
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Laurent Brossay,
Brown University, United States

REVIEWED BY

Kapil Sirohi,
National Jewish Health, United States
Kavitha Mukund,
University of California, San Diego,
United States

*CORRESPONDENCE

Kari C. Nadeau

knadeau@hsph.harvard.edu

†
PRESENT ADDRESSES

Abhinav Kaushik,
Department of Environmental Health, Harvard
T.H. Chan School of public Health, Boston,
MA, United States
Kari C. Nadeau,
Department of Environmental Health, Harvard
T.H. Chan School of public Health, Boston,
MA, United States
Iris Chang,
Department of Pediatrics, Stanford University
School of Medicine, Stanford, CA,
United States
Ziyuan He,
Allen Institute for Immunology, Seattle, WA,
United States

‡These authors have contributed
equally to this work and share
senior authorship

RECEIVED 22 January 2024
ACCEPTED 07 June 2024

PUBLISHED 04 July 2024

CITATION

Kaushik A, Chang I, Han X, He Z, Komlosi ZI,
Ji X, Cao S, Akdis CA, Boyd S, Pulendran B,
Maecker HT, Davis MM, Chinthrajah RS,
DeKruyff RH and Nadeau KC (2024) Single
cell multi-omic analysis identifies key genes
differentially expressed in innate lymphoid
cells from COVID-19 patients.
Front. Immunol. 15:1374828.
doi: 10.3389/fimmu.2024.1374828

COPYRIGHT

© 2024 Kaushik, Chang, Han, He, Komlosi, Ji,
Cao, Akdis, Boyd, Pulendran, Maecker, Davis,
Chinthrajah, DeKruyff and Nadeau. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 July 2024

DOI 10.3389/fimmu.2024.1374828
Single cell multi-omic analysis
identifies key genes differentially
expressed in innate lymphoid
cells from COVID-19 patients
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Zsolt I. Komlosi2,3, Xuhuai Ji4, Shu Cao1, Cezmi A. Akdis3,5,
Scott Boyd1,6, Bali Pulendran6,7,8, Holden T. Maecker7,
Mark M. Davis7,8,9, R. Sharon Chinthrajah1,
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University School of Medicine, Stanford, CA, United States, 2Department of Genetics, Cell- and
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(SIAF), University of Zurich, Davos, Switzerland, 4Human Immune Monitoring Center, Institute for
Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United
States, 5Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland, 6Department
of Pathology, Stanford University, Stanford, CA, United States, 7Institute for Immunity, Transplantation
and Infection, Stanford University, Stanford, CA, United States, 8Department of Microbiology and
Immunology, Stanford University, Stanford, CA, United States, 9Howard Hughes Medical Institute,
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Introduction: Innate lymphoid cells (ILCs) are enriched at mucosal surfaces

where they respond rapidly to environmental stimuli and contribute to both

tissue inflammation and healing.

Methods: To gain insight into the role of ILCs in the pathology and recovery from

COVID-19 infection, we employed a multi-omics approach consisting of Abseq

and targeted mRNA sequencing to respectively probe the surface marker

expression, transcriptional profile and heterogeneity of ILCs in peripheral blood

of patients with COVID-19 compared with healthy controls.

Results: We found that the frequency of ILC1 and ILC2 cells was significantly

increased in COVID-19 patients. Moreover, all ILC subsets displayed a significantly

higher frequency of CD69-expressing cells, indicating a heightened state of

activation. ILC2s from COVID-19 patients had the highest number of significantly

differentially expressed (DE) genes. The most notable genes DE in COVID-19 vs

healthy participants included a) genes associated with responses to virus infections

and b) genes that support ILC self-proliferation, activation and homeostasis. In

addition, differential gene regulatory network analysis revealed ILC-specific regulons

and their interactions driving the differential gene expression in each ILC.

Discussion: Overall, this study provides mechanistic insights into the

characteristics of ILC subsets activated during COVID-19 infection.
KEYWORDS

innate lymphocyte cells (ILCs), SARSCoV- 2, COVID - 19, single cell RNA analysis, single
cell immunology
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Introduction

The outcome of infection with the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) is highly variable. While

many patients exhibit mild to moderate symptoms, others progress

to severe disease requiring hospitalization, and some to multi-organ

failure and death. Many patients recover within a few weeks from

coronavirus disease 2019 (COVID-19), while others are known to

progress to “long COVID” from which recovery may take months

(1, 2). The risk of severe COVID-19 and death in those infected with

SARS-COV-2 increases with age and is greater in men than women

(1–3). Despite the progress made in vaccine development and

treatment for COVID-19, much remains to be elucidated

regarding the underlying immune response to COVID-19, and

the variability of this response.

Severe COVID-19 is often associated with an activated immune

response characterized by enhanced plasma levels of pro-

inflammatory mediators including IL-6, IL-1b, TNF, IL-2 and

others (2, 4, 5). Whether this is an appropriate response to

disease in these patients or a dysregulated immune response,

described as “cytokine storm”, is not known. Lymphopenia has

often been described in severe COVID-19 patients, including a

reduction in CD4+ and CD8+ T cells and NK cells (6, 7), and an

upregulation of exhaustion markers on remaining CD8+ T cells and

NK cells (8). Dysregulation in other cell types in COVID-19

patients was also reported, including increased numbers of

plasmablasts and a novel cell population of developing

neutrophils described in COVID patients with acute respiratory

distress syndrome (ARDS) (7).

Innate lymphoid cells (ILCs) include ILC1, ILC2, and ILC3 cells

which express the a-chain of the IL-7 receptor (CD127) and the

developmentally distinct CD127neg NK cells. CD127+ ILCs, which

are considered innate counterparts of Th1, Th2 and Th17 subsets of

CD4+ T cells, are largely tissue resident cells and are enriched at

barrier surfaces of the mammalian body, such as the lung and

intestine, where they respond rapidly to environmental or microbial

stimuli, act early in the immune response and contribute to tissue

homeostasis and healing. ILCs are also found in peripheral blood,

which contains the ILC1 and ILC2 subsets as well as ILC precursor

(ILCp) cells (9) which provide a source of ILC1, ILC2 and ILC3 cells

as needed by tissues (9–12). Type 1 ILCs (ILC1s) function as a first

line of defense against infections with viruses, often in the lung, and

Type 2 ILCs (ILC2s) play a key role in lung homeostasis where they

have both pathogenic and protective functions. Absolute counts of

total ILCs as well as counts of ILC subsets have been reported to be

reduced or largely depleted in peripheral blood of patients with

COVID-19, particularly in cases of severe COVID-19 (3, 13, 14).

