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Lasting differential gene
expression of circulating CD8
T cells in chronic HCV infection
with cirrhosis identifies a role
for Hedgehog signaling in
cellular hyperfunction
Jiafeng Li1,2,3, Agatha Vranjkovic1, Daniel Read1,2,
Sean P. Delaney4,5, William L. Stanford3,4,5,6,
Curtis L. Cooper3,7,8,9 and Angela M. Crawley1,2,3,10*

1Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada, 2Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada, 3Centre for
Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada, 4Regenerative
Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada, 5Department of Cellular
and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, 6Ottawa Institute of Systems
Biology, University of Ottawa, Ottawa, ON, Canada, 7Division of Infectious Diseases, The Ottawa
Hospital, Ottawa, ON, Canada, 8School of Epidemiology and Public Health, University of Ottawa,
Ottawa, ON, Canada, 9Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa,
ON, Canada, 10Department of Biology and Institute of Biochemistry, Carleton University, Ottawa,
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Background: The impact of chronic hepatic infection on antigen non-specific

immune cells in circulation remains poorly understood. We reported lasting

global hyperfunction of peripheral CD8 T cells in HCV-infected individuals with

cirrhosis. Whether gene expression patterns in bulk CD8 T cells are associated

with the severity of liver fibrosis in HCV infection is not known.

Methods: RNA sequencing of blood CD8 T cells from treatment naïve, HCV-

infected individuals with minimal (Metavir F0-1 ≤ 7.0 kPa) or advanced fibrosis or

cirrhosis (F4 ≥ 12.5 kPa), before and after direct-acting antiviral therapy, was

performed. CD8 T cell function was assessed by flow cytometry.

Results: In CD8 T cells from pre-DAA patients with advanced compared to

minimal fibrosis, Gene Ontology analysis and Gene Set Enrichment Analysis

identified differential gene expression related to cellular function and

metabolism, including upregulated Hedgehog (Hh) signaling, IFN-a, -g, TGF-b
response genes, apoptosis, apical surface pathways, phospholipase signaling,

phosphatidyl-choline/inositol activity, and second-messenger-mediated

signaling. In contrast, genes in pathways associated with nuclear processes,

RNA transport, cytoskeletal dynamics, cMyc/E2F regulation, oxidative

phosphorylation, and mTOR signaling, were reduced. Hh signaling pathway

was the top featured gene set upregulated in cirrhotics, wherein hallmark

genes GLI1 and PTCH1 ranked highly. Inhibition of Smo-dependent Hh

signaling ablated the expression of IFN-g and perforin in stimulated CD8 T cells

from chronic HCV-infected patients with advanced compared to minimal

fibrosis. CD8 T cell gene expression profiles post-DAA remained clustered with
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pre-DAA profiles and disparately between advanced and minimal fibrosis,

suggesting a persistent perturbation of gene expression long after viral clearance.

Conclusions: This analysis of bulk CD8 T cell gene expression in chronic HCV

infection suggests considerable reprogramming of the CD8 T cell pool in the

cirrhotic state. Increased Hh signaling in cirrhosis may contribute to generalized

CD8 T cell hyperfunction observed in chronic HCV infection. Understanding the

lasting nature of immune cell dysfunction may help mitigate remaining clinical

challenges after HCV clearance and more generally, improve long term

outcomes for individuals with severe liver disease.
KEYWORDS

hepatitis C virus, liver cirrhosis, advanced liver fibrosis, CD8 T cells, T cell dysfunction,
gene expression, Hedgehog signaling, direct-acting antivirals (DAA)
1 Introduction

The complications accompanying advanced liver disease

remain a major global health burden. Chronic viral hepatitis is a

leading factor contributing to this burden of liver disease (1, 2).

Antiviral treatments for hepatic viral infections such as hepatitis C

(HCV) and B (HBV) have emerged to eliminate or control viremia.

However, the long-term outcome for those with cirrhosis remains

poor for many affected individuals (3). As liver damage progresses

to advanced liver fibrosis (AF) and cirrhosis, there is an increased

risk for progression to end-stage liver disease, portal hypertension,

esophageal varices, hepatic encephalopathy, susceptibility to

infections, and hepatocellular carcinoma (HCC) (4–6). While

several studies demonstrate that direct-acting antivirals (DAA)

reduce HCC risk in HCV-infected individuals (7–10), there still

remains appreciable incidence following completion of curative

treatment (5). In addition to the associated metabolic disease in

cirrhosis, a variety of immune dysfunctions emerge as liver disease

progresses, affecting both innate and adaptive immune responses

(11). While innate immune dysfunctions have been well described

in cirrhosis (12–14), the contribution of adaptive immune defects to

the health outcomes of cirrhosis has not been fully examined.

