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Tissue-resident macrophages (TRMs) are an integral part of the innate immune

system, but their biology is not well understood in the context of cancer.

Distinctive resident macrophage populations are identified in different organs

in mice using fate mapping studies. They develop from the yolk sac and self-

maintain themselves lifelong in specific tissular niches. Similarly, breast-resident

macrophages are part of the mammary gland microenvironment. They reside in

the breast adipose tissue stroma and close to the ductal epithelium and help in

morphogenesis. In breast cancer, TRMs may promote disease progression and

metastasis; however, precise mechanisms have not been elucidated. TRMs

interact intimately with recruited macrophages, cytotoxic T cells, and other

immune cells along with cancer cells, deciding further immunosuppressive or

cytotoxic pathways. Moreover, triple-negative breast cancer (TNBC), which is

generally associated with poor outcomes, can harbor specific TRM phenotypes.

The influence of TRMs on adipose tissue stroma of the mammary gland also

contributes to tumor progression. The complex crosstalk between TRMs with T

cells, stroma, and breast cancer cells can establish a cascade of downstream

events, understanding which can offer new insight for drug discovery and

upcoming treatment choices. This review aims to acknowledge the previous

research done in this regard while exploring existing research gaps and the future

therapeutic potential of TRMs as a combination or single agent in breast cancer.
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1 Introduction

Breast cancer is currently the most commonly diagnosed cancer

worldwide, surpassing lung cancer in 2020. The International Agency

for Research on Cancer (IARC) and partner institutions predict breast

cancer cases will rise to 40% by 2040 with an increase of 50%

mortality rate worldwide, leading to more than one million deaths

per year (1). Various chemotherapy regimens and targeted therapy

options are available to treat breast cancer, but immunotherapy is still

evasive (2). However, the presence of tumor-infiltrating lymphocytes,

identification of different innate immune subsets, and transcriptomics

analysis identifying immune gene signatures suggest the potential of

combining immunotherapy with standard of care (SOC) (2–4). While

the role of immune checkpoint inhibitors, bispecific antibodies, CAR-

T cell therapy, etc. have been recognized across various solid tumors

including breast cancer (5–7), the innate immune cells, particularly

macrophages, are emerging as novel candidates for combination

therapy. To exploit macrophage’s potential as a therapeutic target

in breast cancer, understanding their ontogeny is crucial as

developmental origins dictate their functional commitment in

steady state and disease. Single-cell RNA sequencing (scRNA-seq)

data indicating existence of macrophage phenotypes beyond the

conventional M1 and M2 spectrum (8) inspires a deeper dive into

the subject. Ontogenically, macrophages can be either resident or

recruited. Tissue-resident macrophages (TRMs) being the guardians

of homeostasis garner more attention and also focus of this review. As

startling new data have appeared on TRM diversity, their potential
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mechanistic role in breast cancer, and their influence on varied

cellular or stromal partners in breast tumor microenvironment

(TME), the complex crosstalk is reviewed and the rising therapeutic

scope of resident macrophages in breast cancer as single mechanistic

target or a potential candidate for combination therapy is assessed.
2 Tumor immune microenvironment
in breast cancer

The breast cancer microenvironment is intricate (Figure 1).

Apart from tumor cells, it has different stromal cells and

extracellular matrices (ECMs) (9, 10). Moreover, genome-wide

profiling identifies multiple phenotypes within the major cell

types of breast TME (10–12). The myeloid population of the

breast TME consists of monocytes, dendritic cells, and

macrophages, spceially tumor associated macrophages (TAM)

