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Gastric cancer fibroblasts affect
the effect of immunotherapy and
patient prognosis by inducing
micro-vascular production
Yan Xia1†, Xiaolu Wang1†, Jie Lin1, Yuan Li1, Lidan Dong1,
Xue Liang1, Huai-Yu Wang1, Xia Ding2* and Qi Wang1*

1National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine,
Beijing University of Chinese Medicine, Beijing, China, 2School of Traditional Chinese Medicine,
Beijing University of Chinese Medicine, Beijing, China
Introduction: Immunotherapy is critical for treating many cancers, and its

therapeutic success is linked to the tumor microenvironment. Although anti-

angiogenic drugs are used to treat gastric cancer (GC), their efficacy remains

limited. Cancer-associated fibroblast (CAF)-targeted therapies complement

immunotherapy; however, the lack of CAF-specific markers poses a challenge.

Therefore, we developed a CAF angiogenesis prognostic score (CAPS) system to

evaluate prognosis and immunotherapy response in patients with GC, aiming to

improve patient stratification and treatment efficacy.

Methods: We assessed patient-derived GC CAFs for promoting angiogenesis

using EdU, cell cycle, apoptosis, wound healing, and angiogenesis analysis.

Results: We then identified CAF-angiogenesis-associated differentially-

expressed genes, leading to the development of CAPS, which included THBS1,

SPARC, EDNRA, and VCAN. We used RT-qPCR to conduct gene-level validation,

and eight GEO datasets and the HPA database to validate the CAPS system at the

gene and protein levels. Six independent GEO datasets were utilized for

validation. Overall survival time was shorter in the high- than the low-CAPS

group. Immune microenvironment and immunotherapy response analysis

showed that the high-CAPS group had a greater tendency toward immune

escape and reduced immunotherapy efficacy than the low-CAPS group.

Discussion: CAPS is closely associated with GC prognosis and immunotherapy

outcomes. It is therefore an independent predictor of GC prognosis and

immunotherapy efficacy.
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1 Introduction

Gastric cancer (GC) is a common digestive system malignancy

and the leading cause of cancer-related deaths worldwide, with few

effective treatments (1). Immunotherapy involves a specific immune

response to tumor cells, such as stimulation, inhibition, and killing,

thus reducing tumor recurrence and metastasis. Advances in

targeted therapy and immunotherapy have facilitated personalized

GC treatment, significantly improving prognoses (2) .

Immunotherapy significantly improves the overall survival (OS)

of patients with advanced GC (3); however, immunotherapy

application for GC faces challenges, such as immune evasion,

immune microenvironment complexity, and immunotherapy

resistance (4). Several immunotherapeutic approaches have

recently been developed, including vaccinations, monoclonal

antibodies, and immune checkpoint inhibitors (ICIs) (5, 6). As

immune checkpoints are associated with suppressive pathways, they

are critical for tumor immune escape (7). ICI therapy has therefore

emerged as a new cancer treatment (8–10). However, for most

cancers, only one-third of patients respond to ICIs (1). Therefore,

research on reliable biomarkers to accurately predict GC prognosis

and immunotherapy efficacy is needed.

Angiogenesis is key for tumor progression, growth, and

metastasis (11). Pathological angiogenesis can expand cancerous

tissues, as well as promoting GC cell invasion and metastasis (12).

Identifying targeted proangiogenic factors has become a research

hotspot for treating tumors and preventing tumor progression (13).

Vascular endothelial growth factor (VEGF) is an important target

molecule for antitumor angiogenesis that has widely shown good

therapeutic efficacy (14). Anti-VEGF therapy for GC has produced

good clinical results, however, some patients develop refractory

disease and resistance (15). Therefore, exploring other effective

targets for inhibiting angiogenesis is necessary (15).

Angiogenesis in the tumor microenvironment (TME) is caused

by interactions between multiple cells and factors. The TME

contains not only cancer cells, but also stromal cells, new blood

vessel immune cells, and the extracellular matrix (ECM), which

affects tumor initiation, progression, metastasis, recurrence, and

drug resistance (16).

As the most prominent cell type in the tumor stroma, cancer-

associated fibroblasts (CAFs) are an important source of growth

factors and cytokines that promote tumor progression and

migration (17–19). Cytokines and chemokines produced by CAFs

can remodel the ECM, positively regulating the immune response

and angiogenesis in tumors. In turn, these contribute to immune

suppression in the TME and tumor escape, leading to tumor

progression and poor prognosis (20, 21).

Studies show that CAFs are essential for breast cancer

progression and metastasis as they promote angiogenesis and

lymphangiogenesis. By secreting SDF-1, CAFs attract endothelial

progenitor cells to tumor tissues and induce tumor cells to generate

VEGF to indirectly promote angiogenesis and provide nutrients for

tumor growth (22, 23). CAFs can promote tumor cell metastasis to

lymph nodes and promote new lymphatic vessel generation from

existing lymphatic vessels, contributing to breast cancer progression.
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In contrast, lymphatic endothelial cells express VEGF receptor 3

(VEGFR-3), a major lymphangiogenesis regulator (24–26). However,

few studies have reported whether CAFs are involved in inducing

angiogenesis in GC. Therefore, researching the mechanism by which

CAFs promote GC development and progression by regulating

angiogenesis is important.