Chronic HCV infection disrupts many innate and adaptive

immune cells, including cytotoxic CD8 T cells (15–20). In the acute

stage of HCV infection, weak and transient responses of HCV-

specific CD8 T cells predict chronicity (21, 22). In chronic infection,

detection of impaired HCV-specific CD8 T cells prior to IFN-a and

ribavirin antiviral therapy predicts chronic infection upon

reinfection (23), as these cells remain dysfunctional (17, 24),

suggesting irreversible damage to immune cells. It remains

unclear if viral cure with DAA parallels with restored immune

functions (25, 26). In addition, HCV infection has an extensive,

antigen agnostic effect on CD8 T cells, as markers of exhaustion are

widely observed on bulk CD8 T cells in the blood, spleen and liver

(27–30). A study has observed exaggerated proliferation, cytokine
02
secretion and degranulation by in vitro-stimulated cytomegalovirus

or Epstein-Barr virus (CMV/EBV)-specific CD8 T cells in HCV-

infected individuals and this was retained after DAA therapy (31).

However, the effects of liver fibrosis severity on the acquisition and

possible long-term retention of T cell dysfunction have not been

determined. Attempts to restore normal function in vitro in isolated

HCV/CMV/EBV-specific CD8 T cells from HCV-infected

individuals with AF have encountered challenges (32). This

suggests that the immune system is profoundly affected in HCV

infection according to the degree of liver fibrosis.

We and others have observed extensive impairment of the

entire CD8 T cell compartment in the blood and liver in HCV

infection (27–30, 33, 34), wherein we specifically associated

decreased CD8 T cell survival with AF (33). We then showed for

the first time an overactive bulk CD8 T cell function profile in

HCV-infected individuals with cirrhosis compared to those with

minimal fibrosis (MF) (34). This was done alongside our

complimentary clinical study in which a cohort of DAA-treated

HCV+ patients with cirrhosis achieved a sustained virological

response, SVR (i.e. undetectable HCV RNA by 12 weeks after

treatment cessation) yet failed to reverse liver fibrosis by 24-weeks

after viral clearance (35). We hypothesized that liver fibrosis

severity is strongly associated with immune dysfunction.

Consistent with this theory, we found that after DAA therapy,

bulk CD8 T cell responses were not restored to levels comparable to

healthy individuals in patients with cirrhosis (34).

Characterizing the underlying mechanisms of bulk CD8 T cell

dysfunction in AF is of clinical importance given the role of CD8 T

cells in response to infection and cancer surveillance. In this study,

we identify several candidate genes and pathways that may

contribute to this hyperfunction and inform future mechanistic

investigations, and highlight an important impact on Hedgehog

(Hh) signaling. Hh signaling is widely recognized as an important

component of embryonic development and tissue regeneration (36,

37). The signaling cascade is initiated by extracellular Hh ligands
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(homologs Sonic, Desert and Indian) binding to receptor Patched-1

(Ptch-1) or Patched-2 (Ptch-2), and results in, through Smoothened

(Smo), downstream activation of Gli transcription factors (Gli1,

Gli2, and Gli3). Non-canonical Gli-independent Hh signaling also

plays a prominent role in Ca2+ signaling and cytoskeletal

rearrangement (38). More recently, it has been shown that

exposure to Sonic Hh ligand produced by adult thymic epithelial

cells is essential to drive differentiation and proliferation of

thymocytes during transition through the double-negative stages

of development (39). Hh signaling was also found to support gd T

cell maturation (40). In mice, Hh signaling was also shown to be

involved in the formation of the immunological synapse of CD8 T

cells (41). This study is thus complemented with data showing a

dependence on Hh signaling in CD8 T cell function and its

contribution to immune cell hyperfunction in chronic HCV

with AF.
2 Materials and methods

2.1 Study subjects

Study subjects (Table 1) were treatment-naïve, chronically

infected with HCV (>6 months HCV RNA+). All DAA-treated

individuals studied achieved SVR unless otherwise specified. This

research was conducted in accordance with the guidelines

established by the Ottawa Health Science Network Research

Ethics Board. Study participants were consented, and blood

samples were collected by staff at The Ottawa Hospital Clinical

Investigations Unit.
2.2 CD8 T cell isolation and culture

PBMCs of study participants were isolated by Lymphoprep™

density gradient centrifugation (StemCell™ Technologies, Canada),

and cryopreserved in heat-inactivated fetal-bovine serum (HI-FBS,

ThermoFisher Gibco™, USA) + 10% (v/v) dimethyl sulfoxide

(Sigma-Aldrich, USA) at 1×107 viable cells/ml. At the time of use,

cryopreserved PBMCs were thawed and rested for 16h in RPMI

1640 (ThermoFisher Gibco™) + 10% (v/v) HI-FBS + 100 U/ml

penicillin-streptomycin (pen-strep, ThermoFisher Gibco™) at 37°

C, 5% CO2. CD8 T cells were then isolated by magnetic bead

positive selection (StemCell™ Technologies). Isolated CD8 T cells

were cultured at 1×106 cells/ml in complete RPMI (RPMI

1640 + 20% (v/v) HI-FBS + 100 U/ml pen-strep) at 37°C, 5%

CO2 for all experiments.
2.3 RNA-sequencing of CD8 T cells

Isolated CD8 T cells were stimulated in culture with 0.5 µg/ml

phytohemaglutanin-L (PHA-L, Sigma-Aldrich) for 18h. Following

stimulation, total RNA was isolated using TRIzol™ Reagent

(ThermoFisher Invitrogen™) following manufacturer’s protocol.