(12). The lymphoid components predominantly include T cells,

with several internal phenotypes and B cells with predominance of

memory B cells (10, 12, 13). The most common mesenchymal cells

in breast TME are fibroblasts, followed by other minor groups like

pericytes, endothelial cells, adipose-derived stromal cells, and

mesenchymal stem cells (14). Myeloid-derived suppressor cells

(MDSCs), a distinct state of differentiation within neutrophil and

monocyte lineage, also exist in breast cancer patients (15). At the

molecular level, the factors involved in pyroptosis pathways,

ferroptosis-related genes, and hypoxia-related genes (HRGs), and
FIGURE 1

TME in breast cancer. Microenvironment in breast cancer is formed by multiple cell types, and their crosstalk is implicated in the pathogenesis of
breast cancer. Resident macrophages predominate the breast TME along with T cells and help in disease progression or attenuation depending on
their heterogeneity not only by interacting tumor cells and T cells but also with other stakeholder cells such as fibroblasts and adipocytes. Tumor
associated macrophages contain both resident and recruited macrophages.
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cuproptosis-related genes (CRGs) have been recently explored to

identify overall survival, immunogenicity, and immune checkpoints

in breast cancer microenvironment (16–18). Breast microbiota

represents another intriguing new member of the TME (19), but

the crosstalk of breast microbiome with cellular and stromal

partners in breast cancer remains to be elucidated.

TIMER2.0 database can be used to assess the contribution of

immune cell infiltration in tumor progression and regression using

multiple computational algorithms modules (20). Large-scale

cytometry profiling pinpoints that T cells and macrophages are

the most abundant immune cells in the breast TME (10). Single-cell

RNA sequencing confirms this fact and also shows that compared to

normal breast tissue, TME can have more cytotoxic T cells and

activated macrophages (11).

Within the macrophage population, two dominant phenotypes

M1 and M2 were described earlier by the macrophage polarization

model. However sc-RNAseq data hint toward a wider phenotypic

diversity (11). Indeed, CITE-Seq highlighted novel PD-L1/PD-L2+

macrophage populations associated with specific disease outcomes

(11). Interestingly, Rac/Cdc42i- inhibited macrophages were found to

induce an antitumor TME by affecting IL6 secretion and by inhibition

of metastatic cancer cells (21). Understandably, macrophage

phenotyping in breast TME is not well defined and their

mechanism of action in promoting or attenuating the disease is not

fully elucidated. It is rather shadowed under the term “tumor

associated macrophage” or “TAM”. This allows researchers to

explore breast macrophages in light of developmental heterogeneity

and functional commitment. Once the full spectrum of macrophage

phenotypes is revealed, their interaction with other key components of

breast TME will pave the way for new combinatorial approaches.
3 Developmental heterogeneity of
macrophage in breast

Macrophage heterogeneity is not yet fully understood (22–24), but

their developmental origin certainly plays a role. Tissue-resident

macrophages (TRMs or Mf) originate from the yolk sac and self-

maintain in the peripheral tissue niche. Fate mapping studies show that

macrophages develope asynchronously via multiple waves and at

different anatomical locations (25, 26). While the first wave can

generate primitive microglia, the majority of the tissue-resident

macrophages originates in the second wave from erythroid-myeloid

progenitor (EMP) through a core macrophage transcriptional program

(25, 27). It is important to understand that pMac- and EMP-derived

monocytes are two independent progenitors in the developmental

trajectory from EMP to long-lived TRMs (25). Hematopoietic stem

cells (HSCs) develop as the third wave and migrate via the fetal liver to

the bone marrow, where they persist and generate monocytes. These

monocytes are constantly recruited in the tissues giving rise to the

recruited macrophages (25). The challenge remains due to our limited

knowledge about sub-phenotypes of TRM, making their separate

anatomical niche within a particular organ, including the breast.