This study aimed to test whether human GC-CAFs can promote

human umbilical vein endothelial cell (HUVEC) angiogenesis,

compare the differences in clinical characteristics and prognosis

between patients with high- and low-CAF levels, and construct a

predictive model using CAF-angiogenesis-related genes.
2 Methods

Figure 1 shows the flow of this study.
2.1 Endothelial cell culture

HUVECs were purchased from San Diego (HTX1922, USA)

and cultured in ECM medium containing 10% fetal bovine serum

(FBS) for 24 h at 37°C in 5% CO2. They were then starved in serum-

free medium for 24 h. Primary fibroblasts were extracted from GC

tissue and cultured in FM2 medium containing 10% FBS.

Supernatant from these fibroblasts was added to the HUVEC

culture and co-cultured for 24 h to create the positive group.

GES-1 cell supernatant was used in the negative control group.
2.2 Tube formation experiment

Matrigel, which was kept on ice, was shaken and mixed by

vortex to avoid delamination. Next, 100 mL Matrigel per well was

added to a precooled 24-well plate with a precooled pipette tip

Matrigel to avoid bubbles Before incubation at 37°C for 45 min until

the Matrigel solidified. Pretreated HUVECs were digested with

trypsin, centrifuged, resuspended, and counted, and the cell

suspension was adjusted to 4 × 105 pieces/ml. In total, 100 mL cell

suspension was added to three wells per group. After incubation at

37°C for 4 h, tubule formation was observed and photographed via

optical microscope.
2.3 EdU assay

Cells in the logarithmic growth phase were harvested, seeded in

96-well plates at 2 × 104 cells per well, and cultured until the typical

growth stage. HUVECs were co-cultured for 24 h with media

containing supernatants derived from GC fibroblasts or GES-1

cells. Using the EdU Cell Proliferation Detection Kit (C0071S,

Beyotime, China), the cells were labeled with EdU, fixed, stained

with Apollo, and counterstained with DNA dye. The cells were

observed and photographed via fluorescence microscopy.
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2.4 Cell cycle analysis

HUVECs were seeded into 6-well plates at 5 × 104/mL and

incubated at 37°C with 5% CO2 for 24 h. After incubating with

supernatant from CAFs and GES-1 for 48 h, cells were harvested,

fixed with 70% cold ethanol overnight at 4°C, then incubated with PI/

RNaseA solution for 30 min. Flow cytometry was used for analysis.
2.5 Apoptosis analysis

HUVECs were seeded into 6-well plates at 5 × 104/mL and

incubated at 37°C and 5% CO2 for 24 h. Cells were treated with CAF

or GES-1 supernatant for 48 h, before harvesting the cells and

collecting their supernatants. AnnexinV was added and mixed well,

followed by incubation in the dark at room temperature. Finally, 7-

AAD and PBS were added, and the samples were analyzed

immediately using flow cytometry.
2.6 mRNA expression level detection

HUVECs were seeded into 6-well plates at 5 × 104/mL and

incubated at 37°C with 5% CO2 for 24 h. They were then incubated

with either CAF or GES-1 supernatant for 48 h before harvesting the

cells. Total RNA was extracted using Trizol reagent (SM129–02,

Sevenbio, China). cDNA was synthesized using a reverse

transcription kit (1119ES60; Yeasen, China). RT-qPCR was

performed using a SYBR Green Master Mix kit (11184ES03, Yeasen,
Frontiers in Immunology 03
China) and an RT-qPCR machine (SLAN-96p, Shanghai Hongshi,

China). Glyceraldehyde-3-phosphate dehydrogenase served as the

internal control. The 2-DDCt method was used for quantification.

Primer sequences are provided in Supplementary Table 1.
2.7 Data collection and preprocessing

RNA-seq (FPKM format), gene mutation, and the clinical

information of the TCGA-STAD cohort were downloaded from

TCGA. Copy number variation (CNV) files were derived from

UCSC Xena. We obtained the CAF and TIDE scores of patients

with GC using the TIDE algorithm. Angiogenesis-related genes

were derived from gene cards, and a relevance score > 2 was the

screening criterion. The expression data and clinical files of

validation cohorts (excluding patients with a follow-up time of 0)

were derived from the GEO database. The clinical information of

seven cohorts is shown in Supplementary Table 2. We also searched

the GSE29272, GSE30727, GSE13911, GSE118916, GSE27342,

GSE65801, GSE33335, GSE54129, and GEPIA databases

using non-tumor tissues as control groups to verify model

gene expression.
2.8 Difference analysis between high- and
low-CAF groups

We used logFC > 1 and FDR< 0.05 as filters to find differentially

expressed genes (DEGs) between the two groups and showed them
FIGURE 1

Flowchart of the data analysis process.
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on a volcano plot. A Venn diagram was drawn to show 33