Little is known regarding the role of ILCs in human respiratory

virus infections, but studies in mice show that ILC2s accumulate in

the lung of virus-infected mice where they may contribute to lung

inflammation as well as promote tissue repair (15–17). Since

COVID-19 infection is often initiated in the upper airways, we

hypothesized that ILCs may play an important role in COVID-19-

associated lung inflammation and its subsequent resolution. To our

knowledge there have been no systems biology studies probing the

transcriptional responses of ILCs at a single cell level in patients
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with COVID-19, which could provide insight into the role of ILCs

in COVID-19 infection.

To more precisely define the impact of COVID-19 on ILCs, we

employed a single cell multi-omics approach consisting of Abseq

(18) and single-cell RNA sequencing (19) to probe the surface

protein marker expression and transcriptional profile respectively,

and to evaluate the heterogeneity of CD127+ ILCs in peripheral

blood of patients with asymptomatic to moderate and long-term

COVID-19 compared with healthy control participants. The

differential expression analysis revealed that ILCs from COVID-

19 patients were transcriptionally distinct from those of healthy

control participants.
Results

Single-cell transcriptome analysis of ILCs
from COVID-19 patients

We examined peripheral blood ILCs from a total of 22 adult

patients with asymptomatic (n=2), mild (n=17), and moderate

(n=3) COVID-19, some of whom developed long term COVID-

19 assessed at 30 days (n=15) (68.1%) and 90 days (n=12) after

infection and 25 healthy control participants (Supplementary Table

S1). Samples selected for this study were obtained within 76 days of

positive COVID PCR test date. For profiling peripheral blood ILCs,

we first sorted ILCs from PBMCs, which were then subjected to

targeted analysis using BD Rhapsody™ platform (19) (see method).

Briefly, we applied simultaneous quantification of surface proteins

(Abseq) (18) (Supplementary Table S2) and targeted mRNA

expression at the single-cell level (Figure 1A; Supplementary

Figure 1). This approach allowed the simultaneous interrogation

of surface proteins used for immunophenotyping, immune-related

genes and single-cell heterogeneity analysis. From the resulting

multi-modal, high-throughput single cell dataset, 6247 ILCs (ILC1

(CD117-CRTH2-) = 2103; ILC2 (CD117+/- CRTH2+) = 2509 and

ILCp (CD117+CRTH2-) = 1635) (Supplementary Figure 1), were

identified based on the cell surface protein expression profiles using

an established ILC manual gating strategy (13, 20). Remaining

10,895 ILCs from sorted cell population were excluded from

further analysis.

Unsupervised UMAP based dimension reduction and

visualization of all manually gated ILCs (see methods) showed

three types of ILCs as distinct cell clusters, corresponding to ILC1,

ILC2 and ILCp cells (Figure 1B; Supplementary Figures 2A, B). As

expected, CD127 was expressed by all ILCs, with ILC1s and ILC2s

demonstrating high CD127 expression (21). Similarly, we observed

a cluster of CRTH2+ ILC2 cells, CD161high ILC2 cells and

CD117high ILCp cells. In the UMAP based cell clusters, the cell

density analysis using Kernel Density Estimation (KDE) of total

ILCs from COVID-19 and healthy participants revealed a higher

cell density in the ILC2 cluster in COVID-19 patients as compared

with healthy participants (Figure 1C). We observed relatively higher

frequencies of gated ILCs (p=0.004; percentage of total sorted innate

lymphoid cells) in peripheral blood of COVID-19 patients as

compared to healthy control participants, including a higher
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FIGURE 1

ILC identification and classification. (A) Schematic illustrating experimental approach. (B) UMAP dimensionality reduction analysis of manually gated ILCs
from COVID-19 patients and healthy control participants. ILCs in UMAPs are colored to show the relative expression of CD127, CD161, CD117 and
CRTH2. (C) Kernel Density Estimation (KDE) of ILC distribution in the UMAPs. The plot represents the density distribution of ILCs from COVID-19 patients
and healthy controls. (D) Frequencies (i.e., percentage of total live cells) of ILCs and ILC subsets from COVID-19 patients were compared with healthy
controls. P-values between two groups of samples were calculated using Wilcoxon rank-sum test. (E) Significant differences in CD69 expression by ILC
subsets from COVID-19 patients compared with healthy controls. (F) Regression analysis showing the inverse association between CD62L+ ILCs versus
CD69+ ILCs in each sample. (G) Frequencies (i.e., percentage) of CD62L+ ILCs from COVID-19 versus healthy controls. Adjusted p-values between two
groups of cells were calculated using Wilcoxon rank-sum test (see methods). For boxplot representation, percentage of cells expressing a given protein
in every sample is shown.
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frequency of both ILC1 cells (p = 0.007) and ILC2 cells (p = 0.002;

Figure 1D), also indicated from the kernel density estimation (KDE)

heatmaps of ILCs within the UMAP plot (Figure 1C). Comparison

of LT COVID-19 patients vs non-long-term participants showed

relatively higher frequencies of total ILCs (p=0.001) and a trend

toward higher frequencies of ILC2 and ILCp in LT COVID-19

patients (Supplementary Figures 2C, D). Expression of KLRG1, a

marker of a developmentally transitional stage of ILC2 cells, was

present in a subset of ILC2 cells and ILCp cells as expected and did

not differ significantly between COVID-19 participants and healthy

controls (Supplementary Figures 3A, B). In addition, we also

observed significant increase in the population of CD279 (PD-1)+

ILCs (Supplementary Figure 3C) in COVID-19 participants.

Interestingly, for ILCps, this significant increase in the proportion

of CD279 (PD-1)+ cells is associated with LT COVID-

19 participants.