Total RNA yields were determined by spectrophotometer
Frontiers in Immunology 03
(ThermoFisher NanoDrop™ ND-1000) analysis of the A260/A280

ratio. To enable performance quality assessment during sequencing,

spike-in control RNA (ThermoFisher Ambion™) was added to all

samples at a 1:100 dilution following manufacturer’s protocol.

RNA-sequencing was carried out by the Donnelly Sequencing

Centre (DSC) in Toronto, Canada. Briefly, the purity and integrity

(threshold RNA Integrity Number >8) of isolated total RNA was

determined by microfluidic spectrophotometry on the 2100

Bioanalyzer (Agilent Technologies, USA). RNA-seq libraries were

generated via mRNA isolation from total RNA by polyA-positive

selection using the TruSeq™ RNA/DNA Library Preparation Kit

(Illumina, USA) prior to sequencing using the NextSeq™ 550

system (Illumina).
2.4 RNA-seq data analysis

Bioinformatical analysis of RNA-seq data was carried out in

collaboration with the Ottawa Bioinformatics Core Facility (OHRI

and University of Ottawa, Ottawa, Canada) using the R

programming language. Read mapping was performed using the

Salmon tool (42) and quality control was subsequently performed

using the HISAT2 tool (43). Fold-change analysis was then

performed using the DESeq2 tool (44), applying for each gene a

cutoff of ≥5 detectable reads in ≥2 samples for retention, which

removes non-expressed and non-detectable transcripts, based on

the tximport transcripts library (45). Hierarchical clustering was

calculated using all detectable transcripts. The top 500 most variably

expressed genes across the samples were used to generate the

principal component analysis plot. Statistically significant

differentially expressed genes between study groups were

identified using the aleglm method (46) prior to GSEA (47, 48)

and GO enrichment analysis (49–51). GO classifications with ≥3

enriched genes per term were kept as enriched classifications.
2.5 RT-qPCR of Hh signaling genes
in CD8 T cells

Isolated CD8 T cells were stimulated in culture with anti-CD3/

CD28 antibodies. Briefly, high-binding 96-well plates were coated

with 5 mg/ml anti-CD3 (Clone UCHT1, BD Pharmingen™, USA)

in PBS (ThermoFisher Gibco™) for 1h at 37°C, 5% CO2 prior to

seeding cells for culture (conditions described above). Soluble anti-

CD28 (Clone CD28.2, BD Pharmingen™) was then added to the

cells at 2 mg/ml, and cells were cultured for 16h. Following

stimulation, total RNA was isolated using the RNeasy Plus Micro

kit (QIEGEN, Netherlands) following manufacturer’s protocol.

Total RNA yields were determined by spectrophotometry using

NanoDrop™ One (ThermoFisher) analysis of the A260/A280 ratio,

and RNA purity and integrity was determined by capillary

electrophoresis on the 5200 Fragment Analyzer (Agilent

Technologies) at StemCore Laboratories (OHRI). cDNA was

generated using the iScript™ cDNA Synthesis Kit (Bio-Rad,

USA) following manufacturer’s protocol, and gene expression was

assessed by qPCR using the SYBR Green reporter (Bio-Rad) on the
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CFX Connect (Bio-Rad) using the following PrimePCR™ (Bio-

Rad) primer assays (GENE, Assay ID): PTCH1, qHsaCED0001809;

GLI1 , qHsaCID0011958 ; TBP (housekeep ing gene) ,

qHsaCID0007122. Fold-change of gene expression between study

groups was calculated using the 2-DCt method normalized to TBP.
2.6 Inhibition of Hh signaling in CD8 T cells

Isolated CD8 T cells were stimulated in culture with anti-CD3/

CD28 antibodies as described above for 48h, with or without 50 mM
Smo inhibitor cyclopamine (StemCell™ Technologies). The

expression of IFN-g and perforin in CD8 T cell subsets were

analyzed by spectral flow cytometry on the Aurora (Cytek

Bioscience, USA) using the following conjugates and markers

(Clone, Fluorophore; BioLegend, USA): Viability dye (Zombie

Aqua™), CD8 (RPA-T8, BV785), CCR7 (G043H7, APC-Cy7),

CD45RA (HI100, BV650), IFN-g (4S.B3, PE-Cy7), Perforin (B-

D48, APC). Data was analyzed with FlowJo™ v.10 software (BD)

and statistical analysis was performed with Prism v.10 software

(Dotmatics GraphPad™, USA).
3 Results

3.1 Differential gene expression in bulk
CD8 T cells in HCV infection with
advanced or minimal liver fibrosis is
associated with cellular metabolism, cell
structure, and motility

