells and block key

senescence processes can have synergistic effects with other treatments. This

review focuses on immunoenescence and its impact on the solid TME. We

characterize the immunosenescent TME and discuss future directions for

antitumor therapies targeting senescence.
KEYWORDS
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Background

Health problems caused by population aging are among the great challenges the world

is facing today. Nearly half of the global disease burden (92 diseases (including 35 cancers),

accounting for 51.3%, 95% uncertainty interval, 48.5–53.9) is considered age-related (1).

These include colorectal cancer, a solid tumor of the gastrointestinal tract with the third-

highest incidence and second-highest mortality rate globally (2). Cancer morbidity and

mortality rates are the highest in individuals over 50 years of age, suggesting that aging may

play a significant role in cancer development and progression (3). Studies on the

mechanisms of aging and tumor development have shown that some hallmarks of aging
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(including genomic instability, epigenetic alterations, chronic

inflammation, and dysbiosis) promote oncogenesis and

progression, whereas others have shown antagonistic (telomere

attrition and stem cell exhaustion) or ambivalent effects (disabled

macroautophagy and cellular senescence) on tumors (4). Therefore,

the effects of aging on tumors need to be specifically explored at the

systemic, microenvironmental, and cellular levels.

The immune system constitutes the body’s defensive barrier by

monitoring, protecting, and eliminating threats (5). However, the

interaction between adaptive and innate immune cells can lead to

chronic inflammation and increase the likelihood of cancer

development, and different types of infiltrating immune cells can

have opposite effects on tumor prognosis (6). In addition, immune

system function decreases with age, known as immunosenescence,

which increases the risk of cancer and is a key player in cancer

development (7). It was Roy Walford who first elucidated

the link between immunity and aging and coined the term

“immunosenescence,” which refers to increased immunogenetic

diversification due to aging, leading to a progressive decrease in

the recognition function of the immune system (8, 9). Immune

aging is not simply a one-way process that leads to dysfunction and

other harmful effects, but a dynamic balance between adaptation

and maladaptation (10).

Changes in the immune senescence process will further

complicate the immune features of the tumor microenvironment

(TME) and may therefore have diverse impacts on tumor

development and immunotherapy. The TME is composed of

multiple types of immune cells, cancer-associated fibroblasts,

endothelial cells, pericytes, various tissue-resident cell types, and

extracellular matrix (ECM) (11). The complexity of the TME lies in

the fact that immune cells are recruited to and infiltrate the TME

through the action of cytokines and chemokines secreted from

cancer cells to play an antitumor role, but simultaneously produce

additional features of the TME that facilitate immunosuppression

and limit antitumor immune responses (12–14). Particularly in

colorectal cancer, slight alterations in the TME will trigger complex

immunotherapy changes (15). Increasing evidence suggests that

both innate and adaptive immune cells in the TME have a

facilitative effect on tumor progression, while crosstalk with

cancer cells enhances the recruitment of suppressive immune

cells, including myeloid-derived suppressor cells (MDSCs) and

tumor-associated macrophages (16–18). In addition, a decrease in

antitumor immune cell infiltration and function, together with the

accumulation of immunosuppressive cells and upregulation of

ligands that bind to inhibitory receptors on immune cells, may

contribute to immune escape and consequently lead to poor

immunotherapy results (19, 20).

Although remarkable research advancements have been made

for both immunosenescence and the TME in the past decades, the

impact of their interaction on different constituents and tumor

progression remains to be further explored. This review focuses on

the process of immunosenescence and the role of TME regulation.

In addition, we discuss the impact of immunosenescence on

tumor progression and immunotherapy. Finally, we describe

future directions for limiting tumor progression by intervening

in immunosenescence.
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The process of immunosenescence

The process of immune aging involves three distinct but

interrelated components, i.e., the immune organs, immune cells,

and circulating factors (chemokines, cytokines, and other soluble

molecules), which change during aging and produce corresponding

effects (Figure 1) (21). Immune system aging ultimately results in

increased incidence of infectious diseases and mortality, reduced

responsiveness to vaccines, accelerated aging of other organs, and

increased risk of tumors (22–25) Immunosenescence is a complex

and well-integrated process.

The aging of immune organs is the most noticeable change. For

example, thymus function degenerates in nearly all species. Thymic

involution begins in childhood and reaches its peak in adolescence.