Normal mammary gland (MG) derives from the ectoderm in

E10.5, and the F4/80hi and F4/80int macrophage phenotypes are
Frontiers in Immunology 03
identified in E16.5 (28). Cell fate mapping and antibody depletion

studies proved that YS-derived macrophages are F4/80hi in MG,

persist lifelong, and express canonical macrophage markers (CD64,

MerTK, CD206, C1qa, CSfr1, and Spi) but lack dendritic cell markers

(CD11c, Zbtb46, and Itgax) (28, 29). The second population of F4/

80int macrophages is fetal liver derived, which contributes to the Mf
pool postnatally. Mass cytometry data on mammary glands from 3-

month-old mice show predominantly F4/80hi CD64hi Siglec-1hi

CD206hi TRMs, while CD206lo macrophages were deemed BM

derived (28). Another study by Dawson et al., using flow cytometry,

showed three Mf (CD64+ F4/80+MerTk+) populations, such as

CD11clo CD11b+ MHCIIhi (Mf1), CD11clo CD11b+ MHCIIlo

(Mf2), and CD11c+ CD11blo Ly6C− (Mf3). These Mfs express

Lyve1 and CD206 to various extents and prefer either nerve or

vessel-associated niches (24). These findings support that

heterogeneous TRM populations exist within the breast. When

compared within the whole breast, Mf3 was enriched in the ducts

fourfold and was absent in the fat pads cleared of epithelium.

Therefore, Mf3 represents a unique entity called ductal macrophage

(DM) close to the ductal epithelium, enriched for lysosomal genes,

matrix metalloproteinase genes, and notch signaling. Their unique

expression of Cx3cr1 confirmed their residential nature (24, 27).

The myeloid compartment of breast tumor profiled in

transgenic mouse models showed an increase in Mf3 (DM)

expanding throughout the tumor and a decrease in the adipose-

rich stromal TRM (Mf1 & Mf2). DM-like TAMs suppress

cytotoxic T-cell activity and tumor progression (24). Lavrion et al.

also demonstrated stromal and ductal TAMs by scRNA-seq and

imaging (30). Stromal I Mfs were (CD11b, CD206, MHC II, and

CCR2 positive) located in adipose tissue stroma or adipose islets,

and stromal II Mfs were located in the connective tissue. Ductal

Mfs were elongated, intraepithelial, and parallel to the basement

membrane in steady state and surrounded the TME in breast

cancer. They showed significant heterogeneity in CD11b and

MHCII expression (30). Interestingly, further scRNA-seq from

the sorted myeloid components of the tumor identified expression

of Trem2, Cadm1, Folr2, and Mrc1, supporting that both TRM and

recruited macrophage build the TAM pool (30). These findings

were recapitulated in human breast tumors upon analyzing a

published sc-RNAseq database (30, 31). TRMs have been

associated with BRCA1-associated human breast cancer tissues;

however, their significance is not explicated (31). In addition, ER+

cancers are associated with infiltration of TRMs, while HER2+ and

triple negative cancers are TRM poor (31), which speculates a

possible combination of TRM suppression with hormonal therapy.

It is conceivable that in the breast TME, various TRM phenotypes

exhibit pro- and anti-tumorigenic activity (32, 33).
4 Resident macrophage
reprogramming in cancer progression

In a healthy breast, TRMs play crucial mechanistic roles. They

facilitate phagocytosis of apoptotic epithelial cells during puberty and

alveolar cells during involution, while also organizing the structure of
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terminal end bud and ECM (24, 34–36). Locally active TRMs are

