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myofibroblast dynamics and
therapeutic targets in clear cell
renal cell carcinomas
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1Tongji Hospital, School of Medicine, Tongji University, Shanghai, China, 2Shandong University of
Traditional Chinese Medicine, Jinan, Shandong, China, 3Xiangya Boai Rehabilitation Hospital,
Changsha, Hunan, China
Background: Clear cell renal cell carcinomas (ccRCCs) epitomize the most

formidable clinical subtype among renal neoplasms. While the impact of

tumor-associated fibroblasts on ccRCC progression is duly acknowledged, a

paucity of literature exists elucidating the intricate mechanisms and signaling

pathways operative at the individual cellular level.

Methods: Employing single-cell transcriptomic analysis, we meticulously curated

UMAP profiles spanning substantial ccRCC populations, delving into the

composition and intrinsic signaling pathways of these cohorts. Additionally,

Myofibroblasts were fastidiously categorized into discrete subpopulations, with a

thorough elucidation of the temporal trajectory relationships between these

subpopulations. We further probed the cellular interaction pathways connecting

pivotal subpopulations with tumors. Our endeavor also encompassed the

identification of prognostic genes associated with these subpopulations through

Bulk RNA-seq, subsequently validated through empirical experimentation.

Results: A notable escalation in the nFeature and nCount of Myofibroblasts and

EPCs within ccRCCs was observed, notably enriched in oxidation-related

pathways. This phenomenon is postulated to be closely associated with the

heightened metabolic activities of Myofibroblasts and EPCs. The Myofibroblasts

subpopulation, denoted as C3 HMGA1+ Myofibroblasts, emerges as a pivotal

subset, displaying low differentiation and positioning itself at the terminal point of

the temporal trajectory. Intriguingly, these cells exhibit a high degree of

interaction with tumor cells through the MPZ signaling pathway network,

suggesting that Myofibroblasts may facilitate tumor progression via this

pathway. Prognostic genes associated with C3 were identified, among which

TUBB3 is implicated in potential resistance to tumor recurrence. Finally,

experimental validation revealed that the knockout of the key gene within the

MPZ pathway, MPZL1, can inhibit tumor activity, proliferation, invasion, and

migration capabilities.

Conclusion: This investigation delves into the intricate mechanisms and

interaction pathways between Myofibroblasts and ccRCCs at the single-cell
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level. We propose that targeting MPZL1 and the oxidative phosphorylation

pathway could serve as potential key targets for treating the progression and

recurrence of ccRCC. This discovery paves the way for new directions in the

treatment and prognosis diagnosis of ccRCC in the future.
KEYWORDS
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Introduction

Renal neoplasia stands as one of the most prevalent

genitourinary malignancies globally (1). According to data

disseminated by the World Health Organization, the annual

mortality toll attributed to renal cancer reaches a staggering

140,000-170,000 patients (2, 3). Among these cases, clear cell

renal cell carcinomas (ccRCCs) emerge as the predominant

histological subtype, contributing to approximately 80% of renal

cancers and representing the clinical variant with the highest

mortality rates (3–5). Presently, localized instances of ccRCCs are

conventionally addressed through surgical resection (6, 7).

However, due to the latent nature of symptoms during the early

stages and the proclivity for tumor metastasis by the time of

detection, reliance solely on surgical intervention becomes less

efficacious (8). Distinguishing ccRCCs from other genitourinary

tumors lies in their refractoriness to chemotherapy and

radiotherapy (9). The prevailing use of chemotherapy and

cytokine therapy involving interferon-alpha (INFa) and IL-2

not only presents challenges in ensuring efficacy but also

manifests susceptibility to drug resistance and adverse effects

(10). Furthermore, the overall survival rate for advanced

ccRCCs languishes below 30% (11, 12). Consequently, an

imperative exists to investigate the fundamental mechanisms

and signaling pathways governing the progression and

recurrence of ccRCCs, identify novel therapeutic targets, and

formulate innovative prognostic models.

Cancer-associated fibroblasts (CAFs) are activated fibroblasts

found within or in the vicinity of cancerous tissues, closely

associated with cancer progression. Currently, it is speculated that

they primarily originate from resident fibroblasts and can modulate

certain cellular mechanisms of tumors, including functions related

to tumor proliferation, invasion, and metastasis, leading to adverse

prognoses in affected patients (13–17). Existing research has

revealed that fibroblasts can promote the tumor drug resistance of

ccRCCs through the TDO/Kyn/AhR signaling pathway (18), and

they are positively correlated with tumor initiation and adverse

prognosis (19). There have been documented interactions between

fibroblasts and tumors, enabling them to regulate tumor cell
02
metabolism and modulate associated immune functions, making

them conducive to tumor growth (20, 21). Additionally, numerous

studies have found that tumor-associated fibroblasts can participate

in regulating the stemness and epithelial-mesenchymal transition of

tumor cells, thereby promoting tumor progression (22–24).

However, there is relatively limited literature available on the

interaction between fibroblasts and ccRCCs tumor cells at the

single-cell level. This study delves into elucidating the functional

roles and underlying mechanisms of Myofibroblasts and EPCs in

ccRCCs at the single-cell level. Through meticulous subpopulation

stratification of Myofibroblasts and EPCs, we explore intricate cell-

cell interactions, specifically focusing on those occurring between

the crucial subpopulation C3 and tumor cells within EPCs.