While excessive energy use is reduced in this process, age-related

degeneration is detrimental to the organism (26, 27). During this

process, thymus cells are gradually replaced by adipocytes, which

results in a decrease in the proportion of undifferentiated T cells

produced by the thymus (e.g., naïve T cells) and an increase in that

of terminally differentiated cells (e.g., memory or depleted

phenotypic T cells) (28). Such changes are also observed in

neonates with early thyme resection, suggesting that they are a

sign of immune deficiency (29). In conclusion, thymic degeneration

is associated with the age-related immune decline and makes one

prone to age-related diseases.

Th e k e y f a c t o r s i n p r omo t i n g a nd med i a t i n g

immunosenescence are alterations in circulating factors

(chemokines, cytokines, and other soluble molecules).

Immunosenescence causes the body to gradually enter an age-

related pro-inflammatory state, while simultaneously, the body

exerts anti-inflammatory effects through low-level, sterile chronic

inflammation to adapt and remodel the immune system (30).

During this process, senescent cells secrete inflammatory,

extracellular modifying, and growth factors as signaling and

acting molecules collectively referred to as the senescence-

associated secretory phenotype (SASP) (31).

The SASP is expressed upon exposure to excessive stresses, such

as repetitive cell division, oxidative stress, mitochondrial degradation,

oncogene expression, and other stresses that cause DNA damage

(Figure 2) (32). As an inflammatory response, the regulation of SASP

is strongly associated with nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-kB) activation. As a classical DNA damage

response pathway, the p38 MAPK pathway is activated by oxidative

stress and DNA damage and regulates NF-kB through the p16INK4A,

p53, and DNA damage checkpoint kinase CHK1/CHK2

mechanisms, which in turn produce the SASP (33–37). Another

DNA damage response-related pathway, the ATM/ATR pathway, is

thought to mediate NF-kB action via the key molecule GATA4 to

produce the SASP (38). In addition, the downregulation of DNase

(DNase2/TREX1) expression in senescent cells leads to the

accumulation of DNA in the cytoplasm, which in turn leads to

abnormal cGAS-STING pathway activation and SASP production

through IFN-mediated NF-kB activation (39). Another pathway

validated to produce SASP via NF activation is regulated by IL-1a,
which phosphorylates IRAK1 via IRAK4 after binding to the IL-1

receptor and eventually activates NF-kB (40). Another signaling
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molecule that can regulate SASP is NOTCH1, which acts

synergistically with NF-kB by activating the NOTCH-JAG1

pathway to produce TGF-b to induce aging while inhibiting C/

EBPb (41). In recent years, JAK/STAT pathway activation by

signaling molecules including phospholipase A2 receptor 1

(PLA2R1), tumor necrosis factor (TNF)-a, and interferon (IFN)-g
has been shown to also induce SASP production (42, 43). The SASP

generated through multiple pathways will profoundly impact

immune cell function and ultimately restructure the TME.

Alterations in immune cells are the most complex part of

immune aging and produce direct effects. Such alterations are
Frontiers in Immunology 03
mainly due to two aspects: on the one hand, as mentioned above,

the SASP plays a regulatory role in immune cell senescence, and

on the other hand, hematopoietic stem cell (HSC) senescence

is considered to be the basis of immunosenescence (44).

Inflammation is a major factor in HSC aging, as inflammatory

factors such as IL-1, IFNa/g, and TNF-a drive HSC aging (45–47).

Aging HSCs and immune cells differentiated from HSCs are

increased in numbers and show increased inflammatory factor

secretion, reduced self-renewal capacity, diminished homing

effects, and reduced energy metabolism (44). Aging immune cells

interact with soluble factors, including the SASP, in the TME to
FIGURE 1

The immunosenescence process involves immune organs, immune cells, and circulating factors (chemokines, cytokines, and other soluble
molecules) as three distinct but interrelated components that undergo changes during aging, with corresponding effects. (A) During aging,
senescent cells secrete signaling and action molecules such as inflammatory, extracellular modifying, and growth factors, collectively known as
SASP, which are key factors in facilitating and mediating immunosenescence. (B) Immune cells produced by senescent hematopoietic stem cells
interact with SASPs and are characterized by increased numbers, increased secretion of inflammatory factors, decreased self-renewal capacity,
diminished homing effects, and decreased energy metabolism. (C) During aging, thymus cells are gradually replaced by adipocytes, which results in a
decrease in the proportion of undifferentiated T cells produced by the thymus (e.g., naïve T cells). (D) Multiple factors act together to shape the
immunosenescent TME and exhibit strong immunosuppressive effects.
FIGURE 2