overlapping DEGs and angiogenesis-related genes.
2.9 Enrichment analysis

We performed GSVA and plotted heatmaps. LogFC > 0.1 and

FDR< 0.05 were considered statistically significant. We performed

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis on angiogenesis-related

DEGs (ARDEGs) in the high- and low-CAF groups. The filtering

conditions were P< 0.05 and FDR< 0.05, and a histogram was

drawn. Geneset files in GSVA and GSEA were obtained from the

Molecular Signatures Database.
2.10 Protein-protein interaction
(PPI) analysis

We used the STRING tool, set the minimum required

interaction score to 0.4, and hid unconnected nodes to show

PPI networks.
2.11 CAF-angiogenesis prognostic scoring
model development

First, we excluded patients with 0 follow-up time in the TCGA

cohort, then performed univariate Cox regression analysis and

identified 26 prognosis-associated ARDEGs. For model stability,

we removed genes that expressed the opposite trend to prognosis

and finally identified 13 prognosis-related genes. Somatic mutations

were shown using the R package “maftools” and further analyzed

their CNV. Next, lasso regression analysis was used to determine

model genes and corresponding coefficients and to establish a

prognostic scoring model using this formula: Equation (1).

CAPS =o
n

i=1
expri ∗ coefi (1)

We divided patients with GC into high- and low-CAPS groups

according to the median CAPS. Kaplan-Meier survival analysis was

performed. A risk curve, survival plot, and risk heatmap were drawn

using the R packages “ggextra” and “pheatmap”. Time-dependent

receiver operating characteristic (ROC) curves were plotted. The R

package “survival” was used to verify whether CAPS could be an

independent prognostic factor through univariate and multivariate

Cox regression analysis.
2.12 Nomogram model establishment

Nomograms are widely used for cancer prognosis (27). We

constructed a nomogram model to predict the OS of patients with

GC at four and five years. We supplemented time-dependent ROC

and calibration curves to judge the predictive ability and stability of
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the nomogram. This procedure was verified using the

GSE15459 cohort.
2.13 Protein expression data validation

To further determine model gene expression at the protein level

in GC tissues, we downloaded immunohistochemical images of

normal and tumor tissues using the HPA database.
2.14 Single-cell analysis

Single-cell data from patients with GC in the GSE134520 cohort

were analyzed using the Tumor Immune Single Cell Hub (TISCH)

database, which was divided into nine main cell types.
2.15 Immune microenvironment analysis

We used the ESTIMATE algorithm to evaluate the immune,

stromal, ESTIMATE, and tumor purity scores of patients with GC.

We then calculated the degree of infiltration of 22 immune cells in

patients with GC using CIBERPORT-ABS and the scores of 16

immune cells and 13 immune pathways by ssGSEA. The

CIBERPORT-ABS algorithm results for TCGA patients were

derived from the TIMER database, and we analyzed the correlation

between the model genes and CAFs using four methods (EPIC,

MCPCOUNT, XCELL, and TIDE) in the TIMER online database.
2.16 Somatic mutation and tumor mutation
burden (TMB) analysis

We drew boxplots, correlation scatter plots, and Kaplan-Meier

survival curves of the high- and low-TMB groups. GC prognosis

was analyzed by combining TMB with CAPS.
2.17 Immunotherapy and drug
sensitivity analysis

We drew a boxplot of the differences in TIDE scores between

high- and low-CAPS groups and a scatter plot of correlations between

CAPS and TIDE scores. Violin plots were drawn to show the

predicted therapeutic efficacy of IPS in high- and low-CAPS

groups. IPS scores of patients with GC were downloaded from the

TCIA. The immunotherapy cohort (IMvigor210) was derived from

previous literature (28). The melanoma cohort (GSE78220) before

anti-PD-1 treatment was derived from the GEO database. CR/PR and

SD/PD were used as the response and non-response groups,

respectively. Additionally, we calculated the half maximal inhibitory

concentration of anti-tumor drugs using the R package “pRRophetic”

and plotted a boxplot. We also downloaded a three-dimensional

structure map of the drug through the PubChem database.
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3 Results

3.1 GC-derived CAFs
promote angiogenesis

Compared to GES-1 supernatant-induced HUVECs, CAF

supernatant-induced HUVECs had a higher proliferation rate (P<

0.001) (Figures 2A, B), shorter cell cycle (P< 0.01) (Figures 2C, D),

and reduced cell apoptosis (p< 0.01) (Figures 2E, F); they also had a

relatively strong tube-forming ability (P< 0.01) (Figures 2G, H),

high migration ability (P< 0.001) (Figures 2I, J), and upregulated

expression levels of the angiogenesis-related genes ANGPT2,

VEGFA, PDGFB, MMP9, and FGF2 (Figure 2K). Therefore, GC-

derived CAFs promote angiogenesis.
3.2 Different CAF levels affect patient
characteristics and identifications

To observe whether the degree of CAF infiltration affects the OS of

patients with GC, we obtained CAF scores of patients with GC using

the TIDE algorithm. OS differed significantly among the low- and

high-CAF groups (Figure 3A). As CAF score increased, patient survival

time gradually shortened (Figure 3B). Based on previous research (29),

11 CAF markers were selected; in the high-CAF group, these were

significantly upregulated, supporting the grouping (Figure 3C).