Among the cell surface protein markers used in our Abseq panel, a

higher relative frequency of expression of the activation marker CD69

was observed in ILC1 (adj. p = 9.3e-10), ILC2 (adj. p = 6.1e-14) and

ILCp (adj. p = 7.9e-5) cells from COVID-19 patients compared with

controls. (Figure 1E). Intriguingly, the increased activation status was

inversely correlated with protein expression of the trafficking molecule

CD62 Ligand (CD62L) (Figures 1F, G), a marker associated with cell

naivety (22) encoded by the gene SELL. CD62L protein expression was

significantly lower in all three ILC subsets in COVID-19 patients,

indicating that these cells were more mature (Figure 1G). The

significant inverse correlation between CD69 and CD62L was most

prominent in ILC1 cells (p = 0.002; r = -0.44) as compared to ILC2

(p = 0.014; r = -0.36) and ILCp (p = 0.076; r = -0.31). Although there

was a range of days post COVID-19 RT-PCR positive diagnosis in

which peripheral blood was obtained (Supplementary Figure 4A),

relative frequencies of ILCs expressing CD69 or CD62L were not

associated with days since the PCR visit date. (Supplementary

Figures 4B, C).
Single cell mRNA expression revealed key
genes differentially expressed in ILC1, ILC2
and ILCp subsets in COVID-19 patients

We investigated transcriptional differences in ILCs from

COVID-19 patients compared with healthy control participants

(Figures 2A, B). The scRNA-seq was performed using BD Rhapsody

multi-modal single cell analysis platform that quantified the

expression of 430 genes. However, the number of genes expressed

(expression > 0) by the gated ILCs varied between 16 to 108.

Supplementary Table S3 shows median, and range of gene count

expressed in different ILC subsets in healthy and COVID-19

individuals. The differential expression analysis revealed a higher

number of genes significantly downregulated than upregulated in

COVID-19 patients in ILC1, ILC2 and ILCp cells (Supplementary

Figure 5), including SELL, IFITM2 and FAM65B. Some genes were

DE in all three subsets, some genes were DE in two ILC subsets, and

other genes were uniquely DE by ILC1s, ILC2s, or ILCps compared

with healthy controls, as shown in Figure 2B. Overall, ILC2s from

COVID-19 patients had the highest number of significantly DE
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genes (41 genes, log fold-change > 0.5 and adj.p< 0.05), followed by

ILC1s (35 genes) and ILCps (19 genes) (Figure 2B). ILC1 and ILC2

cells had the highest number of shared DE genes (n= 27) in

COVID-19 patients compared to healthy participants. ILC2s

showed 12 unique DE genes not observed in ILC1 and ILCp

cells (Figure 2B).

Within the list of significantly DE genes, interferon-induced

transmembrane protein 2 (IFITM2), FAM65B and SELL were

downregulated in all ILC subsets in COVID-19 patients compared

with healthy controls (Figures 2C, D). IFITM2 was downregulated in

all ILCs: ILC1s (adj.p = 2.2e-39), ILC2s (adj.p = 2.3e-48) and ILCps

(adj.p = 3.5e-20) (Figures 2A, C, D). Another member of the IFIT

family, i.e., IFITM3, was also significantly downregulated in all ILC

subsets: ILC1s (adj.p = 1.7e-31), ILC2s (adj.p = 8.2e-44) and ILCp

(adj.p = 8.7e-20) (Figure 2A; Supplementary Data File 1). Two other

genes, FAM65B, which negatively regulates T cell activation, adhesion

and migration, and SELL, which encodes the trafficking molecule

CD62L, were also significantly downregulated in all three ILC subsets

of COVID-19 patients compared with controls (Figure 2C, D).

Interestingly, pathway analysis of DE genes in each ILC reveals

several interesting pathways (Supplementary Figure 6), including

pathways related to T-cell activation/co-stimulation, cell adhesion,

immune response regulation and cytokine signaling. Notably, in

ILC2, we also observed pathways specific to “T-cell activation in

SARS-COV-2” and “Th1 and Th2 cell differentiation”. Whereas, in

ILCps, we observed pathways related to leukocyte migration and

regulation of cell surface adhesion.

To gain insights if these pathways are associated with patient

with LT COVID-19 symptoms, we performed differential gene

expression analysis of ILCs from LT COVID patients versus

healthy participants (Supplementary Figure 7A; Supplementary

Data File 2). We observed that DE genes in LT COVID patients

were similar to those in the comparison of ILCs from all COVID-19

patients with healthy participants (Supplementary Figure 7B.). Most

of DE genes predicted were conserved across the two different

analyses, including the genes IFITM2, SELL, and FAM65B, which

were also predicted to be significantly downregulated in LT

COVID-19 patients compared with healthy participants. As

expected, enrichment analysis of DE genes predicted with LT

COVID-19 patients versus healthy participants reveals similar set

of pathways related to T-cell activation, cytokine signaling, cell

adhesion and migrations (Supplementary Figure 8). Interestingly,

several pathways were commonly enriched across three ILC

subtypes. Two notable pathways highlighted were “Leukocyte

activation” and “Positive regulation of immune response”.

In a cellular system, two or more genes can co-express together

to form a gene-expression network. Genes that are co-expressed

together tend to be involved in the same biological processes or

pathways. During perturbation such as COVID-19 infection, the

interactions between genes can change as the ILCs responds to the

virus, which can alter their functional role. Differential co-

expression network analysis allows us to compare the networks of

gene interactions in ILCs from COVID-19 patients versus healthy

individuals. Highly connected genes within the differential co-

expression network represent genes that are likely to play

important coordinating roles in the cellular response to COVID-
frontiersin.org
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FIGURE 2

Genes differentially expressed in ILCs from COVID-19 patients compared with healthy controls. (A) Volcano plots representing DE transcripts in
sorted ILCs from COVID-19 patients and controls. (B) Venn diagram showing the number of DE genes in each ILC subset. We observed 13 DE genes
common to all three ILC subsets from COVID-19 patients relative to healthy controls. (C) Heatmap depicting mean (scaled) expression of selected
DE genes in COVID-19 patients and healthy controls in each ILC subset. (D) Frequencies (i.e., percentage) of IFITM2+, FM65B+ and SELL+ ILCs from
COVID-19 patients versus healthy controls. (E). The circos plots representing differential co-expression networks reconstructed for IFITM2, FM65B
and SELL genes in total ILC population. The edges in the plot represents co-expression links significantly different across healthy vs COVID-19 ILCs.
We observed that among IFITM2, FM65B and SELL genes, FAM65 shows highest degree of differentially co-expressed links with other genes.
Adjusted p-values for enumerating DE genes between two groups of cells were calculated using MAST test (see methods). For boxplot
representation, percentage of cells expressing the given gene in every sample is shown.
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19 infection, as their expression is highly correlated with many

other genes only in the COVID-19+ condition. Identifying such

genes provides insights into the key drivers of the host response to

the virus and potential molecular targets for therapeutic

intervention. Therefore, we reconstructed two gene co-expression

cellular networks, i.e. COVID-19 ILCs and healthy ILCs, in which

each network is composed of pair-wise gene interactions among all

the genes available in the total ILCs. Next, we performed differential

analysis of two networks and identified group of genes that changed

their interactions with three DE genes- IFITM2, FAM65B and SELL,

across COVID-19 vs healthy ILC networks. The analysis highlights

that FAM65B shows highest degree of rewiring, which implies that

its differential expression strongly impacts the relationships with

other genes in the ILC network in response to COVID-19 infection

(Figure 2E). Similarly, differential expression of SELL is also

associated with significant rewiring of its interactions with a large

set of genes. Interestingly, both FAM65B and SELL genes commonly

change their interaction with six other genes, including CCR2, CR2,

IL12A, NINJ2, POU2AF1 and CD40. Among these, CD40 alters its

interaction with all three DE genes- FAM65B, SELL and IFITM2.