NF-kB activation is closely related to SASP regulation and activation. The p38 MAPK, ATM/ATR, and cGAS-STING pathways and aberrant IL-1a
activation mediate SASP production by NF-kB. The NOTCH-JAG1 pathway can synergize with NF-kB to activate SASP production by inhibiting C/
EBPb. In recent years, JAK/STAT pathway activation by signaling molecules including phospholipase A2 receptor 1 (PLA2R1), TNF-production by iN-g
has been shown to also induce SASP production.
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influence tumor progression and therapeutic efficacy, reflecting the

impact of immunosenescence on cancer.
Impact of immunosenescence on TME
alterations and tumor progression

The TME consists of various components that can be classified

into a non-cancerous cellular fraction, including fibroblasts, neurons,

adipocytes, and immune cells (adaptive and innate), and a non-

cellular fraction, including ECM, chemokines, growth factors,

cytokines, and vesicles (48). According to the characteristics of each

component, the TME can also be subdivided into tumor immune

microenvironment, tumor biophysical microenvironment, tumor

microbe microenvironment, etc. (49–51) We propose the term

“immunosenescence microenvironment” as a new TME component

to reflect the impact of senescent immune-related cells and signaling

molecules in the TME on tumor development (Table 1). By analyzing

the individual components of the immunosenescent TME, we can

more clearly the delineate the role of immunosenescence on

tumor development.
SASP

A large number of SASP signaling molecules originate from the

ECM, which plays a microenvironmental regulatory role in the

immunosenescent TME, and these molecules determine the overall

state of the TME (52). The SASP, derived from senescent cells, plays

an important regulatory role in antitumor immunity in the ECM.

Its effects are generally mediated by the paracrine way and have

both positive and negative effects on tumor progression (53).

Various factors of the interleukin (IL) family involved in the

SASP, such as IL-6, IL-8, and IL1a/b, function in microenvironment

regulation. The IL-6/JAK/STAT3 signaling pathway drives tumor cell

proliferation, invasion and metastasis and suppresses anti-tumor

immune responses by reducing tumor antigen expression and

decreasing responses to genotoxicity (54–57, 103). IL-6 as well as

IL-8 can enhance tumor metastasis by promoting neoangiogenesis

(58–61). IL-1bmediates immunosuppression by NLRP3 by inducing

the expansion of MDSCs, leading to a decrease in the activity of

natural killer (NK) cells and CD8+ T cells and an increase in the

number of inhibitory antitumor immune cells, such as regulatory

T (Treg) cells and M2 macrophages, in the TME (62, 63). Similarly,

IL-1a/b secreted by tumor cells also induces fibroblasts to release

pro-tumorigenic chemokines including CXCL9 and CXCL10 (65).

Chemokines involved in the SASP are another important type

of regulatory molecules in the TME. CCL5, CXCL1, CXCL2,

CXCL5, and CXCL12 are chemokines produced by senescent cells

that have opposite effects on tumor development (66). Chemokines

such as CCL5 recruit antitumor immune cells to enhance antitumor

immunity while recruiting immunosuppressive lymphocytes such

as Treg cells, leading to tumor immune escape (64, 67, 68). On the

contrary, CXCL5, CXCL1 and CXCL2 have a tumor-promoting

effect because they recruit MDSCs, which can play an
Frontiers in Immunology 04
TABLE 1 Changes in components of the tumor
immunosenescence microenvironment.

Components Specific changes
and impacts

Ref.

SASP

IL-6 Drive tumor cell proliferation,
invasion, and metastasis; reduce
tumor antigen expression as
well as genotoxic stress;
promote neoangiogenesis.

(50–54)

IL-8 Drive tumor cell proliferation,
invasion, and metastasis.

(55–57)

IL-1a/b Induce the expansion of
myeloid-derived suppressor
cells (MDSC); decrease the
activity of NK cells and CD8+
T cells; increase inhibitory anti-
tumor immune cells such as
Treg cells and
M2 macrophages.