We evaluated differences in GC progression between the high-

and low-CAF groups in terms of the TME. The CAF group with

high stromal and ESTIMATE scores was relatively higher, and the

tumor purity score was lower. This is consistent with CAF being an

important component of stromal cells (Figure 3D).

The high-CAF group had more immunosuppressive cell

infiltration than the low-CAF group, including monocytes, M2

macrophages, and activated mast cells, and fewer infiltrated

immune activated cells, such as plasma cells, activated CD4

memory cells, and Tfh cells (Supplementary Figure 3E). Another

ssGSEA algorithm produced consistent results (Supplementary

Figures 1A, B).

GSVA was used to identify differences in tumor-related

characteristics between the two patient groups. Angiogenesis

was upregulated in the high-CAF group (Figure 4A). Both

groups likely regulate the immune microenvironment through

angiogenesis, leading to different prognoses. We obtained 358

DEGs in the high- and low-CAF groups relating to CAF-

promoting angiogenesis (Figure 4B). Intersection processing

between the DEGs and angiogenesis-related genes produced 33

ARDEGs (Figure 4C). Plotting the PPIs of the 33 nodes and 142

edges showed the relationship between their protein levels

(Figure 4D). To better understand ARDEG mechanics,

we performed GO and KEGG enrichment analyses. GO

analysis showed that DEGs were mainly enriched in wound

healing, angiogenesis and vasculature development regulation,

collagen-containing ECM, ECM structural constituents, and

glycosaminoglycan and heparin binding (Figure 4E). KEGG

analysis showed that DEGs were mainly enriched in

proteoglycans in cancer, focal adhesions, and ECM-receptor
Frontiers in Immunology 05
interactions (Figure 4F). This confirms that ARDEGs are closely

related to angiogenesis and vascular development.
3.3 CAPS as GC a prognostic indicator

Univariate Cox regression analysis of the TCGA cohort revealed 26

ARDEGs, all of which were risk factors for poor GC prognosis

(Figure 5A). To ensure model accuracy, genes with no differences in

expression between GC and normal tissues or with opposite trends in

prognostic risk factors were excluded. Thirteen stable candidate genes

were obtained. Analysis of the somatic mutation status of GC tissues

showed that 13 candidate genes were mutated in 30.72% of patients

with GC, and most were missense mutations (Figure 5B). We also

analyzed CNVs in the ARDEGs and identified the location of each

gene (Figure 5C). Next, we established CAPS models using lasso

regression analysis and performed fold-cross validation (Figures 5D,

E). The CAPS building method was as follows: CAPS = 0.011 ×

thrombospondin-1 (THBS1) expression level + 0.086 × secreted

protein acidic and rich in cysteine (SPARC) expression level + 0.011

× endothelin receptor type A (EDNRA) expression level + 0.078 ×

versican (VCAN) expression level.

The TCGA cohort was divided into the high- and low-CAPS

groups (n = 175 each) according to median CAPS. OS was lower in

the high- than the low-CAPS group (Figure 6A). Moreover, as CAPS

increased, patient survival time gradually decreased (Figure 6B).

Model gene expression was higher in the high-CAPS group

(Figure 6C). The AUC of the TCGA time-dependent ROC curve

was 0.656 and 0.772 at 4 and 5 years, respectively (Figure 6D).

Univariate Cox analysis showed that CAPS was a risk factor for poor

prognosis of GC (Figure 6E). In multivariate Cox analysis, CAPS

remained an independent prognostic factor for patients with GC after

excluding other confounding factors (Figure 6F). Additionally, the

four model genes were highly correlated with CAF in the four

algorithms, proving that CAPS has a strong theoretical basis as a

prognostic indicator (Supplementary Figure 2).
3.4 The high stability of CAPS was verified
by external validation

To verify the accuracy of CAPS in predicting GC, six independent

GEO datasets (GSE15459, GSE84437, GSE26901, GSE13861,

GSE62254, and GSE26253) were used for external verification. In

the GSE1549 cohort, for example, the OS of the high- and low-CAPS

groups was significantly different (Figure 6G); the high-CAPS group

had a shorter survival time (Figure 6H). Model gene expression was

consistent with that in TCGA (Figure 6I). The AUC of the time-

dependent ROC was 0.675 and 0.695 at four and five years,

respectively, confirming the model’s accuracy (Figure 6J). CAPS was

a risk factor and could be used as an independent prognostic factor

(Figures 6K, L). The performance of CAPS in the remaining five

cohorts is shown in Supplementary Figures 3A–E. Additionally, we

found that the CAPS in the high-CAF group was significantly higher

than that in the low-CAF group, with CAPS positively correlated with

the CAF score (r = 0.66) (Supplementary Figures 3F, G).
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3.5 The broad applicability of CAPS was
proved by nomogram

We integrated CAPS, age, sex, and pathological stage to construct

and verify our nomogram. The score of each feature was calculated to
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obtain the total score of the predicted patient OS (Figure 7A). The