Thus, using this differential network analysis we predict a high

impact of FAM65B differential expression that alters its interactions

with other genes, suggesting its key role in ILCs and COVID-

19 infection.

ILC1s, ILC2s and ILCps in COVID-19 patients also

downregulated the gene PIK3AP1 (adj.p= 1.4e-14, 3.5e-16 and

2.7e-06, respectively) (Figures 2A, 3A–C), which encodes a

signaling adapter protein linking the phosphoinositide 3-kinase

(PI3K) signaling pathway to various coreceptors. In contrast to

the genes downregulated in ILCs from COVID-19 patients, we

observed an upregulation of SPOCK2 in ILC1 (adj.p = 6.7e-24),

ILC2 (adj.p = 1.2e-37) and ILCp (adj. p = 1.4e-08) (Figure 3A).

Expression of STAT5A (signal transducer and activator of

transcription 5A), a member of the STAT family of transcription

factors important in signal transduction, was upregulated in ILC1,

ILC2 and ILCp cells (adj.p= 2.7e-08, 9.3e-04 and 0.09, respectively),

from COVID-19 patients compared with controls (Figures 3A, C;

Supplementary Data File 1).
Genes differentially expressed in subsets of
ILCs from COVID-19 patients

In addition to genes DE in all ILC subsets in COVID-19

patients, some genes were differentially expressed in specific ILC

subsets. Expression of ITGB7 (integrin subunit beta 7), which

encodes an integrin superfamily member protein that plays a role

in cell migration (23), was significantly downregulated in both ILC1

and ILC2 subsets (adj.p = 7.9e-07 and 8.2e-08, respectively)

compared with controls (Figures 3A, B; Supplementary Data File

1). Expression of ITGB2, another integrin subunit encoding gene,

was also downregulated in ILC1s and ILC2s (adj.p = 2.6e-10 and

1.2e-21, respectively) in COVID-19 patients compared with

controls. ILC1 cells from COVID-19 patients upregulated

expression of CD6 (adj.p= 2.3e-06) (Figure 3A), which encodes a

cell surface protein that has been shown to costimulate T cell
Frontiers in Immunology 06
activation and proliferation (24). ILC1s also upregulated

expression of RGS1 (adj.p= 2.1e-13), a regulator of G protein

signaling (Figure 3A). ICAM1 (intercellular adhesion molecule 1)

was upregulated in ILC1 (p = 0.0009), ILC2 (p = 0.004) and ILCp

(adj. p = 2.9e-03) subsets in COVID-19 patients (Figure 3C;

Supplementary Data File 1).

ILC2 cells from COVID-19 patients downregulated the

expression of HPGDS (adj.p = 9.9e-11), which encodes an

enzyme that plays a role in the prostanoid metabolic pathway

(Figure 3B). ILC2s from COVID-19 patients showed upregulated

expression of the genes IL4R (adj.p =8.3e-30) and ICOS (adj.p =

6.2e-05), which play important roles in ILC2 homeostasis and

function, as well as expression of the transcription factor STAT3

(adj.p = 1.4e-03) (Figure 3B), RORA (adj.p = 0.001), important in

development of ILC2 cells, and NAMPT (adj.p = 0.002)

(Supplementary Data File 1). ILCp cells from COVID-19 patients

showed upregulated expression of IL2RA (adj.p = 0.004), IL4R

(adj.p = 2.3e-11) as well as other immune-related genes including

TNFRSF25 (adj.p = 4.2e-03) and CCR7 (adj. p = 7.7e-05), which has

been shown to control the migration of lymphoid cells to inflamed

tissues (25) (Figure 3C).

Next, we attempted to identify the genes that change co-

expression profiles between healthy and COVID-19 patients in

each ILC subset. For each ILC subset, we constructed two co-

expression networks in which each network includes the co-

expression profile between every pair of genes available in our

dataset. This comparative network analysis reveals the edges (i.e.,

co-expression links) with differential profile across healthy vs

COVID-19 patients, i.e., network rewiring (Figure 3D).

Differential co-expression analysis allowed us to predict and

prioritize the genes that can alter their interactions, i.e., functional

relationships, with other genes between healthy versus COVID-19

in each ILC subset. Interestingly in ILC1 cells, ICAM1, PIK3AP1,

STAT5A, TGFB1 and FAM65B genes show the highest degree of

network rewiring across healthy vs COVID-19 correlation

networks. In ILC2, we observed altered co-expression profiles of

IL4R, PIK3AP1, HPGDS, NAMPT, ICOS and FAM65B. Whereas in

ILCp, the differential network analysis revealed IL2RA, IL4R,

ICAM1, FAM65B, CD300A and FCER1G as the most rewired

genes with varying co-expression profiles across COVID-19 vs

heathy co-expression networks.
Identification of ILC specific regulons by
reconstructing gene regulatory networks

To investigate the potential gene expression regulators of the

DE genes observed in the above analyses, we performed SCENIC

analyses to predict TFs and gene target regulatory indications in

the ILC subsets. From our scRNAseq panel we identified 25

regulons (TF genes) to be significantly active in most of the

ILCs. For each TF gene, we calculated AUCell score in each cell

that signifies the active state of the gene in a given cell (Figure 4A).

The binarized AUcell score of 25 TFs in 6250 ILCs highlights the

key TFs active in the given ILCs, especially FOXP1, FOSL1, BCL6,

IRF4 and BACH2. Among these, we found that 8 TFs were also DE
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(adj. p < 0.05) in at least one of the three ILCs, i.e., GATA3, JKZF1,

JUNB, JUN, LEF1, RUNX3, STAT3 and STAT6 (Figure 4B).