(58–60)

CCL5 Recruit immunosuppressive
lymphocytes such as Treg cells.

(61)

CXCL1 Recruit MDSCs; reduce CD8+
T cells.

(61–64)

CXCL2 Recruit MDSCs; reduce CD8+
T cells.

(61–64)

CXCL5 Recruit MDSCs. (61,
64–66)

CXCL12 Attenuates T-cell infiltration
and tumor cell killing ability;
increases tumor angiogenesis
and immune resistance.

(61,
67–69)

TNF-a Mediate cell death. (70)

VEGF Promote tumor angiogenesis. (71)

GM-CSF Induce immune cell depletion (72)

T cell

Competitive grape depletion
with Treg cells.

(73, 74)

Tumor-derived cyclic adenosine
monophosphate (cAMP) and
some genotoxins of pathogenic
bacteria can induce senescence
of T cells through
DNA damage.

(75–77)

DNA damage produced by this
process is mainly regulated by
the MAPK and
STAT pathways.

(78–80)

TNFa and proteases are the
main components of SASP
secreted by T cells.

(81)

Down-regulation of CD27,
CD28, and the up-regulation
of CD57.

(82–85)

Decreased production of
perforin, which reduces
cytolysis and tumor cell killing.

(86)

B cell
Deterioration of the
inflammatory state of the

(87, 88)

(Continued)
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immunosuppressive role by suppressing the immune function of

lymphocytes through the secretion of Arg-1 and iNOS, and CXCL1

and CXCL2 also reduce the number of CD8+ T cells (69–72, 75, 76).

CXCL12 attenuates T-cell infiltration and tumor cell-killing ability

and increases tumor angiogenesis and immune resistance via

CXCR4/CXCL12 (73, 74, 77).

Other important modulations of tumor progression by the

SASP include TNF-a-mediated cell death, vascular endothelial

growth factor-promoted tumor angiogenesis, and granulocyte

macrophage colony-stimulating factor-induced immune-cell

depletion, which inhibits antitumor immunity and promotes

tumor progression (78, 79, 104).
T cells

Tumor cells and Treg cells are thought to induce T-cell

senescence directly, and some senescent cells secrete SASPs that

may have a consistent effect. Tumor-derived cyclic adenosine
Frontiers in Immunology 05
monophosphate can cause DNA damage and senescence in both

CD4+ T cells and CD8+ T cells and immunoglobulin-like transcript

4 and its derivative PIR-B induce T cell senescence by increasing the

fatty acid synthesis and lipid accumulation in tumor cells via MAPK

ERK1/2 signaling (80). In CD4+ T cells, AMPK can trigger p38

phosphorylation via the scaffolding protein TAB1, which in turn

activates the MAPK signaling pathway to induce senescence (81).

While in CD8+ T cells, activation of the p38 MAPK pathway leads

to the secretion of SASP (82).

Treg cells also play an essential role in inducing T-cell

senescence. Treg cells have a selective metabolic profile that

accelerates glucose depletion compared to effector T cells and

suppresses responding T cells and induces senescence through

cross-talk (83). This is because metabolic competition controls

DNA damage in effector T cells through ERK1/2 and p38

signaling in cooperation with STAT1 and STAT3, leading to

senescence and functional changes that are molecularly distinct

from energy and exhaustion (105). Some genotoxins from

pathogenic bacteria can also induce CD4+ T-cell senescence

through DNA damage, suggesting that the gastrointestinal

microbiota may complicate the tumor immunosenescence

microenvironment (84).

CD8+ T cells are key immune cells that exert tumor-cell killing;

therefore, their senescence significantly affects antitumor capacity.

Changes in surface costimulatory molecules such as CD27, CD28,

and CD57 reduce the tumor-associated antigen recognition ability

of CD8+ T cells, resulting in decreased antitumor activity of CD8+ T

cells (85, 86, 106). Further, decreased perforin production by

senescent CD8+ T cells reduces cytolysis and decreases their

tumor cell-killing function (107). However, a recent study came

to the opposite conclusion, suggesting that the effect of aging on the

ability of CD8+ T cells to kill tumor cells needs to be further

explored (108). Research on T-cell senescence is limited, but some

hallmarks of T-cell senescence have been identified (109). The DNA

damage produced during the process is mainly regulated by the

MAPK and STAT pathways (81, 87, 110). TNFa and proteases are

the main SASP components secreted by senescent T cells (82).