AUC of the time-dependent ROC nomogram curve was 0.705 and

0.716 at 4 and 5 years, respectively (Figure 7B). We drew a calibration

curve for the nomogrammodel, suggesting that the predicted survival

time was consistent with the actual results (Figure 7C). Repeating this
A

B D E F

G I

H J

K

C

FIGURE 2

(A, B) HUVEC was stimulated with GES-1 and supernatant of gastric cancer (GC) fibroblasts, and the proliferation ability was detected by EDU staining.
(C, D) Cell Cycle of HUVEC stimulated with GES-1 and supernatant from GC fibroblasts. (E, F) Cell Apoptosis of HUVEC stimulated with GES-1 and
supernatant from GC fibroblasts. (G, H) Tube formation of HUVEC stimulated with GES-1 and supernatant from GC fibroblasts. (I, J) The migration ability
of HUVEC stimulated with GES-1 and GC fibroblast supernatant was detected by wound healing assay. (K) The expression of ANGPT2, VEGFA, PDGFB,
MMP9 and FGF2 in HUVECs stimulated with GES-1 and supernatant of GC fibroblasts was detected by RT-qPCR. **P< 0.01, ***P< 0.001.
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for the GSE15459 cohort demonstrated the nomogram model

applicability (Supplementary Figures 4A–C). According to GSEA,

the pathways enriched in the high-CAPS group were mainly cell

adhesion molecules, cytokine receptor interactions, and focal

adhesion (Figure 7D); those in the low-CAPS group were mainly

drug metabolism, cytochrome P450, linoleic acid metabolism, and

oxidative phosphorylation (Figure 7E).
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3.6 CAPS was validated at both gene and
protein levels

In the GSE29272 dataset, four model genes were significantly

upregulated in the tumor group (Figure 8A), consistent with the

other seven GEO datasets (Supplementary Figures 5A–G). In the

GEPIA database, EDNRA, SPARC, and VCAN were all upregulated
A

B

D E

C

FIGURE 3

Different characteristics of GC patients with high and low Cancer-associated fibroblast (CAF) scores. (A) According to the optimal cut-off value
(0.04), GC patients were divided into high CAF group (n = 132) and low CAF group (n = 239). Kaplan–Meier survival analysis of patients with high and
low CAF scores. (B) Distribution of high and low CAF scores and patient survival status. (C) The Heatmap of CAF markers and clinical features.
(D) The immune score, stromal score, ESTIMATE score, and tumor purity score of the two groups. (E) Immune cell infiltration in two groups of GC
patients (CIBERPORT-ABS algorithm). *P< 0.05, **P< 0.01, ***P< 0.001.
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in the tumor group, while THBS1 did not differ significantly,

although there was an upward trend in the tumor group

(Supplementary Figure 5H).

RT-qPCR was used to assess model gene expression levels in the

CAPS system. All four genes were upregulated in CAF supernatant-

treated HUVECs compared to the control group (Figure 8B).

THBS1 expression showed a non-significant upward trend,

potentially due to the small sample size. In the HPA database, the

protein expression of the four model genes EDNRA, SPARC,

THBSI, and VCAN was higher in gastric cancer tissues compared

with normal tissues (Supplementary Figure 6). In conclusion, we

have demonstrated through experiments and multiple datasets that

four model genes remain upregulated in GC. This upregulation has
Frontiers in Immunology 08
been validated at both the mRNA and protein levels, further

confirming the reliable predictive ability of CAPS.
3.7 Single-cell analysis uncovered
regulatory mechanisms of CAPS
gene distribution

To further clarify model gene expression in cell subpopulations,

we analyzed single-cell data from patients in the TISCH database.

The nine main cell types were CD8+ T cells, DCs, fibroblasts,

glandular mucous, malignant, mast, myofibroblastic, pit mucous,

and plasma cells (Figure 9A). The clusters of pit mucous cells may
A B

D

E F

C

FIGURE 4

Identification of DEGs in patients with high and low CAF scores and enrichment analysis. (A) GSVA between high and low CAF. (B) The volcano plot
shows DEGs (high CAF VS low CAF). (C) The Venn diagram shows 33 overlapping genes of DEGs and angiogenesis-related genes. (D) PPI analysis of
33 overlapping genes. (E) GO analysis of 33 overlapping genes. (F) KEGG analysis of 33 overlapping genes.
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be attributed to heterogeneity within the cell population

(Figure 9B). EDNRA was mainly expressed in myofibroblasts and

fibroblasts, while SPARC had very high expression levels in

myofibroblasts, malignant cells, and fibroblasts. THBS1 was

expressed at greater levels in DCs and myofibroblasts and VCAN

was mainly expressed in fibroblasts (Figure 9C). In summary, our

analysis of single-cell data elucidates significant differences in the

expression levels of model genes across various cell subpopulations.