the major regulator of branching morphogenesis during breast

development (24, 37, 38). Conventionally, macrophages in cancer

are termed “tumor-associated macrophages” or TAMs, originating

from both resident and recruited pools (30, 39–42). It is suggested that

tumors reprogram normal epithelium to produce DM-like TAMs (24,

27). Epigenetic reprogramming of TAMs arising from TRMs by DNA

methylation results from tumor-directed perturbation, leading to

modulation of several ligands and transcription factors, and this is

distinct from monocyte-derived macrophage modulation in the TME

(43). In a steady state, TRMs maintain breast tissue homeostasis and

anti-tumor immunity in a CSF-1-dependent manner. They form a

part of the stem cell niche as supported by studies in Csf1op/op mice

(34, 44, 45). Indeed, CSF-1 response signatures are found in 25% of

breast cancers, which marks the activation of reprogrammed TRMs

and is associated with high tumor proliferation and higher grades (45,

46). Furthermore, altered HIF1a signaling can be another

reprogramming mechanism, as hypoxia and anaerobic glycolysis

induce TRMs to release growth factors and inflammatory cytokines

like TGFß, IL-10, TNF-a, and CCL-8 to promote tumor growth and

plasticity, tumor cell adherence, angiogenesis, and metastasis (9, 47–

51). The tumor-derived exosomes can reprogram TRMs through

TLR-2 and activate MYD88 and NF-kB signaling, inducing

increased glycolysis and lactic acidosis, which leads to increased PD-

L1 expression and immunosuppression (48, 52). This is also supported

by HIF1a-mediated lactate-induced arginase expression in

macrophages, leading to tumor progression by cell proliferation

(50). Resident macrophages promote disease progression by ECM

remodeling (41, 42).Tumor nest macrophages are correlated with

microvascular density (53), suggesting their role in neo-angiogenesis.

TRMs can also increase hormone resistance by activating the PI3K/

Akt/mTOR signaling pathway (14, 54). Macrophages can upregulate

PD-L1 expression in multiple solid cancers including breast cancer to

modulate cytotoxic T-cell activity (55–57). DM-TAMs showed STAT3

expression associated with immunosuppression (30). MfTAMs are

susceptible to chronic inflammation in obesity and upregulate

aromatase expression in obese patients in an IL-6-dependent

manner, facilitating the development of ER+ breast (58, 59).

Interestingly, FOLR2+-resident macrophages locally cohabit with

CD8+ T cells and tertiary lymphoid structures and activate T-cell-

mediated cytotoxicity instead of immunosuppression (60). Resident

macrophages may initiate the recruitment of HSC-derived

macrophages for tumor progression by presenting antigens (24, 61).

Zeng et al. showed that TAM-secreted CCL18 reprograms breast-

resident fibroblast to a CD10+GPR77+cancer-associated fibroblast

(CAF), which induces chemoresistance through activated NF-kB

signaling (62). However, they did not specify the TAM’s

developmental nature.
5 Resident macrophages in
cancer metastasis

Breast cancer can disseminate even when the tumor is regarded

in situ by light microscopy (63, 64). Metastatic breast cancer is a
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fairly incurable disease with 5 and 10 years survival rates of

approximately 27% and 13%, respectively (65, 66). TRMs play an

important role in conditioning premetastatic niche to promote

breast cancer metastasis and colonization. Wnt/b-catenin
signaling pathway is one of the transcriptional regulators of

TRMs. Macrophage-derived WNT-7b ligand is implicated for

lung metastasis and TNFa-mediated pro-metastatic environment

in breast cancer (26, 67). The perivascular macrophages help tumor

cell intravasation. Studies on Csf1op/op/PyMT mice show a

reduction in circulating tumor cells upon reduction in

perivascular macrophage density (68). It is suggested that

CD206hi intraepithelial Mfs (24, 63) produce Wnt-1 causing E-

cadherin junction disruption in a CCL2-dependent manner.