Changes in T-cell surface proteins, including the downregulation of

CD27 and CD28 and the upregulation of CD57, are one of the

hallmarks (88, 89). Further, senescent T cells enter cell-cycle arrest

after T-cell receptor stimulation (83, 90, 91, 111).
B cells

B cells in TME can produce antibodies that bind to tumor-

associated antigens and exert antitumor effects of antigen

presentation (92). Their senescence arises predominantly from a

decrease in B-cell differentiation and maturation in the bone

marrow due to HSC senescence, as well as the reorganization of

peripheral B-cell subsets (112, 113).

The impact of senescent B cells on TME is reflected not only in a

decrease in antigen-presenting capacity but also in the pro-

inflammatory effects derived from a class of B cells known as

“age-associated B cells”, which are thought to be associated with

TNFa secretion (93, 94, 114). IgD CD27 double-negative B cells,
TABLE 1 Continued

Components Specific changes
and impacts

Ref.

tumor microenvironment by a
class of B cells called age-
associated B cells (ABCs).

IgD CD27 double-negative B
cells (DN cells) accumulate in
areas of chronic inflammation
and exacerbate the
inflammatory
microenvironment by
producing pro-
inflammatory factors.

(89, 90)

NK cell

The proportion of CD56dim
increases while the proportion
of CD56bright decreases.

(91)

Cytotoxicity was attenuated by
decreased perforin production
and decreased degranulation.

(92, 93)

Other cells

DCs

The endocytosis, and
presentation of antigens by
dendritic cells are diminished,
while more pro-inflammatory
cytokines are secreted.

(94)

Reduced ability to activate
T cells.

(95, 96)

MDSCs

Produce inflammatory
molecules such as IL-10 and
TGF-b with inhibitory antigen
presentation or
immunosuppressive effects.

(97–99)

Enhancement of oxidative stress
in the microenvironment by
generation of reactive oxygen
species and inhibition of
immune checkpoint protein-
mediated contact between T
cells and tumor cells

(100–102)
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which play an immunosuppressive role, are another type of B cell

that expands in aging populations (95). These cells are more likely

to aggregate in areas of chronic inflammation due to surface

expression of CCR6 and CCR7 after senescence and exacerbate

the inflammatory microenvironment through pro-inflammatory

factor production, worsening the immunosuppressive function of

the TME (96, 97).
NK cells

NK cells are a key innate immune component of the TME that

exerts antitumor immunity. These cells are more environmentally

sensitive, as evidenced by the fact that passive transfer to

environments of different age states can have a significant effect

on cytotoxicity (115).

In senescent NK cells, the proportion of CD56dim increases,

whereas that of CD56bright declines, which in turn leads to

diminished immunocyte function (116). Senescent NK cells appear

to enter a silent phase, as cytotoxicity after senescence is attenuated by

reduced perforin production and decreased degranulation, and even

the production of cytokines such as IFN-g, MIP-1a, and IL-8 after

stimulation is lower than that in nonsenescent NK cells (117–120).
Other cells

Dendritic cells are important antigen-presenting cells that play

an important coordinating role in the immune response (121).

However, as a result of immune senescence, the endocytosis and

presentation of antigens by dendritic cells are diminished, while

more pro-inflammatory cytokines are secreted (98). In addition, the

ability of dendritic cells to activate T cells is reduced by senescence

(99, 100).

MDSCs are a class of immunosuppressive cells recruited

by the chronic inflammatory tumor immunosenescence

microenvironment (101). MDSCs can inhibit the anti-tumor

function of T cells and NK cells by expressing immune

checkpoint molecules such as PD-L1 (102, 122, 123). In addition,

MDSCs can affect the normal amino acid metabolism of T cells by

depriving them of cysteine. This process affects the utilization of

tryptophan by T cells and produces the immunosuppressive

metabolite l-kynurenine, which ultimately induces T cell loss of

function and promotes Treg cell differentiation (124, 125).