Downregulation of JUNB and LEF1, and upregulation of

RUNX3 was observed in all three ILC subsets from COVID-19

patients . The TFs JUN and STAT6 were significantly

downregulated in ILC1 and ILC2, respectively. In contrast,

STAT3 is significantly upregulated in both ILC1 and ILC2.

TFs are well known tomodulate the expression of their target genes

without necessarily altering their own expression profile. Therefore, we

reconstructed a directed gene regulatory network of TF and their target

genes in ILCs using GRNboost2 and pySCENIC workflow (see
Frontiers in Immunology 07
methods). The network includes both DE and non-DE TFs, which

can potentially regulate the expression of DE target genes. Only 7 out of

25 regulons were found to interact with DE target genes via

GRNboost2 analysis (Figure 4C). These 7 regulons were predicted to

regulate the expression profile of more than 40 genes in all the three

ILCs. In ILC1, we observed 28 DE target genes strongly interacting with

the 7 regulons. Of these, FOSB, JUN and JUNB were found to

significantly regulate the expression profile of a large number of

target genes, including CD69 and HLA-A. We observed a similar

trend in ILC2 and ILCp, wherein FOSB, JUNB and RUNX3 showed the

highest degree of connections with DE target genes.
A

B

D

C

FIGURE 3

Genes differentially expressed in ILC subsets. (A–C) Boxplots of selected genes with statistically significant differential expression. The y-axis
represents the percentage of cells expressing a given gene in each sample. The p-values were calculated by comparing the scaled gene expression
profile in two groups of ILCs (COVID vs healthy control) using Seurat R package (test used: MAST) at the single cell level. (D) The circos plots
represent differential co-expression networks reconstructed for ILC1, ILC2 and ILCp. The edges in the plot represents co-expression links
significantly different across healthy vs COVID-19 ILCs. Adjusted p-values for enumerating DE genes between two groups of cells were calculated
using MAST test (see methods). For boxplot representation, percentage of cells expressing the given gene in every sample is shown.
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Discussion

We interrogated the transcriptional profile of CD127+ ILCs in

peripheral blood of patients who developed asymptomatic to

moderate COVID-19 following SARS-CoV-2 infection using a

multi-omic approach consisting of single-cell RNA sequencing

and Abseq (18). We identified 51 genes significantly differentially

expressed in ILCs from COVID-19 patients compared with

healthy control participants. ILC2s from COVID-19 patients

had the highest number of significantly DE genes compared

with control participants. The most notable DE genes included

a) genes associated with anti-viral responses, b) genes that support

ILC activation, proliferation, and homeostasis. Some of the genes

in each of these categories were DE in ILC1s, ILC2s and ILCps,
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while others were DE in one or two subsets, depending on

their function.

COVID-19 patients in our study consisted primarily of mild

cases (n=17 cases), while including some asymptomatic (n=2) and

some moderate (n=3) cases of COVID-19 (Supplementary Table

S1). Previous studies which consisted of moderate and severe

COVID-19 patients observed decreased frequencies of total

CD127+ ILC (3, 13), which was especially pronounced in severe

COVID-19 patients and correlated with duration of hospitalization

and severity of inflammation (13, 14). Our study of ILCs from a less

severe cohort allowed in-depth understanding of ILC responses to

infection with SARS-CoV-2, since we did not observe decreased

frequencies of total CD127+ ILC in our patients. We found that all

ILC subsets in COVID-19 patients displayed a significantly higher
A B

C

FIGURE 4

SCENIC analysis of regulon identification. (A) Heatmap depicting the binarized AUcell scores of 25 different TFs in ILC1, ILC2 and ILCp. The row represents
TFs (regulons) and column represents ILCs. The ILCs are annotated as per the color bars in the bottom panels of the heatmap. (B) Boxplots of selected TF
genes with statistically significant differential expression. The y-axis represents the percentage of cells expressing a given TF in each sample. The p-values
were calculated by comparing the scaled gene expression profile in two groups of ILCs (COVID vs healthy control) using Seurat R package (test used: MAST)
at the single cell level. (C) The circos plots representing reconstructed gene regulatory networks between TFs and their targets predicted in ILC1, ILC2 and
ILCp cells. The red arc represents the known TFs and blue arc represents differentially expressed target genes. The edges in the plot represents regulatory
interactions between TF and their target genes significantly differentially expressed across healthy vs COVID-19 ILCs. Adjusted p-values for enumerating DE
genes between two groups of cells were calculated using MAST test (see methods). For boxplot representation, percentage of cells expressing the given TF
gene in every sample is shown.
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frequency of CD69-expressing-cells compared with healthy

controls, accompanied by a decreased frequency of cells

expressing CD62L, as was previously noted for ILC2 and ILCps

in COVID-19 patients (13).

Compared with healthy controls, ILCs from COVID-19 patients

had DE of interferon-inducible genes with recognized anti-viral

properties. We observed an upregulation of SPOCK2, encoding a

complex proteoglycan that binds with glycosaminoglycans to form

part of the extracellular matrix. SPOCK2/Testican2 production is

Induced by interferon-a produced upon influenza virus infection,

and has been shown to form a protective barrier against infection of

neighboring cells (26). Although interferon-a produced upon

infection with SARS-CoV-2 may be responsible for upregulation of

SPOCK2, the anti-viral protective mechanism of SPOCK2 is reported

to involve interaction with neuraminidase, which is absent in SARS-

CoV-2 (27). SPOCK2 is known to be expressed by T cells during anti-

viral responses, but to our knowledge enhanced expression by ILCs

during viral infection has not been documented previously.

Compared with healthy controls, ILC1s, ILC2s and ILCps from

COVID-19 patients downregulated expression of IFITM2 as well as

IFITM3. Although interferon-induced transmembrane proteins

(IFITMs 1, 2 and 3) have been shown to restrict infection by viral

pathogens such as dengue, influenza A and Ebola virus (28), pro-

viral functions of IFITM proteins have been reported for

coronaviruses. SARS-CoV-2 Spike protein was shown to interact

with IFITM proteins and utilize IFITM2 for efficient viral infection,

while depletion of IFITM2 substantially reduced infectious virus

production in vitro (29, 30). These observations suggest that the

downregulation of IFITM gene expression we observed in ILCs

from COVID-19 patients may be a protective mechanism.