Analyses of bulk CD8 T cells in HCV-infected subjects based on

liver fibrosis severity are sparse. Our previous work demonstrated CD8

T cell hyperfunction in blood cells fromHCV-infected individuals with

AF prior to DAA therapy when compared to those with MF (34). The

gene expression profiles of 8 HCV-positive, treatment-naïve

individuals (Table 1) were thus examined. Four exhibited MF

(METAVIR F0-1, liver stiffness ≤ 7.0 kPa) and four had AF (F4 ≥
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12.5 kPa). All received DAA therapy and cleared the virus (i.e. achieved

SVR). We isolated bulk CD8 T cells from PBMC samples collected

from these study groups pre-DAA, followed by 16h stimulation with

5mg/ml phytohaemagglutinin (PHA) and RNA-sequencing. In total,

24,058 detectable genes were retained for analysis out of a database of

58,294. A total of 362 genes were significantly differentially expressed

(p-adj<0.05), of which 288 genes were upregulated and 74 were

downregulated. Complete-linkage clustering of these genes separated

CD8 T cell gene expression profiles of AF individuals (patients 133,

136, 171) fromMF (patients 116, 117, 124, 137), with patient 130 as the

exception (Figure 1A).

To determine which cellular functions are modulated by these

gene expression patterns, we performed functional enrichment

analysis of the lists of differentially expressed genes in HCV-

infected individuals with cirrhosis or MF before DAA treatment.

The enrichment analysis searches curated databases of functional

categories and highlighted gene sets that may be statistically over-

represented in the dataset (47, 49, 50). The adjusted p-value cutoff of

0.1 was used to identify enriched groups. Each term or gene set hit

in these analyses contains a set of genes with correlating expression

patterns, annotated by biological pathway or function.

An analysis for Gene Ontology (GO) Molecular Function (MF)

and Biological Processes (BP) classifications was performed. GO

MF terms associated with upregulated genes in the cirrhosis group

compared to the MF group include phospholipase activity (p =

0.003), lipase activity (p = 0.011), and phospholipase C activity (p =

0.053) (Figure 1B). GO BP terms associated with upregulated genes

include second-messenger-mediated signaling (p = 0.026), and

regulation of leukocyte migration (p = 0.040) (Figure 1B). An

enrichment analysis in Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways and modules was also performed.

Notable KEGG hits enriched for upregulated gens in cirrhosis

include NK cell-mediated cytotoxicity (p = 0.043), and

phospholipase D signaling (p = 0.043) (Figure 1B). Additionally,

gene set enrichment analysis (GSEA) was conducted on

significantly differentially expressed genes in cirrhosis. In total, 10

GSEA upregulated gene sets were enriched (FDR q ≤ 0.1) in CD8 T

cells from cirrhotic individuals compared to MF, including Hh
TABLE 1 Summary of demographics and clinical information of study groups.

Parameter

Samples used in RNA-seq* Samples used in PCR and T cell functional analyses*

HCV+ AF
(F3-F4)a

HCV+ MF
(F0-1)a

HCV+ AF
(F3-F4)a

HCV+ MF
(F0-1)a

Uninfected

Sample size 4 4 4 4 4

Sex 3 M, 1 F 1 M, 3 F 3 M, 1 F 3 M, 1 F 2 M, 2 F

Mean age ± SD (Rage) 58.5 ± 12.4
(46−75)

48.5 ± 5.0
(41−51)

53.8 ± 7.1
(46−62)

52.5 ± 15.2
(33−65)

47.5 ± 10.6
(35−59)

Ethnicity Caucasian (3),
S-E Asian (1)

Caucasian (4) First Nations (2),
Caucasian (1),
Unknown (1)

Caucasian (3),
Unknown (1)

Caucasian (2),
South-American (1),

Unknown (1)

Mean fibrosis scoreb

(kPa) ± SD
23.9 ± 13.6 3.9 ± 1.7 16.2 ± 3.4 5.3 ± 1.1 Not applicable
aAF = Advanced fibrosis, METAVIR F3-F4 ≥ 12.5 kPa; MF = Minimal fibrosis, METAVIR F0-1 ≤ 7.0 kPa.
bLiver stiffness in kilopascal (kPa) measured by Fibroscan transient elastography.
*Samples reported in RNA-seq are different individuals than samples reported in qPCR and T cell function.
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signaling (specifically genes for Patched-1 and Gli1, PTCH1 and

GLI1, with core enrichment ranking of 1 and 4 respectively), IFN-a
and -g responses, and apoptosis (Figures 1C, D).