MDSCs drive immunosenescence and structure the

immunosuppressive microenvironment, which are correlated with

their multiple immunosuppressive functions (126). Upon the

activation of MDSC amplification due to chronic inflammation

caused by tumors and aging, certain chemokines, such as CCL2,

CXCL1, and CXCR2, can recruit them to the TME, and this process

can be enhanced by the complex gastrointestinal bacterial

environment (127–132). Inflammatory molecules in the TME

activate the immunosuppressive function of MDSCs mainly via

JAK-STAT and NF-kB signaling, causing MDSCs to produce

inflammatory molecules such as IL-10 and TGF-b that have

antigen presentation-inhibitory or immunosuppressive effects
Frontiers in Immunology 06
(101, 133, 134). In addition, the immunosuppressive effects of

MDSCs are reflected in the enhanced oxidative stress state in the

microenvironment via the active generation of reactive oxygen

species and the inhibition of immune checkpoint protein-

mediated contact between T cells and tumor cells (135–137).

Other cells such as macrophages and neutrophils also exhibit

immunosuppressive effects in the immunosenescent TMEby

exacerbating chronic inflammation and increasing pro-

tumorigenic M2-type macrophages (138). These molecular and

cellular changes in the TME in the context of immune senescence

promote tumor progression to a certain extent, and more

importantly, influence antitumor therapy.
Immunosenescence and
tumor therapy

The relationship between immunosenescence and antitumor

therapy reflects the fact that there always are two sides to the

same coin. On the one hand, for gastrointestinal solid tumors

such as colorectal tumors, radiotherapy, chemotherapy, and

immunotherapy are important antitumor treatments besides

surgery; however, these treatments induce immune senescence,

termed “treatment-induced immune senescence.”

Radiotherapy and chemotherapy can cause cancer-associated

fibroblasts to expand in the TME and exacerbate the inflammatory

state, leading to immune senescence (139). In addition,

radiotherapy and chemotherapy can accelerate cellular senescence

by directly causing DNA damage (140–142). Immunotherapies

such as immune checkpoint inhibitors can also induce senescence

in TME components by inducing increased production of

senescence-related cytokines (143).
Senotherapy strategies
targeting immunosenescence

On the other hand, senescence can be exploited as a new target

in antitumor therapies (Table 2) (144, 145). This is explained by the

fact that senescent cells continue to secrete SASP and lead to the

presence of a pro-tumoral tumor microenvironment. Thus,

senotherapy refers to the rational use of treatments that target

senescent cells to fight tumors (146).

One senotherapeutic strategy is the removal of senescent cells

by using anti-aging cell drugs that complement other antitumor

therapies by mitigating the negative effects of treatment-induced

senescence. Some drugs are used after senescence-inducing cancer

therapies to target senescent tumor cells for clearance (147). BCL

family inhibitors (e.g., ABT-737 and ABT-263) are representative of

this class of drugs; they scavenge senescent cells by inhibiting the

anti-apoptotic BCL protein family (148, 149). The tyrosine kinase

inhibitor dasatinib combined with quercetin selectively kills

senescent cells by inhibiting the pro-survival network that is

upregulated in senescent cells (150). In addition, there are

immunotherapeutic drugs and antibody-drug combinations that
frontiersin.org
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can similarly remove senescent cells and synergize with senescence-

inducing antitumor treatments (151, 152). Engineered CAR-T cells

targeting urokinase-type plasminogen activator receptor, a

characteristic protein on the surface of senescent cells, can be

used as a therapeutic modality to remove senescent cancer cells

(153). Another senotherapeutic strategy is to induce senescence of

tumor cells and then target them for elimination. The key to this

strategy is to find corresponding drugs that can be targeted to

induce tumor-cell senescence. For example, the DNA replication

kinase CDC7 can selectively induce senescence in TP53-mutated

hepatocellular carcinoma cells, which can subsequently be killed by

mTOR signaling inhibitors (154). Mitigating the negative effects of
Frontiers in Immunology 07
the SASP is another senotherapeutic strategy. This approach is

mainly based on the inhibition of SASP-producing pathways, such

as the above-mentioned p38 MAPK, NF-kB, and JAK/STAT

pathways (155, 156).