Genes that regulate ILC activation, expansion and homeostasis

were differentially expressed in ILCs from COVID-19 patients

compared with healthy controls. ILC1s, ILC2s and ILCps all

downregulated FAM65B, a gene which encodes a major target of

FoxO1, a transcription factor that imposes cell quiescence.

Downregulation of FAM65B facilitates T cell activation and

proliferation (31). ILC1s, ILC2s and ILCps from COVID-19 patients

upregulated expression of STAT5A, encoding a STAT5 protein which

is activated by and mediates the responses of many cytokines and

growth hormones (32). ILC2s upregulated expression of ICOS, which

plays a critical role in ILC2 homeostasis and function (33). ICOS:

ICOS-Ligand interaction promotes survival of ILC2s and type 2

cytokine production through signaling mediated by STAT5. ILC2s

and ILCps from COVID-19 patients, which contain precursors of

ILC2s, upregulated the IL4R, which by binding IL-4, promotes ILC2

proliferation and enhances production of IL-4 and IL13 (21, 34).

ILC2s upregulated RORA, encoding the transcription factor RAR-

related orphan nuclear receptor alpha, which is required for

development of ILC2s (35). ILCps upregulated expression of IL2RA,

the gene encoding the IL-2 receptor alpha chain, which by binding IL-

2, could promote expansion of ILCps and potentiate the effects of

other cytokines on ILCps. ILC1s upregulated expression of RGS1,

encoding a member of the regulator of G-protein signaling family that

attenuates the signaling activity of G-proteins (36). ILC1s upregulated

expression of CD6, encoding the cell surface protein CD6, which by

interaction with the adhesion molecule CD166 stimulates and
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supports T cell activation (24, 37), although negative influences of

CD6 on T cell activation have also been reported (24). ILC1s

upregulated TGFB1, which encodes a secreted ligand of the TGFb
family with potent anti-inflammatory functions. TGF-b, a pleiotropic
cytokine which is often upregulated in infection or inflammatory

conditions, regulates cell proliferation, differentiation and homeostasis

of effector and regulatory T cells as well as other immune cells (38).

Expression of ICAM1, encoding an adhesion molecule that is the

major human rhinovirus receptor, was upregulated in all ILC subsets

from COVID patients compared with controls. ICAM-1 is a cell surface

glycoprotein upregulated by endothelial, epithelial and immune cells in

response to inflammation (39), which when expressed by T cells can

deliver a costimulatory signal leading to T cell activation (40). ICAM-1

expressed by activated ILC2s has been shown to have a significant effect

on ILC2 activation, proliferation and cytokine secretion, but is not

required for ILC2 migration to the lung (41).

Other genes DE in COVID-19 patients compared with controls

were involved in lymphocyte migration. ILC1 and ILC2 subsets

downregulated expression of ITGB7 (integrin subunit beta 7),

which encodes the b chain of a member of the integrin superfamily

of adhesion receptors that play a role in leukocyte adhesion and

function in cell signaling (42). ILC2s also downregulated expression

of ITGB2, another integrin subunit coding gene. ILCps in COVID-19

patients upregulated CCR7 gene expression compared with controls.

CCR7 encodes a receptor which is a key regulator of lymphoid cell

migration to inflamed tissues and secondary lymphoid organs (25,

43). Interestingly, CCR7 was initially identified as a gene induced on

lymphoid cells by Epstein-Barr virus (EBV) infection.

Differential expression of transcription factors in COVID patients

compared with healthy controls was also observed. As noted above,

STAT5Awas upregulated in all ILC subsets. The STAT3 gene encoding

transcription factor STAT3 was upregulated in ILC1s and ILC2s from

COVID-19 patients. Studies suggest that hyperactivated STAT3 is key

to pathology observed in COVID-19 patients, since STAT3 acts in a

positive feedback loop with plasminogen activator inhibitor (PAI-1)

leading to coagulopathy characterized by intravascular thrombi (44).

In summary, this study provides an in-depth probe of genes DE in

ILCs from COVID-19 patients compared with control participants.

ILCs were not depleted in our patient samples, which were obtained

primarily from patients with mild disease. The DE analysis showed

that ILCs from COVID-19 patients differed transcriptionally from

those of healthy control patients. Interestingly, although some genes

were DE uniquely by one or two ILC subsets, many of the most

significant DE genes observed were DE in common by all the subsets

examined (ILC1, ILC2 and ILCp). These included IFITM2 and

IFITM3, IFIT family members which play a role in viral infection

and SPOCK2, upregulated upon virus infection and recognized as

protective against influenza infection. Other genes significantly DE by

COVID-19 patients were genes that favored ILC homeostasis,

activation, and expansion. Taken together, the genes DE in COVID-

19 compared with healthy participants suggest that ILCs in PB of

COVID-19 patients are activated, expanding and mobilized in

response to SARS-CoV-2 infection. The findings were consistent

when comparing ILCs from healthy participants with those from

long-term COVID-19 participants. Additionally, we observed shared

biological processes and commonly coordinated dysregulation across
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all three ILC subtypes, indicating a concerted effort to mount an

immune response against SARS-CoV-2.

This study also had some limitations. The number of genes

analyzed in the multimodal single cell panel was limited to 430, so

the differentially expressed genes and enriched pathways may not

fully represent all affected biological processes in each ILC subset.

Additionally, with only 430 genes, differentially expressed

transcriptional targets of predicted transcription factors could not

be identified comprehensively.
Materials and methods

Study participants, blood draws
and processing

Participants were recruited as described previously (45) from

adults who had a positive SARS-COV-2 RT-PCR test at Stanford

Health Care (NCT04373148). Collection of Covid samples occurred

between May to December 2020. The cohort used in this study

consisted of asymptomatic (n=2), mild (n=17), and moderate (n=3)

COVID-19 infections, some of whom developed long term COVID-19

(n=15). The clinical case severities at the time of diagnosis were defined

as asymptomatic, moderate or mild according to the guidelines

released by NIH (46). Long term (LT) COVID was defined as

symptoms occurring 30 or more days after infection, consistent with

CDC guidelines (47, 48). Some participants in our study continued to

have LT COVID symptoms 90 days after diagnosis (n=12). Exclusion

criteria for COVID sample study were NIH severity diagnosis of severe

or critical at the time of positive covid test. Samples selected for this

study were obtained within 76 days of positive PCR COVID-19 test

date. Healthy controls were selected who had sample collection before

2020. Informed consent was obtained from all participants. All

protocols were approved by the Stanford Administrative Panel on

Human Subjects in Medical Research. Peripheral blood was drawn by

venipuncture and using validated and published procedures (49),

peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-

based density gradient centrifugation, frozen in aliquots and stored in

liquid nitrogen at -80°C, until thawing. A summary of participant

demographics is presented in Supplementary Table S1.
ILC Enrichment, single cell captures for
Abseq and targeted mRNAseq