Simultaneously, we construct prognostic models linked to these

interactions, subsequently subjecting them to rigorous experimental

validation. Based on these research findings, we hypothesize a

strong correlation between the progression of ccRCCs and the

interplay pathways of oxidative phosphorylation and

Myofibroblasts, with the pathway gene MPZL1 playing a pivotal

role. These studies contribute to a deeper understanding of ccRCCs’

proliferation and recurrence at the single-cell level, aiming to

provide insights for the design of better therapeutic targets and

prognostic models for ccRCCs treatment.
Methods

Data processing and download

We acquired the neoplastic specimens and adjacent tissues

from six patients diagnosed with Clear Cell Renal Cell

Carcinomas (ccRCCs) through the European Nucleotide

Archive (ENA) database (https://www.ebi.ac.uk/ena/browser/

home). The Project number is PRJNA705464. Single-cell

samples were extracted. Gene expression quantification using

RNA-Seq (HTSeqFPKM) and clinical sample data for ccRCCs

were retrieved from The Cancer Genome Atlas (TCGA) website

(https://portal.gdc.cancer.gov) and subsequently processed and

normalized utilizing R software (R 4.3.0).
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Quality control

The R package DoubletFinder was employed for the filtration

and removal of low-quality cellular data, including instances of

doublet cells and multi-cellularity in the samples (25, 26). The

filtering criteria encompassed the following parameters: 1) Total

cellular gene transcripts (nCount) ranging from 500 to 80,000; 2)

Total cellular gene counts (nFeature) between 200 and 6,000; 3) The

proportion of mitochondrial genes less than 25%; 4) The proportion

of erythrocyte gene counts below 5%, with a count proportion also

below 5%.
Clustering and annotation

We utilized the NormalizeData function within the R package

Seurat to standardize the curated single-cell data (27). Subsequently,

we computed the variance and standard deviation for each gene

through the FindVariableFeatures function, selecting the top 2000

genes as highly variable based on the genes’ average expression and

the extent of their dispersion (28, 29). All genes underwent

centering via the ScaleData function, and the cyclical effects of

distinct cells were assessed using the CellCycleFeatures function.

The RunPCA function facilitated dimensionality reduction based

on the expression of the top 2000 high-margin genes, followed by

the mitigation of batch effects from the samples using the

RunHarmony function from the R package harmony.

For clustering the data after dimensionality reduction, the

FindNeighbors and FindClusters functions from the Seurat package

were employed. Integration and annotation of distinct cell clusters

post-clustering were conducted with reference to the CellMarker

database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/) and the

SingleR function. Subsequent corrections were applied through a

meticulous review of pertinent literature. Sample source analysis for

diverse large cell clusters was executed, and the identification and

annotation of differentially expressed MARKER genes among these

clusters were performed using the FindAllMarkers function (30, 31).
Analysis of cell sources and enrichment of
large populations

We scrutinized the cellular origins and relative sizes of the

principal clusters within ccRCCs. A comparative analysis was

conducted on the total number of transcribed genes and the

transcriptional profile across different major clusters, visually

represented through column line graphs and UMAP (32, 33).

Furthermore, we identified differential genes (DEGs) among the

cells of these major clusters, necessitating DEGs to be detected in a

minimum of 25% of the cells, with a false discovery rate (FDR) below

0.05, | logFCfilter | exceeding 1. The DEGs identified in the major

clusters underwent Gene Ontology (GO) enrichment analysis.

Additionally, we independently computed DEGs between the

two cellular macropopulations of Myofibroblasts and Epithelial
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Cells (EPCs) and other macropopulations. This analysis was

carried out using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (c2.cp.kegg.v7.5.1.symbols.gmt). The marker

genes retrieved from the database underwent filtration and

analysis for Gene Set Enrichment Analysis (GSEA), with

statistical significance set at FDR < 0.05.
Analysis of cellular metabolism in
large populations

We computed the expression levels of stemness genes across various

major clusters within ccRCCs. Additionally, we evaluated cellular

metabolic pathways within the major clusters of ccRCCs and distinct

cellular sources using the R package scMetabolism. The outcomes were

presented in the form of heatmaps, showcasing the top 20 pathways.

Further exploration involved the selection of the top three pathways

with the highest scores, visualizing their expression across major

populations through UMAP. A comparative analysis was performed

on the top three metabolic pathways within major populations and

diverse sources of ccRCCs, illustrated in the form of violin plots.
Myofibroblasts subgroup
correlation analysis

We employed the FindNeighbors function and FindClusters

within the Seurat package to reclustering the downscaled

Myofibroblasts cell clusters. Subsequently, we identified marker genes

for each subgroup based on the percentage of expression and the

frequency of expression, and conducted chromosome copy variation

analysis (inferCNV) in different subpopulations of Myofibroblasts. We

delved into the tissue origin and cellular staging of cells within each

subpopulation, visualizing the findings through UMAP. Furthermore,

we conducted a comparative analysis of the tissue origin and cellular

staging ratios among different subpopulations. Staging scores,

including G2M.Score and S.Score, were computed and compared

across subpopulations. Additionally, we explored and compared the

nFeature and nCount of genes within each subgroup. Disparities in

G2M.Score, S.Score, nFeature, and nCount were calculated and

compared across various subpopulations.
Trajectory and correlation analysis of
myofibroblasts subgroups

To investigate the differentiation and evolutionary processes

among cells within each subpopulation of Myofibroblasts, we

conducted a proposed time-series analysis. Initially, we predicted

the relative differentiation status of each cell subpopulation using

the R package Cytotrace, assigning scores within the interval of 0-1,

where higher scores indicate heightened cell stemness.

Subsequently, the developmental time of each cell subpopulation

was calculated and organized by the R package monocle, unveiling
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the temporal transcriptional dynamics of marker genes within each

cell subpopulation.

Following chronological ordering, cells were categorized into three

periods, and the sequential changes of subpopulation cells, along with

cells originating from different sources within the subpopulation, were

computed for each period. Ultimately, leveraging slingshot, cell

clustering clusters, and spatial dimensionality reduction information,

we executed cell differentiation genealogy construction and pseudo-

temporal extrapolation. This approach validated the temporal order of

different subpopulations at an elevated level and calculated the

proportionality between cell staging and diverse subpopulations

according to slingshot.