Other therapeutic approaches, such as the use of engineered

tumor-targeting TCR-T cells or of photochemotherapy to increase

immune cell infiltration, have been successful in countering the

immunosenescent TME by enhancing antitumor immune efficacy

(157, 158).These diverse therapeutic approaches combined can

exert a more significant antitumor effect by targeting the

immunosenescent environment from different angles.
Emerging biomarkers of
immunosenescence in
gastrointestinal tumors

Although the molecular biology of immunosenescence has been

explored and therapeutic strategies for tumors have been optimized

based on its action mechanisms, the timely identification of

immunosenescent phenotypes is more clinically relevant, which

provides an opportunity for early intervention (159, 160).

Since aging occurs in the immune system, accordingly, the type

of biomarker that most readily comes to mind is the senescent

phenotype of immune cells. Of these, both CD8+ TEMRA

(CD45RA+CCR7-CD28-CD27-) and CD4+ TEMRA are markers

of immunosenescence, with increased proportions and absolute

numbers in colorectal cancer patients, reflecting low value-added

potential and anti-apoptotic properties (161, 162). However, these

markers are cell surface receptors and must be assayed using flow

cytometry, which requires fresh blood samples. In contrast, the

soluble form of immunosenescence markers are more stable and

can be measured from stored serum, making them promising

candidates as soluble markers of immunosenescence. However,

these markers are less specific, as they can also be detected during

acute inflammation. The soluble markers sCD163, sCD28 and

sCTLA-4 have great potential for application as biomarkers of

immunosenescence (163–165). These soluble markers can be

detected using ELISA methods, but further studies are needed to

compare the diagnostic performance of these markers with the gold

standard (cell surface receptor) assay. In addition, some mutations

in genes associated with immunosenescence such as PIK3CA, TP53,

NF-kB, AMPK, mTOR, and P53 may also serve as biomarkers of

the aging process (166–169).
Conclusions

Immunosenescence, as a feature of this stage, increases the risk

of infectious diseases and tumors while decreasing antitumor

immune functions. This is because immune senescence results in

changes in immune organs, immune cells, and the SASP, which all

interact with each other. Such changes significantly impact solid

tumors of the gastrointestinal tract, such as colorectal cancer, which

have a complex TME, and ultimately lead to the formation of an
TABLE 2 Therapeutic strategies to counteract the immunosenescent
microenvironment of tumors.

Treatment strategy Key points Ref.

Senotherapy

Removal of senescent
tumor cells.

Inhibit the
senescent cell anti-
apoptotic protein
BCL family.

(132,
133)

Extensively removes
senescent cells.

Inhibit the pro-
survival network
that is upregulated
in senescent cells

(134)

Removal of senescent cells
using cellular engineering.

Using CAR-T cells
to target the
characteristic
protein urokinase-
type fibrinogen
activator receptor
(uPAR) on the
surface of
senescent cells.

(137)

Clearance of tumor cells
after active induction
of senescence.

Selective induction
of TP53-mutated
cancer cell
senescence using
the DNA replication
kinase CDC7 allows
subsequent
inhibitors of mTOR
signaling to
sustainably suppress
and kill tumor cells.

(138)

Mitigate the negative effects
of SASP.

Inhibit SASP-
producing pathways
such as the
previously
mentioned p38
MAPK, NF-kB, and
JAK/STAT

(139,
140)

Enhancing anti-tumor immune efficacy in the
tumor immunosenescence microenvironment

Increased CD8+ T-
cell infiltration
using
photochemotherapy.

(141)

D133p53a TCR-T
cell enhances fitness
and effector
functions of
senescent T cells by
modulation of
p53 isoforms

(142)
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immunosuppressive tumor immunosenescence microenvironment.

In such an environment, immunosuppression is manifested in

multiple aspects, including immunosuppressive cell recruitment,

increased secretion of inhibitory cytokines, and diminished

antitumor immune cell function. These changes allow the tumor

to develop and deteriorate, and increase its tendency to invade,

and affect antitumor therapy, which in itself induces immune

senescence and induces immunosuppressive changes. Therefore,

senotherapy, a new therapy targeting immune senescence, has been

developed on the basis of various antitumor therapies to remove

senescent tumor cells and restore the antitumor capacity of immune

cells from a different perspective. However, more in-depth studies

on the tumor immune senescence microenvironment need to be

conducted to paint a more complete picture of immunosuppression

and explore the mechanisms by which immunosenescence

attenuates antitumor immunity. This will enable the development

of antitumor drugs and different therapeutic strategies for aging

characteristics. However, the therapeutic effects remain to be

verified in long-term experiments.
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