These findings underscore the heterogeneity within cell populations

and offer valuable insights into the regulatory mechanisms of

cellular function.
3.8 Exploring immune infiltration and
responsiveness to immunotherapy
between two clusters

In the high-CAPS group, the immune, stromal, and ESTIMATE

scores were higher, whereas the tumor purity score was lower

(Figure 10A). Immune cell infiltration was significantly higher in

the high- than low-CAPS group, including CD8+ T cells, resting

CD4 memory T cells, activated NK cells, monocytes, M0, M1, and
Frontiers in Immunology 09
M2 macrophages, activated mast cells, and neutrophils

(Figure 10B). The high-CAPS group showed greater immune

cell infiltration.
3.9 CAPS can predict the efficacy of
immunotherapy in CG patients

TMB was higher in the low- than the high-CAPS group; TMB

was negatively correlated with CAPS (r = -0.17) (Figures 10C, D).

OS was better in patients with high than low TMB (Figure 10E).

Furthermore, patients with high TMB and low CAPS had the best

OS, whereas those with low TMB and high CAPS had the worst OS

(Figure 10F). This shows that CAPS is highly consistent with TMB

in assessing GC prognosis, further demonstrating the predictive

performance of CAPS.

TIDE score was used to evaluate immunotherapy efficacy. The

TIDE score of the high-CAPS group was significantly higher than

that of the low-CAPS group, and CAPS and TIDE scores were

positively correlated (r = 0.29) (Figure 11A). This was consistent

with a relatively poor immunotherapeutic effect in the high-

CAPS group.
A B

D EC

FIGURE 5

Establishment of CAF-angiogenesis prognostic scoring model. (A) The forest plot shows 26 prognostic-related genes. (B) The waterfall plot shows
the mutations of 13 genes. (C) CNV of 13 genes. (D) LASSO coefficient profiles of 13 genes. (E) The tuning parameters were cross-validated in the
LASSO model.
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FIGURE 6

Predictive efficacy of CAF-angiogenesis prognostic score (CAPS) in the TCGA cohort and GSE15459 cohort. (A) Kaplan-Meier survival analysis in the
TCGA cohort. (B) The distribution of CAPS in the TCGA cohort and the survival status of patients. (C) Expression levels of model genes in TCGA
cohort. (D) The ROC curve analysis according to the 4- and 5-year survival in the TCGA cohort. (E) Univariable Cox analysis was used to determine
the correlation with age (≥ 60 years vs< 60 years), gender (male vs female), and stage (stage III-IV vs Stage I-II) of GC patients in TCGA cohort.
(F) Multivariable Cox analysis was used to determine the correlation with age (≥ 60 years vs< 60 years), gender (male vs female), and stage (stage
III-IV vs Stage I-II) of GC patients in TCGA cohort. (G) Kaplan-Meier survival analysis in the GSE15459 cohort. (H) The distribution of CAPS in the
GSE15459 cohort and the survival status of patients. (I) Expression levels of model genes in the GSE15459 cohort. (J) The ROC curve analysis
according to the 4- and 5-year survival in the GSE15459 cohort. (K) Univariable Cox analysis was used to determine the correlation with age (≥ 60
years vs< 60 years), gender (male vs female), and stage (stage III-IV vs Stage I-II) of GC patients in the GSE15459 cohort. (L) Multivariable Cox
analysis was used to determine the correlation with age (≥ 60 years vs< 60 years), gender (male vs female), and stage (stage III-IV vs Stage I-II) of GC
patients in the GSE15459 cohort.
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Analysis of differences in efficacy between anti-PD-1 and anti-

CTLA-4, the most common ICI drugs, showed that the IPS of the

low-CAPS group was higher than that of the high-CAPS group.

This indicates a better immunotherapeutic effect in the low-CAPS

group (Figure 11B).

In the IMVigor 210 cohort, OS was better in the low- than the

high-CAPS group. Additionally, the proportion of patients who

did not respond to treatment was higher in the high- than the low-

CAPS group. Although there was no significant difference in

CAPS between the treatment response and non-response

groups, there was an upward trend (Figures 11C–E). The

GSE78220 cohort produced consistent results; the low-CAPS

group had better OS, there were fewer patients in the treatment-

unresponsive group, and patients had a lower CAPS in the

treatment-responsive group (Figures 11F–H). Screening for the

chemotherapeutic drugs AMG.706, imatinib, and PD.173074

showed that the high-CAPS group was more sensitive

(Figure 11I). In conclusion, CAPS provides a new impetus for

t h e r a t i ona l s e l e c t i on o f immuno th e r ap eu t i c and

chemotherapeutic drugs for patients with GC.
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4 Discussion

The TME is crucial for GC occurrence and development and

tumor stromal components in the TME are essential for tumor

growth and metastasis, immunosuppression, and drug resistance.

CAFs are the most prominent cell type in GC stroma (30). To

support the high proliferation rate of cancer cells, tumors must

rapidly develop new vascular networks, leading to hypoxia,

decreased immune cell infiltration and activity, and increased

metastasis risk (31). CAFs can regulate angiogenesis and promote

tumor progression (21), but the underlying mechanisms in patients

with GC are unclear. First, we observed that CAFs promote

angiogenesis in HUVECs. High-throughput data analysis showed

that the high-CAF group had relatively high stromal scores,

indicating a stronger immunosuppressive microenvironment and

poorer GC prognosis. This demonstrates that CAFs affect the tumor

immune microenvironment (TIME) by regulating angiogenesis.