We further computed and compared the stemness genes of cells

within each subpopulation, visualizing the results. Through an

amalgamation of tissue origin and cell staging information of

subpopulation cells, coupled with the analysis of subpopulation cell

stemness and associated genes, we identified the C3 subpopulation as a

potential key subpopulation. Subsequently, using the pyscenic

algorithm, we calculated the top 5 transcription factors for each

subpopulation, delving into the overall distribution and regulatory

regions of the pivotal C3 subpopulation.
Subpopulation cell interaction analysis

To elucidate the cell-cell interactions among subpopulations and

larger populations, and to delve further into the interaction dynamics

between the pivotal C3 subpopulation of Myofibroblasts and tumor

cells, we conducted Copy Number Variation (CNV) analysis on EPCs

cells, distinguishing tumor cells within EPCs based on the count of

copy variants. Subsequently, utilizing the R package cellchat, we

analyzed the overall count of cell-cell interactions and their

respective strengths. These interactions were further categorized into

those involving tumor cells and those with other cell types. Based on

the interaction results, we scrutinized the crucial interaction pathway

MPZ between C3 and tumor subpopulations.
Clinical correlation and independent
prognosis analysis of C3 subpopulations

The R software was employed to determine the intersection of

the identified marker genes within the C3 subgroup with both

ccRCC tumor tissues and normal tissues. Samples from ccRCCs

with incomplete clinical data were excluded. Subsequently, the

intersected genes were merged with the standardized clinical data

of ccRCCs. Univariate COX risk regression analysis was conducted

using the coxph function within the R package survival. This

analysis was validated through the application of the Least

Absolute Shrinkage and Selection Operator (LASSO)-penalized

Cox regression (34–36). Finally, multivariate COX risk regression

analysis was performed to identify prognostic differential genes.

The risk score for each sample was calculated (risk score = Xl,
where X represents the relative expression level of prognostic genes and
Frontiers in Immunology 04
coefl is the coefficient) (37, 38). Samples were categorized into high

and low-risk groups based on their risk scores. Coefficient values of

prognostic genes were computed, and the distribution of these genes in

the high and low-risk groups was visualized through a heatmap.

Kaplan-Meier curves illustrated the survival at different time points

in the high- and low-risk groups (39, 40), while the specificity and

sensitivity of prognostic genes were further validated using time-

dependent receiver operating characteristic (ROC) curves (41, 42).

Additionally, the correlation between specific prognostic genes

and risk scores was calculated and demonstrated. To construct the

prognostic model, information on race, gender, age, and tumor

stage in the samples was incorporated. A nomogram was created

using the R package rms, combining the risk scores to predict the

prognosis of ccRCC patients (43). This model was finally validated

through ROC curves and decision curve analysis (DCA).
Immune correlation analysis and
enrichment analysis

We computed and authenticated immune infiltration in the high

and low-risk groups utilizing the xCell and CIBERSORT deconvolution

algorithms to compare and validate immune infiltration, respectively.

The correlation of immune cells with the risk score and prognostic

genes was explored. TIDE scores were calculated for high and low-risk

groups, and the correlation of prognostic genes and risk scores with

immune checkpoint genes was investigated. Tumor immune

microenvironment-specific scores of the high and low-risk groups

were also calculated and compared.

To delve into the correlation mechanism of the high and low-risk

groups, we further filtered the differential genes using the R package

limma, employing filtering conditions of |log FC| > 1 and a threshold

value of FDR (BH) corrected P.adj <0.05. GO and KEGG enrichment

analyses were conducted using the R package clusterProfiler,

encompassing biological processes, cellular components, and

molecular functions in GO enrichment analyses (44, 45).
Cell culture

The 786-O and CAKI-1 cell lines were procured from the

American Type Culture Collection (ATCC). Both cell lines

underwent cultivation in F12K medium supplemented with 10%

fetal bovine serum (Gibco BRL, USA) and 1% streptomycin/

penicillin. PRMI1640 medium (Gibco BRL, USA) was utilized for

the CAKI-1 cell line. Standard conditions of incubation were

maintained at 37°C, 5% CO2, and 95% humidity.
Cell transfection

MPZL1 knockdown was achieved through the utilization of

small interfering RNA (siRNA) constructs obtained from

GenePharma, Suzhou, China. The transfection protocol closely
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adhered to the steps outlined for Lipofectamine 3000RNAiMAX

(Invitrogen, USA). Cells were seeded in 6-well plates at 50%

confluence and subsequently transfected with negative control (si-

NC) and knockdown (Si-MPZL1-1 and Si-MPZL1-2). Each

transfection process was carried out utilizing Lipofectamine

3000RNAiMAX (Invitrogen, USA).
Cell viability assay

Cell viability of 786-O and CAKI-1 cells post-transfection was

assessed using the CCK-8 assay. Cell suspensions were seeded at a

density of 5*103 cells per well in 96-well plates and cultured for 24

hours. Subsequently, 10 mL of CCK-8 reagent (A311-01, Vazyme) was

added to each well and incubated in the dark at 37°C for 2 hours. Cell

viability was determined by measuring absorbance at 450 nm using an

enzyme marker (A33978, Thermo) on days 1, 2, 3, and 4. The mean

OD values were computed and presented on a line graph.
5-Ethyl-2 ' -deoxyuridine
proliferation assay

Transfected 786-O and CAKI-1 cells were seeded in 6-well

plates at a density of 5 × 103 cells per well and allowed to incubate

overnight. A 2x EdU working solution was prepared by

incorporating a 10 mM EdU solution in serum-free medium,

which was subsequently added to the cell culture and incubated

at 37°C for 2 hours. Following incubation, the medium was

aspirated, and cells were washed with PBS before fixation with 4%

paraformaldehyde for 30 minutes. Subsequent treatment involved

exposure to glycine (2 mg/ml) and 0.5% Triton X-100 for 15

minutes. Cells were then incubated with 1 ml 1X Apollo and 1 ml

1X Hoechst 33342 for 30 minutes at room temperature. Cell

proliferation was quantified through fluorescence microscopy.
Wound healing

The transfected cells were seeded in 6-well plates and cultured

until reaching a cell density of 95%. A sterile 200 mL pipette tip was

initially employed to create a straight-line scratch across the cell

layer in the culture wells, followed by gentle rinsing with PBS.