Subsequently, stromal Mfs infiltrate into the epithelium leading

to early dissemination and subsequent metastasis, especially in

HER2+ cancer (63). A study in B6 green fluorescent protein

(GFP)-transgenic mice with TNBC shows that FOLR2+ tissue-

resident macrophages dominate the TME (42%–49%), and

treatment with clodronate liposomes (which induces apoptosis in

macrophages) in a local recurrence model prevented lung and liver

metastasis in TNBC (69). Breast cancer nodal metastases are

associated with the TIE2+ CD31+ breast macrophage subset (70),

suggesting their residential origin (71). On the contrary, breast

cancer nodal metastasis can also be associated with nodal CD169+-

resident macrophages, which often show adjacent PD-L1

expression and better prognosis (72). Intriguingly, metastatic

TME of breast cancer is influenced by resident macrophages of

the metastatic organ. A study using humanized and genetic mouse

models showed that microglia in the brain orchestrate

proinflammatory and tumor-suppressive roles in breast cancer

brain metastasis. Animals without microglia were susceptible to

increased metastasis, poorer survival, and hampered natural killer

and T-cell responses (73). On the contrary, osteoclasts confer

resistance to breast cancer cells to DNA damage therapy by

enhanced glutamine production in bone metastasis (74). ß-

Catenin activation in alveolar macrophages leads to a

transcriptional programming enriched for inflammatory, vascular

development, cytokine, and chemotactic pathways facilitating lung

metastasis (67).
6 TNBC and resident macrophages

TNBC is defined as the absence of ER, PR, and HER2 expression

and is associated with a high recurrence rate and poor overall

survival. High dimensional single-cell profiling of human BRCA-1-

associated TNBC shows that macrophages are the predominant

infiltrating immune cells in TME (75). Intriguingly, in early TNBC,

F4/80+ Mfs infiltrate the tumor, with half of them being FOLR2+

and CADM- (69). Recent studies in the 4T1 orthotopic mouse

model of TNBC showed the reprogramming of steady-state resident

macrophages (referred as MGM). It led to altered cytokine signaling

(TGFß, CSF-1, and IFN-gamma) mediated by specific transcription

factors such as STAT1, RUNX3, and FOSL2 associated with poor

outcome (43).
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7 Breast adipose tissue and
macrophage crosstalk in
breast cancer

Adipose tissue stroma (ATS) is part of the breast anatomy and

pathology. Large breast volume corresponds to high visceral fat (76)

and is associated with worse outcomes in neoadjuvant chemotherapy

compared to lean breast, especially in postmenopausal patients (77).

In breast cancer, a lipid-associated macrophage (LAM) bearing a

TREM2 signature is described, which is usually associated with

monocytic origin (78). However, Dawson and colleagues described

stromal Mfs close to ATS (24). Moreover, another study in humans

and mice showed two LAM populations by trajectory inference

analysis: LAM-STAB1 and LAM-APOC1. Resident LAM-APOC1

was expressed both in the tumor and juxta-tumor area, strongly

associated with CD8+ T cells and T-regs, while LAM-STAB1 was

mostly expressed in the tumor and had a high level of TREM2 and

IL-1B, suggesting their monocytic origin associated with poor

prognosis (79). ATS and macrophages respectively release FFA

and TNF-a in a paracrine manner to establish a vicious cycle to

regulate each other (80). TRMs present antigens from dead

adipocytes to attract recruited macrophages to form crown-like

structures (CLS) in ATS, which increases aromatase activity, local

invasion, and the possibility of metastasis (81).
8 Targeting resident macrophages for
managing breast cancer

Targetingmacrophages as a potential combination agent in breast

cancer treatment is an area of active research. TRMs can be co-

targeted based on their ability to interact with other cells,

predominantly T cells and fibroblasts. As many available therapies

are TAM centric, TRMs being the predominant part of TAMs (28, 69)

are also targeted. TRMs inhibit cytotoxic T-cell activity in multiple

ways like modulating checkpoints, cytokine release, impaired antigen

presentation, and induction of collagen remodeling enzymes (82–84).