In genes downregulated in the cirrhosis group, no GO MF terms

nor KEGG pathways or modules were enriched, while GO BP terms

enriched include nuclear division (p = 0.013), actin nucleation (p =

0.017), as well as RNA transport (p = 0.032) and localization (p = 0.056)

(Figure 2A). GSEA hits in downregulated genes include Myc and E2F

targets (54 and 130 genes respectively), oxidative phosphorylation (122
Frontiers in Immunology 05
genes), G2/M checkpoint (112 genes), mTORC1 signaling (93 genes),

and DNA repair (68 genes) (Figures 2B, C).

Overall, these analyses indicate that the gene expression

differences in CD8 T cells from chronic HCV patients with

cirrhosis spread across many vital signaling pathways and cellular

processes. These differences hinge mostly upon functions associated

with cellular metabolism and cell growth, T cell activation and

inflammatory responses, RNA transport, as well as cytoskeletal

control and cellular migration.
B

C

A

FIGURE 2

Functional enrichment of downregulated pathways in untreated HCV-infected individuals with advanced fibrosis (AF) compared to minimal fibrosis
(MF). (A) Gene Ontology (GO) Biological Processes analysis of downregulated genes in AF identifies multiple classifications related to cytoskeletal
regulation and nucleic acid transport regulation. (B) Gene Set Enrichment Analysis (GSEA) enriched 18 gene sets downregulated in AF, many of
which relate to nucleic acid transport and metabolic regulation. (C) GSEA enrichment plots of the top four downregulated gene sets (Myc targets,
E2F targets, oxidative phosphorylation, and G2/M checkpoint) in AF compared to MF.
B C

D

A

FIGURE 1

Gene expression changes and functional enrichment of upregulated pathways in untreated HCV-infected individuals with advanced fibrosis (AF)
compared to minimal fibrosis (MF). (A) Complete-linkage heatmap clustering of all 362 genes that are differentially expressed between AF and MF
patients show clear distinct gene expression profile differences. (B) Gene Ontology (GO) analyses of upregulated genes in CD8 T cells from AF
patients compared to MF identifies multiple classifications related to inflammatory responses and metabolic regulation. (C) Gene Set Enrichment
Analysis (GSEA) enriched 10 gene sets upregulated in AF, notably Hh signaling and inflammatory responses. (D) GSEA enrichment plots of the top
four upregulated gene sets (Hh signaling, genes downregulated in UV response, IFN-a response, and epithelial-mesenchymal transition) in AF
compared to MF.
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3.2 Inhibition of canonical Hedgehog
signaling ablates CD8 T cell hyperfunction
in AF

Given the importance of Hh signaling in mediating T cell

development and cytotoxic functions (39, 41, 52), and its

enrichment as leading GSEA hit (Figure 1C), we confirmed

differential RNA expression in CD8 T cells in disparate liver

fibrosis severities in HCV infection by qPCR analysis of PTCH1,

SMO, and GLI1 mRNA. We observed increased PTCH1 mRNA in

cells from HCV+ individuals associating with fibrosis severity and

no observable increases in SMO expression, as expected based on

sequencing results, although we were unable to observe increases in

GLI1 mRNA expression (Supplementary Figure 1).

We next examined whether Hh signaling contributes to IFN-g
and perforin expression in CD8 T cells. Smo is a central mediator in

Hh signaling, and Smo-dependency is a major target of interest (53–

55). Peripheral CD8 T cells isolated from HCV patients and healthy

individuals (Table 1) were stimulated for 48h with anti-CD3 and

anti-CD28 antibodies, with or without cyclopamine, an FDA-

approved chemical inhibitor of Smo, prior to IFN-g and perforin

expression analysis by flow cytometry. CD8 T cell subsets were

defined as follows: naïve (TN, CCR7
+CD45RA+), effector (TE,

CCR7−CD45RA+), effector memory (TEM, CCR7
−CD45RA−), and

central memory (TCM, CCR7+CD45RA−), as outlined in
Frontiers in Immunology 06
Supplementary Figure 2. Mirroring previous reports, CD8 T cells

from cirrhotic individuals exhibit hyperfunction through increased

IFN-g and perforin expression across various cell subsets, notably in

naïve cells and effector cells (Figures 3, 4, AF vs MF vs H without

cyclopamine). Cyclopamine treatment (50 mM) of CD8 T cells

alongside anti-CD3/CD28 stimulation ablated IFN-g expression in

bulk CD8 T cells regardless of liver disease severity (Figures 3A, B),

in a dose-dependent manner (Supplementary Figure 3). This

dependence on Smo-mediated Hh signaling was also observed

in naïve and effector cells in AF where hyperfunction was observed

(Figures 3C, D). Perforin expression by CD8 T cells treated with

cyclopamine was also ablated in bulk cells (Figures 4A, B),

again identified in naïve and effector cells (Figures 4C, D)

where hyperfunction was observed. Taken together, this

suggests that canonical Hh signaling plays an important role in

IFN-g and perforin expression during the CD8 T cell response and

may play a role in bulk CD8 T cell hyperfunction in AF in

HCV+ individuals.
3.3 CD8 T cell gene expression differences
persist after DAA-mediated viral clearance