Subsequently, the medium was replaced to facilitate ongoing cell

culture. Photographs of the scratch were captured at the identical

location at 0 hours and 48 hours, and the width of the scratch

was measured.
Transwell experiment

Cells underwent serum deprivation in medium lacking serum

for a duration of 24 hours preceding the experiment. Following

treatment involving the addition of matrix gel (BD Biosciences,
Frontiers in Immunology 05
USA), the cell suspension was introduced into the upper chamber,

which contained Costar, while serum medium was introduced into

the lower chamber. Subsequent to a 48-hour incubation period in

the incubator, cells were fixed using 4% paraformaldehyde and

stained with crystal violet to assess their invasive capability.
Results

ccRCCs large population
cell categorization

We acquired the single-cell data of ccRCCs from the ENA

database (PRJNA705464), encompassing Tumor, Normal,

LymphNode, and Peripheral Blood (PBMC) samples. Utilizing

the R package DoubletFinder, we eliminated duplicated cells and

subsequently fi l tered out subpar cells in the samples

(Supplementary Figure 1A). Cell staging tests revealed a

concentrated distribution in the PCA plot, indicating minimal

impact on the study results (Supplementary Figure 1B). Selecting

the top 2000 highly variable genes based on expression and

dispersion (Supplementary Figure 1C), we downscaled them using

RunPCA and retained the top 30 dimensions for subsequent

analysis (Supplementary Figures 1D, E). Exploration of the top 10

highly variable genes for each of the first 9 dimensions was

visualized (Supplementary Figure 1F). We categorized ccRCCs

into 37 clusters (Figure 1A) and annotated them using the R

package singleR and CellMarker databases. After further

correction based on relevant literature, we categorized them into

8 major cell clusters (Figure 1B), namely T_NK(81753),

Myeloid_cells(34761), ECs(7652), Myofibroblasts(7959), Pericytes

(3725), and B_Plasma(3781).

During the study, Myofibroblasts, Epithelial Cells (EPCs)

(4265), and MCs(1173) emerged as crucial cell groups in the

tumor. Reviewing literature on the annotated cell populations, we

identified EPCs as pivotal cells in the tumor, with a close association

with Myofibroblasts. Disparities in sample distribution among

different cells were observed, possibly linked to the individual

source of the samples and the location from which tumor tissues

were selected (Figure 1C). Examination of the top 5MARKER genes

in each subpopulation (Figure 1D) revealed that MARKER genes of

EPCs also exhibited some expression in LymphNode cells.
Analysis of cell origin and gene
transcription correlation in
large populations

We investigated the spatial distribution of the cell population in

ccRCCs (Figures 2A–C) and noted a relatively high proportion of

tumor cells within Myofibroblasts. In contrast, EPCs displayed a

mixed composition, including a significant presence of normal

tissue cells. Acknowledging the necessity to extract tumor cells

from EPCs in subsequent analyses, we proceeded accordingly.
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Examination of nCount and nFeature (Figures 2D–G) revealed

higher total transcript numbers and gene quantities in EPCs and

Myofibroblasts cells, indicating elevated cellular activities and

functions in these two locations.
Enrichment function analysis

To explore the functional attributes of the cell populations in

the large cohort of ccRCCs, we scrutinized the differential genes

between these cells and others (Figures 3A–H). Subsequently, we

conducted GO enrichment function analysis based on the

identified differential genes (Figure 3I). Notably, both EPCs

and Myofibroblasts exhibited enrichment in oxidative

respiration, with pathways such as Aerobic respiration and

Oxidative phosphorylation significantly enriched in EPCs,

while ATP metabolic process and Purine ribonucleoside

triphosphate metabolic process were notably enriched

in Myofibroblasts.

To delve deeper, we performed GSEA enrichment analysis for

EPCs and Myofibroblasts. In Myofibroblasts (Figures 3J–O), the

low-expression group showed significant enrichment in pathways

related to immune response-activating signal transduction, immune

response-activating cell surface receptor signaling pathway, and

leukocyte-mediated immunity. Conversely, the high-expression

group exhibited enrichment in pathways like Glycolytic process,
Frontiers in Immunology 06
Nucleotide phosphorylation, and ATP generation from ADP. In

EPCs (Figures 3P–U), the low expression group displayed

enrichment in pathways related to the regulation of immune

response, immune response-activating cell surface receptor

signaling pathway, and regulation of leukocyte activation. In

contrast, the high expression group showed enrichment in

pathways associated with cellular respiration, aerobic respiration,

and oxidative phosphorylation.

These findings suggest that Myofibroblasts and EPCs share

similar GSEA-enriched pathways, hinting at a potential connection

between the high- and low-expression groups. We posit that the

oxidative response of Myofibroblasts may drive the suppression of

immune function.
Cell stemness and metabolic analysis

We conducted an analysis of cell stemness genes in the large cell

populations, identifying a high score for CD44 in Myofibroblasts

(Figure 4A). Further exploration of metabolic function differences

between large cell populations and cells of different origins

(Figures 4B, C) revealed significantly higher scores for cellular

metabolic pathways, including Oxidative phosphorylation,

Glycolysis/Gluconeogenesis, and the Pentose phosphate pathway

—all associated with oxidative respiration. To provide a

comprehensive view, we compared the distribution and scores of
A

B

D

C

FIGURE 1

Classification of ccRCCs cells into large clusters. (A) 6 patients with ccRCCs ccRCCs tumor and surrounding tissues were classified into 38 clusters
after single cell clustering; (B) According to different MARKER genes, the ovaries were annotated into T_NK, Myeloid_cells, ECs, Myofibroblasts,
Pericytes, B_Plasma, EPCs, MCs respectively, a total of 8 (C) Distribution of each sample source. (D) Each population of cells exhibits the top five
marker genes in ccRCCs.
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these three pathways in each cell population (Figures 4D–L),

observing their pronounced significance in both EPCs and

Myofibroblasts. This aligns with our earlier findings from GO and

GSEA enrichment analyses.
Subclustering of myofibroblasts

Distinct Myofibroblast subpopulations were identified as C0, C2

(FXYD2+), C3 (HMGA1+), C4 (ITGA1+), and C5 (PTTG1+)