In human BRCA-1-associated TNBC, PARP inhibitors (PARPi)

increase infiltrating CD206+PDL-1+CSF1R+ macrophages,

which are immunosuppressive to cytotoxic T cells. Combining

CSF-1R inhibitors with PARPi for this group showed improved

CD8+ T-cell-mediated survival in mice (75). Another possible

combination with PARPi in breast to bone metastasis is zoledronate

because it blocks osteoclasts, the local Mf in the bone. Osteoclasts

reduce the sensitivity of Cisplatin and PARPi by increasing glutamine

production (74). Also as half of the HER2+ tumors are immunogenic,

targeting macrophage and T cells combined with bispecific antibodies

or checkpoint inhibitors can be a therapeutic possibility in those

patients (85, 86). Immune checkpoint inhibitors can be useful in

targeting TRMs for two different reasons: first, their abundance in

breast TME and, second, their ability to modulate CD8+ cytotoxic T

cells and immune check points (55–57). Blocking CD47-SIRP-a axis

to improve immunosuppression (48) and CD24-Siglec10 in TRMs to

evade immune escape of tumor cells are evolving options (87).
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Blocking immunosuppressive macrophages may also improve the

efficacy of immune checkpoint inhibitors. As discussed earlier, TAMs

can confer chemoresistance through fibroblasts via CCL18-PITPNM3

signaling. Blocking CCL18–PITPNM3 signaling by inhibiting TAMs

can prevent tumor progression, delay metastasis, and prevent

immunosuppression (62). TRMs can be targeted by several other

mechanisms supplementing SOC (Figure 2). Repolarization of the

TRMs using small molecule inhibitors or microbes from pro-tumor

TRMs to antitumor ones is one of the proposed models (88). Using

macrophage as a drug delivery system such as chimeric antigen

receptor macrophage therapy (CAR-M) (89) is gaining more

attention recently. As of February 2024, two clinical trials testing

CAR-M-based strategy for breast cancer are registered:

NCT04660929 on HER2+ patients with refractory or relapsed

disease (recruiting) and NCT05007379 (CARMA) on patient

derived organoids (90, 91). However, whether resident macrophage

as CAR-M has any additional pros is yet to be studied. Two specific

mechanistic scenarios can be considered for targeting TRMs. TRMs

can present antigen to the monocyte-derived macrophages and T

cells, recruiting them to the breast TME. This can be further

strategized for drug discovery. Furthermore, metabolic

reprogramming of resident macrophages by adipose tissue stroma

can be explored, as the crosstalk between the two is the guiding

mechanism of metabolic diseases predisposing cancer. Finally,

epigenetic reprogramming of resident macrophages such as

TMP195 can be an attractive treatment option in the future (92).

Current strategies targeting macrophages as single or combination

agents are illustrated in Figure 2.
9 Discussion

Macrophages are the most abundant and transcriptionally diverse

innate immune cells in the breast cancer microenvironment. Their

cancer-specific reprogramming facilitates cancer progression and

metastasis. However, a major challenge is to separate TRMs from

recruited ones within the TAM pool. Such separation is required

because they have different and often contradictory functions. For

example, TAMs release CSF-1 and CXCL1 helping tumor migration

and EMT (93, 94). Furthermore, the hypoxic environment created by

TAMs and cancer cell crosstalk triggers NFACTc1-mediated

osteoclastogenesis to make a circulating metastatic niche. In addition,

TAM causes induction of HIF1a by NF-kB activation, which is

implicated in the pathogenesis of breast-to-bone metastasis but by

which TAM subpopulation, which is not entirely clear (95–97). One

major challenge is the availability of very little imaging information

regarding TRMs due to strong overlap of commonly used reporters

between myeloid cell subsets. Developing different reporter mice can

improve our knowledge of the resident TAMs and further target them

(40). Recently, combining scRNA-seq data with spatial mapping using

multiple transgenic fluorescent reporter mice revealed a massive

increase in intraepithelial CD11b− macrophages in breast TME,

interacting with tumor cells at all stages of disease progression (30).