The persistence of CD8 T cell dysfunction post-DAA therapy is

well reported (34, 56–59). However, association with fibrosis
B

C D

A

FIGURE 3

Inhibition of Smo-dependent Hedgehog (Hh) signaling ablates IFN-g expression in CD8 T cells. (A) Representative dot plots of IFN-g expression in
bulk CD8 T cells from untreated HCV-infected individuals with advanced fibrosis (AF), minimal fibrosis (MF), or healthy controls (H), stimulated with
anti-CD3/CD28 antibodies with or without 50 µM of cyclopamine (Cyclo). Smo inhibition with cyclopamine during stimulation ablated IFN-g
expression in (B) bulk, (C) naïve (TN), and (D) effector (TE) CD8 T cell subsets, where hyperfunction was observed. Multiple comparisons are analyzed
by 2-way ANOVA with Šıd́ák’s post-test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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severity remains understudied. Our previous study showing

systemic CD8 T cell hyperfunction in chronic HCV cirrhosis also

showed persistence of hyperfunction 24 weeks post-SVR (34).

Therefore, gene expression profiles of CD8 T cells isolated from

post-DAA chronic HCV patients with cirrhosis was assessed and

compared to minimal fibrosis, in parallel to pre-DAA profiling

described above.

Hierarchical clustering based on normalized gene expression

counts across all transcripts identified a clear clustering between

samples from individuals with AF compared to MF (Figure 5A).

Principal component analysis (PCA) applied to the top 500 most

variable genes in this dataset also revealed clear differences in gene

expression in patients with AF before treatment compared to that of

individuals with MF (Figure 5B). PCA broadly separated the MF

patients (patients #116, 117 and 137) from AF patients (patients

#133, 136 and 171), with one exception (patient #130), consistent

with heatmap clustering of only pre-DAA samples (Figure 1A).

Where applicable, the CD8 T cell gene expression profiles of

treatment-paired patient samples (pre- vs. post-DAA) remained

constant in the three individuals with MF (patients #116, 117 and

137) as well as the single DAA-treated individual with high fibrosis

(patient #133). Fold-change differences based on fibrosis severity

before treatment moderately correlated with severity-based

differences after treatment (Figure 5C), indicating an altered gene

expression profile that persists after DAA treatment.
Frontiers in Immunology 07
Taken together, this suggests that CD8 T cell gene expression is

greatly affected by the severity of liver fibrosis in chronic HCV

infection, and that this difference is particularly noticeable before

DAA intervention, but appears to remain after DAA-mediated viral

clearance. Due to the relatively small available post-DAA sample

size at the time of gene expression data acquisition, we specifically

report below on untreated HCV-infected individuals evaluated

based on liver fibrosis severity (AF vs MF).
4 Discussion

We report that bulk circulating CD8 T cells from HCV-infected

individuals exhibit differential gene expression patterns based on liver

fibrosis severity after in vitro stimulation. Altered expression of genes

associated with CD8 T cell function, survival, cellular metabolism,

and cytoskeletal dynamics was identified through RNA-sequencing

and subsequent bioinformatical discovery (Figures 1, 2). While the

RNA-sequencing data was generated by PHA stimulation of isolated

CD8 T cells, which is an established method to assess T cell function

(60), we ensured that the identified pathways were investigated using

the more physiologically relevant stimulation with anti-CD3/CD28.

In chronic HCV infection, HCV-specific CD8 T cell responses

are largely characterized by an immune exhaustion phenotype (15,

56, 61, 62). However, it is increasingly recognized that
B

C D

A

FIGURE 4

Inhibition of Smo-dependent Hedgehog (Hh) signaling ablates perforin expression in CD8 T cells. (A) Representative dot plots of perforin expression
in bulk CD8 T cells from untreated HCV-infected individuals with advanced fibrosis (AF), minimal fibrosis (MF), or healthy controls (H), stimulated
with anti-CD3/CD28 antibodies with or without cyclopamine. Smo inhibition with cyclopamine during stimulation ablated perforin expression in
(B) bulk, (C) naïve (TN), and (D) effector (TE) CD8 T cell subsets, where hyperfunction was observed. Multiple comparisons are analyzed by 2-way
ANOVA with Šıd́ák’s post-test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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inflammatory cytokines facilitate T cell activation in the context of

viral infection, enabling cells to circumvent antigen-dependency

through an innate-like response (63). Upregulated IFN-g response
genes in cells from patients with cirrhosis correlates with our