(Figure 5A). We calculated copy number variations (CNVs) of

these subpopulations and the respective marker genes (Figures 5B,

C). The cellular origin investigation revealed higher tumor tissue

content in C0, C3, and C4 (Figures 5D, E). Assessing the

proportionality of subpopulations with respect to cell origin

(Figures 5J, K) indicated the highest amount and purity in C3

tumor tissues. Examining cell stage distribution (Figures 5F, G)

showed a relatively high proportion of G2M and S stages in C3 and
Frontiers in Immunology 07
C5. The cell stage ratio graph (Figures 5H, I) highlighted

significantly higher S stage in C3 compared to G2M and G1

stages, indicating vigorous cellular DNA synthesis, replication,

and proliferative ability. G2M.Score and S.Score distributions

(Figures 5L–O) revealed higher scores for both C3 and C5

subpopulations. Additionally, comparing nFeature and nCount

values of different subpopulation cells (Figures 5P, Q)

demonstrated significantly higher values in C3 compared to

other subpopulations.
Proposed time series analysis of
subpopulation cells

We predicted the differentiation of individual subpopulations

by the R package Cytotrace and found that the C3 group had the

highest degree of differentiation, followed by C0 and C4

(Figures 6A, B). To understand the temporal trajectory
A

B

D E

F

G

C

FIGURE 2

Source site and transcriptional analysis of the major clusters of cells. (A–C) ccRCCs major clusters of cells source site and distribution plot;
(D, E) ccRCCs major clusters of cells nFeature and nCount UNMP distribution plot; (F, G) ccRCCs major clusters of cells nFeature and nCount
expression level box line plot.
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relationship between cell subpopulations, we calculated the relative

temporal order of the individual subpopulations by the R package

monocle (Figure 6C), and found that the C1 subpopulation was at

the starting point, whereas the C3 and C0 subpopulations were near

the end point. We also analyzed the temporal trajectory relationship

of marker genes of each subpopulation (Figure 6D) and explored

the temporal trajectories of different cellular origins of each

subpopulation and individual subpopulations (Figures 6E–G), and
Frontiers in Immunology 08
we found that subpopulations C1 and C2 were more at the

beginning of the trajectory, while C0 and C3 were mostly located

at the end of the trajectory. We also validated the intercellular

trajectories by slingshot and found that they could be divided into

three periods and there were two time trajectories (Figures 6H, I),

while C3 was at the middle and end of trajectory 1 and at the tail

end of trajectory 2. We also calculated the proportional relationship

between different subpopulations and different periods with each
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FIGURE 3

Enrichment analysis of major clusters of cells. (A–H) Differential gene distribution plot of ccRCCs major population cells versus other cells, in which
the top 5 selected genes from each of the high and low expression genes are shown; (I) GO enrichment analysis plot of ccRCCs major population
cells; (J–O) GSEA enrichment analysis plot of Myofibroblasts, with 5 pathways selected from each of the low expression group and the high
expression group. (P–U) GSEA of EPCs Enrichment analysis plot with 5 pathways selected from each of the low expression group vs. high
expression group.
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other (Figures 6J, K), and found that the C3 subpopulation was in

stages 2 and 3, and mainly existed in stage 3, indicating that the C3

subpopulation was at the end of the time trajectory compared with

the C0 subpopulation, which mostly represented that the tumors

had already completed the transition from normal cells to

malignant cells, and might have a high degree of invasion and

value-added ability, as well as drug resistance. With the above

analysis, we consider the C3 subgroup as the key subgroup.
Frontiers in Immunology 09
Analysis of cell stemness genes and
transcription factors in subpopulations

In the analysis of cell stemness genes (Figures 7A–C), it was

discerned that the C3 subpopulation exhibited the most robust

scores for cell stemness genes, with CD44 showing heightened

expression in both the C3 subpopulation and tumors. Furthermore,

an examination of transcription factors in each subpopulation revealed
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FIGURE 4

ccRCCs large population of cell stemness genes and metabolic pathways map. (A)Analysis of stemness genes in large populations of ccRCCs;
(B) Top 20 metabolic pathways in large populations of ccRCCs; (C) Top 20 metabolic pathways in cells of different positional origins of Tumor,
Normal, LymphNode, and PBMC; (D–L) Distribution of UNMPs for the three pathways “Oxidative phosphorylation, Glycolysis/Gluconeogenesis,
Pentose phosphate pathway” and violin maps of the scores of the three pathways in the large population of ccRCCs with different locations of
origin. **** means p <0.0001; ns means no statistical difference.
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that the top 5 transcription factors in the C3 subpopulation were

HMGA1, PBX1, NFIC, BCLAF1, and RFX3 (Figure 7D). A detailed

exploration of the expression of these 5 transcription factors across

cellular subpopulations (Figures 7E–K) highlighted the prominent

expression of the transcription factor HMGA1, particularly in the

predominant C3 subpopulation.
Frontiers in Immunology 10
Analysis of cellular interactions

Through the computation of CNV values in EPCs, we pinpointed

the tumor cell populations within EPCs (Supplementary Figure 2).

Subsequent exploration into the number of cellular interactions

within subpopulations of cells and the broader cell populations
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FIGURE 5

Subpopulation of ccRCCs cells and correlation analysis. (A) UNMP distribution of subpopulation cells; (B) Heatmap of CNV situation of subpopulation
cells; (C) Expression of the first 5 marker genes in each subpopulation cells; (D, E) UMAP map of the distribution of source cells in different locations
of Tumor, Normal, LymphNode; (F, G) UNMP map of the distribution of subpopulation of cells in each staging cells of G2M, S, G1; (H, I) G2M, S, G1
Proportional distribution between cells and subpopulations of cells in each stage; (J, K) Proportional distribution between subpopulations of cells
and cells originating from different locations of Tumor, Normal, and LymphNode; (L) UNMP distribution of G2M.Score; (M) S.Score UNMP
distribution; (N–Q) G2M.Score, S.core, nFeature and nCount Violin graph representing score.
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(Figures 8A–C) unveiled that tumor cells exhibited the highest degree

of contact with the C3 subpopulation. Additionally, in the assessment

of interaction strength (Figures 8D–F), tumor cells demonstrated

more robust connections with the C3 subpopulation compared to

other cells. Our deduction is that the C3, identified as a key

subpopulation of Myofibroblasts, likely harbors the most potent

interactions with tumor cells. Further scrutiny into the interactions

involving the C3 subpopulation and other subpopulations

(Figures 8G–I) brought to light that the MPZ signaling pathway

network held particular significance among the subpopulations.