PBMC samples from 22 COVID-19+ patients and 25 healthy

individuals were thawed, and each sample stained with Sample Tag

(BD #633781) at room temperature for 20 minutes. Samples were

combined in healthy control or COVID-19 tubes. Cells were surface

stained with a panel of fluorochrome-conjugated antibodies

(Supplementary Table S2) in buffer (PBS with 0.25% BSA and 1mM

EDTA) for 20 minutes at room temperature prior to immunomagnetic

negative selection for ILCs. Following ILC enrichment using the

EasySep human Pan-ILC enrichment kit (StemCell Technologies

#17975), cells from healthy and COVID-19 recovered participants

were counted and normalized before combining. ILCs were sorted
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using a BD FACS Aria at the Stanford FACS facility prior to incubation

with AbSeq oligo-linked mAbs (Supplementary Figure 1A;

Supplementary Table S4). The flow gating for sorting ILCs was kept

lenient (bigger gates were used) as the number of ILCs are smaller in

peripheral blood (1–2%), this was done to ensure so that we capture

most of ILCs, even if gating extend to capture other cell population (e.g.

B cells). These contaminations were later removed using the Abseq

gating (see below) to keep specific ILC population. Sorted cells were

processed by the StanfordHuman ImmuneMonitoring Center (HIMC)

using the BD Rhapsody platform (19). Library was prepared using the

BD Immune Response Targeting Panel (BD Kit #633750) with addition

of custom gene panel reagents (Supplementary Table S5) and sequenced

on Illumina NovaSeq 6000 at Stanford Genomics Sequencing Center

(SGSC). ILCs were identified as Lineageneg (CD3neg, CD14neg, CD34neg,

CD19neg), NKG2Aneg, CD45+ and ILCs further defined as

CD127+CD161+ and as subsets: ILC1 (CD117negCRTH2neg), ILC2

(CRTH2+) and ILCp (CD117+CRTH2neg) (Supplementary Figure 1B).
Computational data analysis

The above multi-modal setup allowed paired measurements of

cellular transcriptome and cell surface protein abundance. The ILC1,

ILC2 and ILCp cells were manually gated based on the abundance

profile of CD127, CD117, CD161 and CRTH2 (Supplementary

Figure 1B). Before the integrative analysis, the complete multi-

modal single cell dataset containing ILC subsets was converted into

single Seurat object. All the subsequent protein-level and gene-level

analyses were performed using multimodal data analysis pipeline of

Seurat R package version 4.0 (50). The normalized and scaled protein

abundance profile was used for estimating the integrated harmony

dimensions using runHarmony function in Seurat R package

(reduction= ‘apca’ and group.by.vars = ‘batch’). The batch

corrected harmony embeddings were then used for computing the

Uniform Manifold Approximation and Projection (UMAP)

dimensions to visualize the clusters of ILC subsets. Differential

marker analysis of surface proteins, between two groups of cells

(COVID-19 and Healthy cohort), from abseq panels was computed

with normalized and scaled expression values using FindMarkers

function from Seurat R package (test.use=‘wilcox’). Similarly,

differential gene expression was performed on normalized and

scaled gene expression values from between two groups of cells

(COVID-19 and Healthy cohort) using the FindMarkers function

from Seurat R package (test.use=‘MAST’ and latent.vars=‘batch’).

Genes with log-fold change > 0.5 and adjusted p-value < 0.05

(method: Benjamini-Hochberg) (51) were considered as significant

for further evaluation. The resulting adjusted p-values box-plots were

plotted using ggplot2 R package (version 3.4.2) (52) after computing

the number of cells expressing a given protein or gene in each sample.

Pathway enrichment analysis of DE genes was performed using web-

server metascape (version 3.5) (53). The AUCells score and gene

regulatory network analysis was performed using pySCENIC pipeline

(version 0.12.1) (54). Gene regulatory network was reconstructed

using GRNBoost2 algorithm (55) and the list of TFs in humans

(genome version: hg38) were obtained from cisTarget database.

(https://resources.aertslab.org/cistarget) (56). Cellular enrichment
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(aka AUCell) analysis that measures the activity of TF or gene

signatures across all single cells was performed using aucell

function in pySCENIC python library. The ggplot2 R package

(version 3.4.2) was used for boxplot visualization. The differential

gene co-expression analysis was performed using scSFMnet R

package which uses single cell gene count matrix as input and

reconstruct condition specific (COVID-19+ and healthy) gene

interaction network (57). The approach not only allowed us to

build co-expression networks using discrete single cell dataset, but

also allowed us to compare two networks using (default parameters).

The outcome of this analysis was a differential co-expression network

containing only the gene-gene interactions that significantly differed

between ILCs of COVID-19+ versus healthy participants. Here, four

differential network were reconstructed using the gene expression

profile of either total ILCs or ILC1 or ILC2 or ILCp. Circular plots

were generated using the R package circlize (version 0.4.15) (58).
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24. Mori D, Grégoire C, Voisinne G, Celis-Gutierrez J, Aussel R, Girard L, et al. The
T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell
activation. J Exp Med. (2021) 218:e20201011. doi: 10.1084/jem.20201011

25. Förster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing
immunity and tolerance. Nat Rev Immunol. (2008) 8:362–71. doi: 10.1038/nri2297
Frontiers in Immunology 12
26. Ahn N, Kim WJ, Kim N, Park HW, Lee SW, Yoo JY. The interferon-inducible
proteoglycan testican-2/SPOCK2 functions as a protective barrier against virus infection of
lung epithelial cells. J Virol. (2019) 93:e00662-19. doi: 10.1128/JVI.00662-19

27. Robson B. Bioinformatics studies on a function of the SARS-CoV-2 spike
glycoprotein as the binding of host sialic acid glycans. Comput Biol Med. (2020)
122:103849. doi: 10.1016/j.compbiomed.2020.103849

28. Bailey CC, Zhong G, Huang IC, Farzan M. IFITM-family proteins: The cell's first
line of antiviral defense. Annu Rev Virol. (2014) 1:261–83. doi: 10.1146/annurev-
virology-031413-085537