Therefore, we characterized the angiogenesis-related genes in

CAFs to predict patient survival and immunotherapy efficacy. We

developed a new CAPS system and six independent external
A
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FIGURE 7

Nomograph Model and GSEA. (A) Nomogram of CAPS and clinical characteristics predicting survival probability of GC patients in TCGA cohort.
(B) The ROC curve verifies the predictive ability of the nomogram in the TCGA cohort. (C) Calibration curve for the predictive ability of nomograms
in TCGA cohort. (D) GSEA enrichment analysis in the high CAPS group. (E) GSEA enrichment analysis in the low CAPS group.
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validations were performed, as well as gene-level validation. The

CAPS system accurately predicted the prognosis and

immunotherapy sensitivity of patients with GC. CAPS consists of

four mRNAs, all of which were consistently up-regulated in GC

tissues, that is, CAPS was strongly, stably expressed at the gene and

protein levels. Univariate, multivariate, and nomogram validation

consistently demonstrated that CAPS independently predicted

patient prognosis. Single-cell data analysis showed that the model

genes were highly expressed in fibroblasts and positively correlated

with CAF marker genes, further proving the authenticity, stability,

and applicability of CAPS. Overall, CAPS can effectively assess the

prognosis and clinical status of patients with GC. It has higher

clinical applicability than previous prognostic models constructed

using CAF-related genes in GC (32).

CAPS included four mRNAs, which were upregulated in GC

tissues and positively correlated with poor prognosis. THBS1 is in

the thrombospondin family and is closely related to GC cell

invasion and migration (33). High THBS1 expression is an

independent risk factor (34). THBS1 can have both proangiogenic

and antiangiogenic effects. THBS1 is most commonly used as an

anti-angiogenic factor, but it is positively associated with poor

tumor prognosis. In ovarian cancer, IGFBP3 inhibits angiogenesis

by regulating intracellular THBS1 expression (35). THBS1, THBS2,

and PEDF reduce angiogenesis and promote tumor-associated

lymph angiogenesis in iCCA (36). However, the role of THBS1 in

GC angiogenesis is unknown. Interestingly, THBS1 has

proangiogenic activity when its N-terminal heparin-binding
Frontiers in Immunology 12
domain interacts with LRP1 receptor (37, 38), showing that its

role varies in different microenvironments.

SPARC is a secreted glycoprotein that mediates cell-ECM

interactions. The function of SPARC relates to and varies with

tumor type, cancer cell origin, and the TME. For example,

high SPARC expression is positively correlated with poor

prognosis in pancreatic cancer, invasive breast cancer, and colon

adenocarcinoma (39). However, high SPARC expression is

associated with a good prognosis in diffuse large B-cell lymphoma

(40). SPARC is negatively associated with GC prognosis by

regulating platelet activation (41). Meanwhile, EDNRA is an

endothelin-1 receptor expressed in many malignancies that is

closely associated with cell proliferation, invasion, migration,

metastasis, and drug resistance (42, 43). VCAN belongs to the

aggrecan/versican family of proteoglycans (44). Its main cellular

functions are cell adhesion, proliferation, tissue morphogenesis, and

maintenance (45). VCAN is associated with tumor growth and

metastasis, including in GC (46). Overall, our model genes have a

solid foundation of clinical research.

The TME is receiving increased attention due to its role in

tumor immunosuppression, distant metastasis, local drug

resistance, and targeted therapy responses (16). Immune cells in

the TME can be used for prognostic assessment, including

in GC (47). Increasing attention is also being paid to the

immunosuppressive effect of CAF through interactions with

TIME components, especially immune cells (48). CAFs promote

cancer cell proliferation and immune escape (49). How GC-CAFs
A

B

FIGURE 8

Validation of model genes at gene levels. (A) In the GSE29272 datasets, the expression of Endothelin Receptor Type A (EDNRA), Secreted protein acidic
and rich in cysteine (SPARC), Thrombospondin-1(THBS1), and versican (VCAN) in 134 adjacent normal and tumor tissues was detected. (B) The expression
of EDNRA, SPARC, THBS1, and VCAN in HUVECs stimulated with GES-1 and supernatant of GC fibroblasts was detected by RT-qPCR. ***P< 0.001.
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regulate the TME through angiogenesis to induce an

immunosuppressive microenvironment is unknown. Therefore,

we explored the correlation between CAF-angiogenesis and the

GC TME.

In the high-CAPS group, immune cells were imbalanced, with

higher immune cell infiltration; these cells were manipulated to

protect them from the body’s immune response (50). Tumor-

associated macrophages (TAMs) promote the development of an
Frontiers in Immunology 13
immunosuppressive TME, and can be continuously activated by

the TME (51, 52). Consistent with this, TAM infiltration was

relatively high in the high-CAPS group. M1 macrophages promote

tumor killing, whereas M2 macrophages are associated with

cancer metastasis and poor prognosis (53). However, studies

show that traditional cognition is broken. CD68+ HLA-DR+ M1

macrophages rely on the NF-kB signaling pathway to promote

tumor migration (54). In oral squamous cell carcinoma, M1
A B

C

FIGURE 9

Analysis of single-cell data set (GSE134520) of GC based on the TISCH database. (A) CD8T, DC, Fibroblasts, Gland mucous, Malignant, Mast,
Myofibroblas, Pit mucous, and Plasma as the main cell types. (B) Expression of model genes in each cell type. (C) Model genes were mainly
expressed in Myofibroblas and Fibroblasts.
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macrophages stimulated and polarized by exosomes promoted

tumor cell migration, accelerating cancer progression (55).