Notably, MPZL1, a pivotal gene in this pathway, scored the highest

within the C3 subpopulation.
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Cellular prognostic analysis

We conducted a comprehensive analysis of ccRCCs by

intersecting differentially expressed genes from the TCGA

database with C3 subpopulation marker genes. Through

univariate COX risk regression analysis, we identified 46

prognostically relevant differential genes (Figure 9A). Validation

with LASSO COX risk regression analysis confirmed the stability

and reliability of these genes (Figures 9B, C). Subsequently,

multivariate COX risk regression analysis yielded 22 final

prognostic genes, including high-risk genes such as S100A16,

FABP5, COL6A2, DCBLD2, KCNN4, COL6A1, TPM4,
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FIGURE 6

Proposed time-series analysis of subpopulation cells. (A, B) Cytotrace scores of subpopulation cells; (C, D) monocle-based time trajectory maps of
each subpopulation and marker genes; (E, F) monocle-based time trajectory staging, which can be categorized into three periods; (G) distribution of
subpopulation cells with time trajectories based on monocle; (H, I) slingshot-based time staging maps of subpopulation cells, which can be divided
into three periods with two trajectories of merit; (J, K) distribution of the ratio of subpopulation cells to time staging period.
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LINC00472, PYGB, ARHGAP29, TUBB3, and STEAP3, and low-

risk genes such as ANXA2, MACF1, ACTN4, ZBTB38, LBH,

NCKAP5, VGF, SPARC, AP1S1, and COL21A1. Patients were

stratified into high- and low-risk groups based on risk scores

(Figures 9D, E). The survival analysis revealed a progressive

increase in the number of patient deaths over time, with the high-

risk group exhibiting lower survival rates (Figures 9D, E).

Examination of coefficient values (Figure 9F) showed TUBB3

with the highest score and ANXA2 with the lowest. The

expression patterns of prognostic genes in high- and low-risk

groups were explored (Figure 9G). Kaplan-Meier curve analysis

demonstrated significantly lower survival rates in the high-risk

group (Figure 9H), with a meaningful result (P < 0.0001). ROC

curve analysis indicated stable and good predictive performance at

1, 3, and 5 years (Figure 9I). We further examined the correlation of

different genes with risk score and prognosis (Figure 9J) and

visualized six genes significantly associated with risk score

(Figure 9K). Exploration of the correlation of clinical factors with

the risk score and construction of a nomogram (Figures 10A–G)

allowed for predicting the survival rate of ccRCC patients at 1, 3,

and 5 years. Validation through ROC and DCA curves
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demonstrated the model’s high stability, sensitivity, and clinical

utility (Figures 10H, I).
Immune correlation analysis

We computed and compared immune cell infiltration in the

high- and low-risk cohorts (Figures 11A, B) and examined the

correlation of immune cells with risk scores and prognostic genes

(Figures 11C, D). T cells CD4 memory activated showed a positive

correlation with RISK, whereas T cells CD4 memory resting

exhibited a negative correlation with RISK. Immune cell

disparities between high and low-risk groups were also assessed

(Figure 11E), revealing relatively high scores of Macrophages M2,

particularly notable in the low-risk group. TIDE score analysis

(Figure 11F) indicated a high score in the high-risk group,

suggesting a potential for immune escape. Additionally, immune

checkpoint score calculation (Figure 11G) revealed a predominantly

negative correlation with RISK score. Comparing tumor

microenvironment-related scores in the high- and low-risk groups

(Figures 11H–J) showed higher scores in both high-risk cohorts.
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FIGURE 7

Subpopulation cell stemness gene and transcription factor analysis. (A) Cellular stemness gene expression level violin plot for each subpopulation of
cells in Myofibroblasts; (B) UMAP distribution of stemness gene expression level in subpopulation of cells; (C) Stemness gene expression in each
subpopulation of cells in Myofibroblasts; (D) Top 5 transcription factors of each subpopulation of cells in Myofibroblasts; (E–K) Top 5 transcription
factors UMAP distribution graph.
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Experimental result

We selected two distinct types of ccRCC cells for the

experiment, conducting a comparative analysis between the

control group and the knockdown infection group. Remarkably,

both cell types exhibited significantly diminished cell viability levels

upon MPZL1 knockdown (Figures 12A, B). In the cluster formation

assay, the number of colonies showed a substantial reduction in

both cell types following MPZL1 knockdown (Figure 12C). The

Transwell assay results (Figure 12D) revealed markedly reduced

staining regions in cells with MPZL1 knockdown, indicating a

diminished invasive capability. In cell scratch assay experiments

(Figure 12E), the 48-hour scratch width in both cell lines subjected

to MPZL1 knockdown was significantly wider compared to the

negative control group. The cell proliferation assay (Figure 12F)

further demonstrated a lower cell count in both cell lines with

MPZL1 knockdown compared to the negative control group. Thus,

our experimental findings affirm that MPZL1 plays a promotive role

in the proliferation, migration, and invasion of ccRCCs, and

knockdown of MPZL1 effectively inhibits these processes,

restraining the recurrence of ccRCCs.
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Discussion

Renal cell carcinoma stands as the seventh most frequently

diagnosed malignant tumor, exhibiting a gradual rise in incidence

within developed countries in recent years (46). Among its common

clinical subtypes, clear cell renal cell carcinomas (ccRCCs) are

associated with diverse clinical prognostic outcomes, revealing

metastasis in up to 30% of patients at the onset (47). Surgical

intervention, though a common treatment approach, proves

ineffective, and there remains a notable risk of recurrence post-

surgery (48). Given the limited sensitivity of ccRCCs to

radiotherapy drugs (9), the identification of mechanisms and

therapeutic targets related to ccRCC progression becomes crucial.