previous finding of elevated proportions of IFN-g+ cells in HCV

infection (34), although in a different context with this report

showing an increase in genes downstream of IFN-g signaling

rather than IFN-g genes themselves. Such parallels may be

expected, as IFN-g autocrine and paracrine signaling in mouse

CD8 T cells has been shown to enhance motility and cytotoxicity,

promoting T-bet and granzyme B expression (64, 65). Our data also

identified an increased IFN-a responsiveness in CD8 T cells of

HCV+ patients with cirrhosis compared to MF. It has been reported

that IFN-a stimulation of PBMCs resulted in a phenotypic shift in

CMV-/EBV-specific CD8 T cells from healthy individuals to that

resembling cells in chronic HCV infection, with upregulated PD-1,

Tim-3 and 2B4 expression (31). IFN-a plays a role in supporting T

cell receptor engagement and co-stimulation, similar to IL-12, by

enhancing CD8 T cell differentiation and function (66). IFN-a has

also been shown to directly increase IFN-g and granzyme

production by naïve or antigen-experienced CD8 T cells (67, 68).

Such inflammatory environment of chronic infection also leads to

increased CD8 T cell death (69, 70), which was corroborated by our

GSEA identification of apoptosis genes and ongoing studies

(Crawley unpublished). Together, these RNA-seq data suggests
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the potential involvement of non-antigen-specific activation and

function of CD8 T cells in HCV infection with AF.

Across several GSEA and GO enrichment hits, changes in genes

involved in cytoskeletal regulation further suggest dysregulation of

cellular structure in CD8 T cells from HCV+ individuals with AF.

These include identified upregulation in leukocyte migration gene

sets, as well as downregulation in four gene sets associated with the

regulation and activation of actin nucleation (p < 0.05, Figure 2), with

a fifth as a trend toward the downregulation of genes associated with

the positive regulation of actin polymerization. The ability of CD8 T

cells to enact receptor-mediated intracellular signaling and release

cytotoxic molecules hinges on tight actin filament regulation (71, 72).

Actin and microtubule reorganization, as well as inositol phosphate

metabolism which were enriched in our RNA-seq data, play a central

role in mediating the targeted synaptic release of cytolytic granules

centrosomes (72). Given these gene expression changes and the

strong upregulation of Hh signaling in GSEA, which acts on the

actin organization of CD8 T cells (41), intracellular structural changes

may be an important driver of CD8 T cell hyperfunction in advanced

liver disease and impact their roles in responses to infection or cancer

surveillance. Inositol triphosphate signaling, as well as phospholipase

signaling, also play an important role in T cell receptor signaling in

development and function (73).

In addition, non-canonical Hh signaling may be vital in T cell

function. Smo is known to induce phosphorylation of ATP-
B

CA

FIGURE 5

CD8 T cell gene expression patterns in chronic HCV persists after direct-acting antiviral (DAA) treatment. (A) Hierarchical clustering of RNA-seq data
from isolated and stimulated CD8 T cells based on all transcripts shows clear separation between gene expression patterns of cells from AF and MF
patients, independent of treatment stage (Wk 0: Week 0, pre-DAA; Wk 24: Week 24, 12 weeks post-SVR). (B) PCA applied to the top 500 most
variable genes separates AF and MF patients into distinct clusters independent of treatment stage. (C) Plotting gene expression fold-change
differences at Wk 0 compared to Wk 24 shows an association across all differentially expressed (p<0.05) genes (top), as well as well as differentially
expressed protein-coding genes (bottom).
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promoting AMPK (74, 75), which is involved in T cell function (76),

and Gli activity is regulated by cAMP-responsive PKA, among

others (38, 77). Hh signaling is also involved in mediating TH2 and

Treg polarization (78–80), controlling TH17 polarization via Smo-

dependent AMPK signaling (75), mediating CD8 T cell cytotoxic

actions (41), and may enhance T cell co-stimulation (39, 81).

Reduced Hh signaling in exhausted CD4 T cells in Tb is thought

to indicate weaker inflammatory response and immune activity

(82). Increased plasma Hh ligands from hepatocytes, is observed in

chronic HBV and HCV (83, 84). Given these roles of Hh signaling

in metabolic regulation and T cell responses, it is likely that its

dysregulation in chronic HCV is a leading factor in CD8 T

cell hyperfunction.

The degree of cellular heterogeneity in bulk circulating CD8 T

cells, based on surface phenotypes alone, should be considered in

the interpretation of such bulk RNA sequencing. In patients with

multiple sclerosis, heterogeneity of gene expression has been

documented in naïve CD4 T cells that suggest bias in gene

expression potential can exist prior to antigen encounter (85).

Even cytotoxic CD8 T cells exhibit inherent heterogeneity, with

IFN-g-expressing cells being most responsible for cytolytic activities

with the production of TNF-a, granzymes, perforin and

chemokines associated with antimicrobial activity (e.g. CCL5),

whereas IL-2-producing cells modulate immune response with IL-

4, -3 and -11 cytokine production (86). The increased expression of

CCL5 suggesting potential co-expression with lytic molecules such

as perforin is in agreement with our previous finding that CD8 T

cells from cirrhotic patients express elevated levels of perforin (34).