Different diseases and body parts affect the TME differently (56–

58). In a complex TME, the molecular mechanisms associated

with M1 macrophages are complex. TMB is a stable genetic

marker; therefore, the expression of predicted markers is

consistent with TMB and is highly reliable (59). Increased TMB

is associated with a better response to immunotherapy (60).

Consistent with this, TMB was higher in the low-CAPS
Frontiers in Immunology 14
subgroup, CAPS was negatively correlated with TMB, and

patients in the high-TMB and low-CAPS groups had the longest

survival time, while patients in the low-TMB and high-CAPS

groups had the shortest survival time. Overall, CAPS is highly

reliable for evaluating immunotherapy efficacy in GC.

TIDE is highly valuable for predicting or evaluating

immunotherapy efficacy. Patients with higher TIDE scores are

more likely to develop tumor immune escape, and therefore, a

lower immunotherapy response rate (61, 62). Consistently, the
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FIGURE 10

Immune microenvironment of high and low CAPS groups. (A) The immune score, stromal score, ESTIMATE score, and tumor purity score of the high
and low CAPS groups. (B) Immune cell infiltration in the high and low CAPS groups of GC patients (CIBERPORT-ABS algorithm). (C) The boxplot of
TMB in patients with high and low CAPS groups. (D) The scatter plot of correlation between TMB and CAPS. (E) Difference in survival time between
high- and low-TMB groups. (F) Survival analysis of TMB union CAPS. *P< 0.05, **P< 0.01, ***P< 0.001.
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FIGURE 11

CAPS predicts the effect of immunotherapy. (A) The boxplot of differences in TIDE score in the low and high CAPS groups. Correlation plot of CAPS
and TIDE score. (B) The violin plots of IPS differences between low-CAPS and high-CAPS groups. (C) Kaplan-Meier survival analysis in IMvigor 210
cohort. (D) Distribution of patients with different immunotherapy effects in the high and low CAPS groups in the IMvigor cohort. (E) Differences in
CAPS between immunotherapy responsive and unresponsive patients in IMvigor cohort. (F) Kaplan-Meier survival analysis in the GSE78220 cohort.
(G) Distribution of patients with different immunotherapy effects in the high and low CAPS groups in the GSE78220 cohort. (H) Differences in CAPS
between immunotherapy responsive and unresponsive patients in the GSE78220 cohort. (I) The boxplot for predicting drug sensitivity in high and
low CAPS groups.
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high-CAPS group had higher TIDE scores, proving the accuracy of

CAPS for evaluating immunotherapy efficacy in GC. Targeting

immune checkpoints, such as PD-1 and CTLA-4, can improve

antitumor immunity (63) and ICIs are effective GC treatments (64).

To predict the therapeutic effect of ICIs on patients with GC, we

analyzed the relationship between CAPS and PD-1 and CTLA-4 in

GC. The level of anti-CTLA-4 and anti-PD-1 treatment alone or in

combination was higher in the low- than the high-CAPS group,

indicating that immunotherapy would be more effective in the low-

CAPS group. This was confirmed in the immunotherapy cohort,

with a smaller proportion of non-responsive patients in the low-

CAPS group and a higher CAPS in patients in the non-responder

group. Finally, we also screened therapeutic drugs to which patients

in the high-CAPS group may be more sensitive. First, we confirmed

the correlation between CAFs and angiogenesis. We then used

CAFs and angiogenesis-related genes in TCGA sequencing data to

establish a CAPS model that could predict prognosis and

immunotherapy efficacy in GC, which was verified by six

independent GEO datasets. Compared with the low-CAPS

group, the high-CAPS group had a pro-cancer immune

microenvironment, low TMB, high TIDE score, and relatively

poor anti-PD-1 and anti-CTLA4 therapeutic efficacy. These

findings indicate that the high-CAPS group is associated with

immune escape in GC. Therefore, CAPS is a new biomarker that

can effectively predict GC prognosis and immunotherapy efficacy.

This study has various limitations and further research is

needed to validate the prognostic features of CAPS. The

mechanism of the TME promoting CAF-vascularization

characteristics in GC is unclear and will be investigated in the

future. Studies on the interactions between CAFs and the immune

microenvironment, especially complex mechanisms linking

CAFs to immune cells, may provide new strategies for

targeted immunotherapies.

Overall, we found that GC fibroblasts can induce angiogenesis

and defined a new prognostic model. Four CAF angiogenesis-

related genes were used for gene- and protein-level validation.

Subsequently, CAPS was validated using six independent datasets.

In the validation cohorts, this model was closely related to the

independent prognosis of patients with GC and immunotherapy

efficacy and can be used as a prediction tool for clinical treatment

selection and the outcomes of patients with GC.
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