Conducting enrichment analysis and metabolic pathway

examination of Myofibroblasts and Endothelial Progenitor Cells

(EPCs), we observed elevated scores in oxidation-related pathways

and diminished immune function. Notably, the oxidative

phosphorylation metabolic pathway exhibited the highest score in

both EPCs and Myofibroblasts. A literature review revealed that

redox homeostasis underpins normal cellular physiological

activities and survival (49). It has been recognized that tumor
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FIGURE 8

Interaction analysis between subpopulation cells and large population cells. (A-C) Number of interactions between Myofibroblasts subpopulation
cells and ccRCCs large population cells graph, where A is the number of interactions between all cells, B figure tumor cells as source, C figure
tumor cells as target, the thicker line represents the more number; (D–F) Interaction between Myofibroblasts subpopulation cells and ccRCCs large
population cells Intensity map, where D is the number of interactions among all cells, (E) means that Tumor cells are the source, and (F) means that
Tumor cells are the target; thicker lines represent higher intensity; (G) MPZ signaling pathway network pathway interactions between subpopulations
and large populations of cells; (H) MPZL1 gene expression in subpopulations and large populations; (I) Scores of action sites in MPZ signaling
pathway network pathway in each subpopulation and large populations.
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cells display heightened oxidative processes compared to normal

cells (50). Oxidative phosphorylation, a process associated with the

generation of reactive oxygen species (ROS), poses a threat to

cellular DNA and heightens cancer risk (51–54). Studies by Kuo

(55) et al. have indicated that ROS activation correlates with

increased blood vessel proliferation, suppression of immune

microenvironmental functions, and intensified production of

macrophage IFN and IL-6, ultimately hampering the immune

response in the tumor microenvironment (56–58). Albiñana (59)

et al. identified that reducing oxidative stress and ROS levels

through targeting ADRB2 proves beneficial in controlling ccRCC

progression. Additionally, Costa (60) et al. established that ROS can

induce inflammation, fostering the transformation of fibroblasts

into Myofibroblasts, exhibiting characteristics akin to invasive

adenocarcinoma-associated fibroblasts.
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Thus, we posit that the oxidative phosphorylation pathway and

its affiliated pathways play a pivotal role in the progression of clear

cell renal cell carcinomas (ccRCCs), impeding the immune

microenvironment of these tumors and facilitating their

transformation into Myofibroblasts. Consequently, this

phenomenon propels the progression and augmentation of

the tumor.

Through an exploration of cellular interactions, we discovered

that the MPZ signaling pathway network exhibits substantial

cellular interactions in crucial subpopulations of Myofibroblasts

and tumor cells, with the gene MPZL1 identified as a key player. A

comprehensive review of existing literature elucidates that MPZL1

(Myelin protein zero like 1) serves as a binding protein and

substrate of tyrosine phosphatase SHP-2 (61), demonstrating

widespread expression across various cell types and involvement
A B D

E

F

G IH

J K

C

FIGURE 9

Independent prognostic analysis. (A) 46 prognosis-related differential genes; (B) Distribution of LASSO analysis coefficient spectra of 22 prognosis
genes; (C) Optimal cross-validation of parameter selection in LASSO regression; (D) Survival time and survival status plots of patients in different risk
groups over time; (E) Classification of patients into high- and low-risk groups based on risk scores; (F) Coef values of prognosis-related genes;
(G) Heat map of prognosis-related gene distribution; (H) Kaplan-Meier prognostic analysis curves for high and low risk groups; (I) Time-dependent
ROC curves with area under the curve (AUC) of 0.79, 0.74, 0.79 at 1, 3, and 5 years; (J). Correlation analyses between genes and risk scores and OS;
(K) Dot plots of the top 6 prognostic genes that had a strong correlation with the risk score.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2024.1374931
in essential biological processes and molecular functions (62, 63).

Furthermore, the biological impact of MPZL1 in diverse tumors,

including ovarian, colorectal, and bladder cancers, has been

investigated and corroborated (64–66), highlighting its

promotional influence on tumor progression. For instance, Jia

et al. (67) observed that MPZL1 promotes the migration of

hepatocellular carcinoma cells by inducing the phosphorylation

and activation of pre-metastatic proteins. Similarly, Chen (64)

reported that elevated expression of MPZL1 stimulates the

phosphorylation of Src kinase, facilitating the proliferation and

migration of ovarian cancer cells. Additionally, Wang et al. (68)

found that overexpression of MPZL1 correlates with the

suppression of immune function in lung cancer studies. We also

postulate that MPZL1 is intricately linked to the proliferation and

migration of ccRCCs, exerting inhibitory effects on the immune

microenvironment of tumors, thereby contributing to tumor

progression or recurrence. Our experimental results substantiate

this hypothesis.

TUBB3 (tubulin beta 3 class III), belonging to the b-tubulin
protein family, intricately engages in neurogenesis and microtubule

assembly within neuronal cells. Its dynamic interplay involves

elongation or depolymerization throughout the cell cycle, exerting

substantial influence on cellular morphology, division, and

cytoskeletal architecture (69–71). A plethora of studies has

consistently emphasized the notable correlation between elevated

TUBB3 expression and unfavorable prognoses across various
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malignancies, including lung, ovarian, and gastric cancers,

establishing it as a prognostic indicator for cancer recurrence

(72–74). Moreover, certain studies have indicated that high

expression of TUBB3 leads to increased drug resistance in tumor

cells, which adversely affects patient prognosis (75, 76).

Additionally, adenocarcinoma patients with negative TUBB3

expression tend to have longer survival times compared to those

with positive expression (77). Furthermore, it has been observed

that the TUBB3-associated protein network is involved in certain

oxidative stress processes, which may enhance the vitality and drug

resistance of tumor cells (78). Experimental research on anti-

microtubule chemotherapy drugs has revealed that tumor cells

with high TUBB3 expression exhibit stronger resistance to drugs

like paclitaxel compared to those with lower expression (79, 80).