Continuous systemic stimuli in chronic infection, such as

persistently high levels of serum Hh ligands, could also influence

cellular heterogeneity as well (83, 87, 88). Additional studies are

required to identify the CD8 T cell subsets responsible for

generalized immune cell hyperfunction in cirrhosis.

Although our dataset is small, the gene expression profiles

between AF and MF were sufficiently different to suggest that gene

expression patterns may not be readily reverted after curative

antiviral treatment, in-line with our previous observations of long-

lasting hyperfunction (34). This persistent dysfunction suggests that

the observed CD8 T cell hyperfunction in HCV cirrhosis is due to

cellular defects that are not readily reversed by the resolution of HCV

viremia. Consequently, the persistence of dysfunctional CD8 T cells

likely contributes to remaining adverse clinical outcomes in HCV-

infected individuals with cirrhosis, despite long after achieving SVR.

Generalized CD8 T cell dysfunction in cirrhosis may reduce

immunocompetence and lead to increased risk of community-

acquired infections such as pneumonia (89, 90) and poor responses

to routine vaccinations in HCV-infected individuals (91–95).

Landmark studies in murine chronic LCMV infection show how

CD8 T cell dysfunction associates with several weakened aspects of

the immune response (96, 97). HCV vaccines currently under

development seek to emulate T cell responses required for

protection against HCV, including reinfection (98). However, it is

thought that lasting CD8 T cell dysfunction after HCV cure will result

in a failure to generate effective HCV vaccine responses in vulnerable

populations (99) and potentially contribute to the development of

HCC and poor responses to immunotherapy.
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To date, this is the first study to our knowledge to have probed

generalized CD8 T cell gene expression patterns in chronic HCV

infection in the context of liver disease severity. Evaluating the

immune function in the context of chronic HCV-derived liver

disease severity can be difficult due to confounding inter-individual

immunological factors, such as minor infections/inflammation, and

in the case of this study, small sample sizes. This has been reflected in

many data sets underrepresenting participants with cirrhosis.

Furthermore, the ability to conduct longitudinal studies to evaluate

responses before and long after DAA therapy is difficult given the

commonly high loss-to-follow-up rates of chronic HCV studies (100,

101). It was also noted that the gene expression patterns of cells from

female patients clustered closely in PCA, except for patient 136.

However, the reported sample size was insufficient to stratify CD8 T

cell gene expression comparisons by sex, hence further investigation

taking sex-effects into account is warranted.

Restoration of general CD8 T cell function after therapeutic

resolution of chronic HCV could have beneficial effects on the

function of antigen-specific cells and help prevent complications

associated with chronic HCV and cirrhosis, including HCC and other

immune dysfunction. Identification of the underlying mechanisms of

widespread CD8 T cell hyperactivation in chronic HCV infection

with AF may provide insight on targets for immune restoration

following antiviral therapy. Additionally, targets of immune

restoration identified in the context of chronic HCV may inform

potential restoration approaches across other liver disease aetiologies

including HBV or HIV co-infections and MAFLD.
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SUPPLEMENTARY FIGURE 1

CD8 T cells in untreated HCV-infected individuals express increased Hh

signaling genes. Normalized relative mRNA expression of (A) PTCH1,
(B) SMO, and (C) GLI1 in isolated CD8 T cells from AF or MF patients,

compared to cells from healthy controls (H), assessed by qPCR after 16h of

stimulation using anti-CD3/CD28 antibodies. Multiple comparisons are
analyzed by Kruskal-Wallis H-test with Dunn’s post-test *p ≤ 0.05.

SUPPLEMENTARY FIGURE 2

Gating strategy for isolated CD8 T cell function. Lymphocytes were gated for
analysis, followed by two rounds of singlets gating to exclude cells clumps.

Viable cells were gated using the Zombie Aqua viability dye prior to CD8+ cell
gating. CD8 T cell function was assessed by the proportion of IFN-g+ and

perforin+ cells after 48h stimulation with anti-CD3/CD28 antibodies. T cell

subsets were defined using markers CCR7 and CD45RA.

SUPPLEMENTARY FIGURE 3

Cell viability and dose response of cyclopamine-treated CD8 T cells. Isolated

CD8 T cells from healthy donor bloodwere stimulated for 48h with anti-CD3/
CD28 antibodies. (A) Cells remain viable with increasing doses of

cyclopamine during stimulation. (B) IFN-g and (C) perforin expression is

ablated by cyclopamine in a dose-dependent manner. Multiple
comparisons are analyzed by 1-way ANOVA with Dunnett’s post-test, *p ≤

0.05, **p ≤ 0.01.
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