These macrophages are ductal and found inside the tumor epithelium

passing through the breached basement membrane (30). This is
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1375528
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Biswas 10.3389/fimmu.2024.1375528
interesting, as these ductal TAMs correspond to the Mf3 discussed

earlier and their fetal origin was confirmed by fate mapping studies

using Ms4a3–Cre/Rosa–tdTomato mice (24). The second CD11b+

TAM population is monocyte derived and expressed in TREM2 and

SPP1 (30, 98–100). Another stromal FOLR2+ and LYVE1+ TAM

subset found in perivascular tissue niche are part of Mf TAMs (30,

101). Intriguingly, in human primary luminal breast cancer, two

subsets of APOE+ TAMs are described by scRNA-seq, expressing

either TREM2 or FOLR2 (60, 101). TREM2 and FOLR2 expressions

determine the functional status and spatial distribution of TAMs. As

TREM2+ macrophages are infiltrating in nature during cancer

development and transcriptionally proximal to CD14+ CCR2+

monocytes in breast cancer, they are concluded as HSC-derived

recruited macrophages (60, 101, 102). LYVE1+ FOLR2+

macrophages found in breast TME are perivascular (101). Studies in

mice and the human brain showed that perivascular macrophages,

although having a postnatal developmental switch, reside in the CNS

without any contribution from HSC-derived precursors (103–105)

suggesting their residential nature. Indeed, scRNA-seq analysis of

mice macrophages compared with a publicly available database of

human macrophages and genetic fate mapping confirms that the

FOLR2+ TIMD4+ LYVE1+ macrophages are self-maintaining Mfs
(106). Finally, a SIGLEC-1+TAM is described in human breast

cancer associated with aggressive subtypes and shorter survival;

however, their developmental origin remains transcriptionally unique

(46). Therefore, a clear developmental diversity exists in the breast
Frontiers in Immunology 06
TAMs. Initial immunotherapy trials for breast cancer were directed

toward T cells, but the response was limited, e.g., in JAVELIN

(NCT01772004) and KEYNOTE-028 (NCT02054806) (107).

However, a bispecific approach with PD1-IL2v to expand stem cells

like CD8+ T cells and anti-PD-L1 to reprogram macrophages and

vasculature in immunotherapy-resistant pancreatic neuroendocrine

tumors in RIP1-Tag5 mouse model showed complete tumor

regression (6). Clinical.trial.gov database search using keywords

“macrophage” and “breast cancer” showed 81 trials having

macrophages in combination with hormonal therapy, chemotherapy,

or immunotherapy until January 24. Toward this goal, a recent study

isolated five TRM clusters from breast cancer patients by analyzing

scRNA-seq data (108). This signature database can help make

informed combinatorial treatment decisions by cotargeting TRMs

alongside SOC. Moreover, the FOLR2+ TRMs are shown to promote

T-cell infiltration in the tumor, thereby increasing immunogenicity and

antitumor activity (108). Therefore, combination with immune

checkpoint inhibitors and FOLR2+ TRM promoters can help in

resistant cases.
10 Conclusion

In a straightforward scenario, resident macrophages maintain

homeostasis, and recruited macrophages would promote

inflammation in breast TME. However, realistically, the
FIGURE 2

Co-targeting resident macrophage in breast cancer along with the current standard of care can be useful in advanced and refractory cases. Resident
macrophages can be exploited in multiple ways such as by immune modulation, repolarization, reprogramming, recruitment, and as a drug delivery
system in combination with other modalities. Mj/TRM, tissue-resident macrophage; TLR, Toll-like receptor; MARCO, macrophage receptor with
collagenous structure; BM, bone marrow; EMP, erythroid myeloid progenitor; pMac, pre-macrophage; CSF1, colony-stimulating factor 1; CSF1R,
colony stimulating factor 1 receptor; CAR-M, chimeric antigen receptor macrophage; FFA, free fatty acid.
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reprogramming of resident macrophages confers additional layers

of heterogeneity challenging the therapeutic development. Better

spatiotemporal delineation of macrophage niche in TME and

identifying reprogramming mechanisms may identify dynamic

cellular states rather than rigid phenotypes. Understanding the

TRM heterogeneity will pave the way for novel targets and

potential combinations.
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