Our research similarly hypothesizes a close relationship between

TUBB3 and oxidative stress-related pathways, potentially

promoting the proliferation and recurrence of ccRCCs through

this process. This interaction may lead to ccRCCs developing

resistance to relevant chemotherapy drugs, ultimately facilitating

the progression of ccRCCs.
Conclusion

In this comprehensive study, a thorough examination of single-

cell data related to clear cell renal cell carcinomas (ccRCCs)
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FIGURE 10

Clinical correlation analysis. (A–F) analysis of the correlation of risk scores with racial factors, gender, age, and tumor stage T, N and M (G)
Nomogram plots of patients with ccRCCs at 1, 3, and 5 years; (H) time-dependent ROC plots, with AUCs of 0.86, 0.80, and 0.80 at 1, 3, and 5 years,
respectively; (I) DCA analysis of prognostic models Figure.
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systematically elucidates the pivotal role of oxidative-related

pathways within the diverse cellular milieu of ccRCCs.

Simultaneously, we meticulously investigate the critical

involvement of these pathways in myofibroblasts and endothelial

progenitor cells (EPCs). Additionally, a detailed exploration is

conducted into the interactive pathways between key subgroups,

such as the C3 HMGA1+ Myofibroblasts in myofibroblasts, and

tumor cells within EPCs. This comprehensive analysis extends to

the investigation of the essential gene MPZL1, culminating in the

construction of a ccRCCs prognostic model intricately linked to

these pathways. We posit that both MPZL1 and the oxidative stress
Frontiers in Immunology 16
pathway harbor the potential to emerge as critical therapeutic

targets for the treatment and resistance against recurrence in

ccRCCs. This assertion is substantiated through empirical

validation, specifically demonstrating the concrete impact of

MPZL1 on ccRCCs. Our research has confirmed the significant

roles played by Myofibroblasts and the key gene MPZL1 in the

progression of ccRCCs, providing novel insights for future studies

on ccRCCs. We have discovered that targeting MPZL1 and the

oxidative phosphorylation pathway could serve as potential key

targets for the treatment of ccRCCs progression and recurrence.

This finding opens up new directions for the treatment and
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FIGURE 11

Immune correlation analysis. (A) Heatmap of prognostic genes, tumor microenvironment and immune cell profile in high and low risk groups;
(B) Difference in the proportion of immune cells in high and low risk groups; (C) Immune cell risk score relationship score; (D) Immune cell
correlation with prognostic genes, risk score and OS; (E) Difference in immune cell expression between high and low risk groups; (F) TIDE score
violin plot between high and low risk groups; (G) Situation point plot of the relationship between immune checkpoints and prognostic genes, risk
scores; (H–J) Difference in immune scores, stromal scores, and total scores of tumor microenvironment between high and low risk groups. * means
p <0.05; ** means p <0.01; *** means p <0.001; **** means p <0.0001; ns means no statistical difference.
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prognosis diagnosis of ccRCCs in the future. In conclusion, our

discoveries explore the mechanisms underlying the proliferation

and recurrence of ccRCCs and shed light on prognostic markers

and therapeutic targets for ccRCCs.
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FIGURE 12

In vitro experimental validation of MPZL1. (A, B) CCK-8 assay showed that cell viability was significantly reduced after MPZL1 knockdown; (C) Colony
formation assay showed that the number of colonies in MPZL1 knockdown cells was significantly lower than that in si-NC group; (D) Transwell assay
showed that MPZL1 knockdown significantly slowed down the growth of 786 -O cells and CAKI-1 cells invasion; (E) Scratch assay showed that
MPZL1 knockdown significantly slowed down the migration of 786-O cells and CAKI-1 cells; (F) EdU staining results showed that MPZL1 knockdown
inhibited the proliferation of 786-O cells and CAKI-1 cells. * means p <0.05; ** means p <0.01; *** means p <0.001.
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SUPPLEMENTARY FIGURE 1

Quality control and dimensionality reduction clustering of data. (A) Quality-

controlled and filtered single-cell data of ccRCCs. (B) Filtered ccRCCs cell

stage examination showing G1, G2M, and S stages. (C) Selection of the top
2000 highly variable genes based on gene expression and dispersion, with the

top 10 highly variable genes indicated. (D) RunPCA dimensionality reduction
plot showing the first 30 dimensions of the selected 50 dimensions. (E) PCA
plot of different sample sources after dimensionality reduction. (F) Heatmap
of the top ten highly variable genes in the first nine dimensions.

SUPPLEMENTARY FIGURE 2

Heatmap of EPCs cell CNV (Copy Number Variation) status.
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79. Ploussard G, Terry S, Maillé P, Allory Y, Sirab N, Kheuang L, et al. Class III beta-
tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-
based chemotherapy. Cancer Res. (2010) 70:9253–64. doi: 10.1158/0008-5472.CAN-10-1447
Frontiers in Immunology 20
80. Hirai Y, Yoshimasu T, Oura S, Ota F, Naito K, Nishiguchi H, et al. Is class III
beta-tubulin a true predictive marker of sensitivity to vinorelbine in non-small cell lung
cancer? Chemosensitivity data evidence. Anticancer Res. (2011) 31:999–1005.
frontiersin.org

https://doi.org/10.1158/0008-5472.CAN-10-1447
https://doi.org/10.3389/fimmu.2024.1374931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Deciphering the molecular landscape: integrating single-cell transcriptomics to unravel myofibroblast dynamics and therapeutic targets in clear cell renal cell carcinomas
	Introduction
	Methods
	Data processing and download
	Quality control
	Clustering and annotation
	Analysis of cell sources and enrichment of large populations
	Analysis of cellular metabolism in large populations
	Myofibroblasts subgroup correlation analysis
	Trajectory and correlation analysis of myofibroblasts subgroups
	Subpopulation cell interaction analysis
	Clinical correlation and independent prognosis analysis of C3 subpopulations
	Immune correlation analysis and enrichment analysis
	Cell culture
	Cell transfection
	Cell viability assay
	5-Ethyl-2 &apos; -deoxyuridine proliferation assay
	Wound healing
	Transwell experiment

	Results
	ccRCCs large population cell categorization
	Analysis of cell origin and gene transcription correlation in large populations
	Enrichment function analysis
	Cell stemness and metabolic analysis
	Subclustering of myofibroblasts
	Proposed time series analysis of subpopulation cells
	Analysis of cell stemness genes and transcription factors in subpopulations
	Analysis of cellular interactions
	Cellular prognostic analysis
	Immune correlation analysis
	Experimental result

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