29. Nchioua R, Schundner A, Kmiec D, Prelli Bozzo C, Zech F, Koepke L, et al.
SARS-CoV-2 variants of concern hijack IFITM2 for efficient replication in human lung
cells. J Virol. (2022) 96:e0059422. doi: 10.1128/jvi.00594-22

30. Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Krüger J, Schütz D, et al. IFITM
proteins promote SARS-CoV-2 infection and are targets for virus inhibition. vitro. Nat
Commun. (2021) 12:4584. doi: 10.1038/s41467-021-24817-y

31. Froehlich J, Versapuech M, Megrelis L, Largeteau Q, Meunier S, Tanchot C, et al.
FAM65B controls the proliferation of transformed and primary T cells. Oncotarget.
(2016) 7:63215–25. doi: 10.18632/oncotarget.v7i39

32. Lin JX, Leonard WJ. The role of Stat5a and Stat5b in signaling by IL-2 family
cytokines. Oncogene. (2000) 19:2566–76. doi: 10.1038/sj.onc.1203523

33. Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, et al. ICOS
: ICOS-ligand interaction is required for type 2 innate lymphoid cell function,
homeostasis, and induction of airway hyperreactivity. Immunity. (2015) 42:538–51.
doi: 10.1016/j.immuni.2015.02.007

34. Baba R, Kabata H, Shirasaki Y, Kamatani T, Yamagishi M, Irie M, et al.
Upregulation of IL-4 receptor signaling pathway in circulating ILC2s from asthma
patients. J Allergy Clin Immunology: Global. (2022) 1:299–304. doi: 10.1016/
j.jacig.2022.07.007

35. Halim TY, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F.
Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural
helper cell development and allergic inflammation. Immunity. (2012) 37:463–74.
doi: 10.1016/j.immuni.2012.06.012

36. Moratz C, Kang VH, Druey KM, Shi CS, Scheschonka A, Murphy PM, et al.
Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling
responses of B lymphocytes. J Immunol. (2000) 164:1829–38. doi: 10.4049/
jimmunol.164.4.1829

37. Hassan NJ, Simmonds SJ, Clarkson NG, Hanrahan S, Puklavec MJ, Bomb M, et al.
CD6 regulates T-cell responses through activation-dependent recruitment of the positive
regulator SLP-76. Mol Cell Biol. (2006) 26:6727–38. doi: 10.1128/MCB.00688-06

38. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by
transforming growth factor-beta and interleukin-10. Immunity. (2008) 28:468–76.
doi: 10.1016/j.immuni.2008.03.003

39. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular
responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. (2020)
108:787–99. doi: 10.1002/JLB.2MR0220-549R

40. Chirathaworn C, Kohlmeier JE, Tibbetts SA, Rumsey LM, Chan MA,
Benedict SH. Stimulation through intercellular adhesion molecule-1 provides a
second signal for T cell activation. J Immunol. (2002) 168:5530–7. doi: 10.4049/
jimmunol.168.11.5530

41. Hurrell BP, Howard E, Galle-Treger L, Helou DG, Shafiei-Jahani P, Painter JD,
et al. Distinct roles of LFA-1 and ICAM-1 on ILC2s control lung infiltration, effector
functions, and development of airway hyperreactivity. Front Immunol. (2020)
11:542818. doi: 10.3389/fimmu.2020.542818

42. Tyler CJ, Guzman M, Lundborg LR, Yeasmin S, Zgajnar N, Jedlicka P, et al.
Antibody secreting cells are critically dependent on integrin a4b7/MAdCAM-1 for
intestinal recruitment and control of the microbiota during chronic colitis. Mucosal
Immunol. (2022) 15:109–19. doi: 10.1038/s41385-021-00445-z

43. Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, et al. CCL19 and CCR7
expression, signaling pathways, and adjuvant functions in viral infection and
prevention. Front Cell Dev Biol. (2019) 7:212. doi: 10.3389/fcell.2019.00212

44. Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT
pathway is central to COVID-19. Cell Death Differ. (2020) 27:3209–25. doi: 10.1038/
s41418-020-00633-7

45. Jia X, Cao S, Lee AS, Manohar M, Sindher SB, Ahuja N, et al. Anti-nucleocapsid
antibody levels and pulmonary comorbid conditions are linked to post-COVID-19
syndrome. JCI Insight. (2022) 7:e156713. doi: 10.1172/jci.insight.156713

46. NIH. Clinical Spectrum of SARS-CoV-2 Infection. National Institute of Health
(2023). Bethesda, Maryland. Available at: https://www.covid19treatmentguidelines.nih.
gov/overview/clinical-spectrum/.

47. CDC. Long COVID or Post-COVID Conditions. Centers for Disease Control
and Prevention (2023). Available at: https://www.cdc.gov/coronavirus/2019-ncov/
long-term-effects/.

48. COVID.gov. About Long COVID: Terms & Definitions (2023). Available online
at: https://www.covid.gov/be-informed/longcovid/about.
frontiersin.org

https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1126/science.abm8108
https://doi.org/10.7554/eLife.74681
https://doi.org/10.1126/science.abc6261
https://doi.org/10.1111/all.14364
https://doi.org/10.1093/cid/ciaa248
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1038/s41423-020-0401-3
https://doi.org/10.1016/j.cell.2017.02.021
https://doi.org/10.1016/j.cell.2018.07.017
https://doi.org/10.1038/s41422-020-0323-8
https://doi.org/10.1084/jem.20190490
https://doi.org/10.1002/cti2.1224
https://doi.org/10.1126/sciimmunol.abd7114
https://doi.org/10.1038/ni.2045
https://doi.org/10.1038/ni.2045
https://doi.org/10.1038/ni.2131
https://doi.org/10.1038/ni.2142
https://doi.org/10.1038/srep44447
https://doi.org/10.1016/j.celrep.2020.03.063
https://doi.org/10.1038/ni.3368
https://doi.org/10.1038/ni.3444
https://doi.org/10.1371/journal.pone.0022560
https://doi.org/10.1083/jcb.201110023
https://doi.org/10.1084/jem.20201011
https://doi.org/10.1038/nri2297
https://doi.org/10.1128/JVI.00662-19
https://doi.org/10.1016/j.compbiomed.2020.103849
https://doi.org/10.1146/annurev-virology-031413-085537
https://doi.org/10.1146/annurev-virology-031413-085537
https://doi.org/10.1128/jvi.00594-22
https://doi.org/10.1038/s41467-021-24817-y
https://doi.org/10.18632/oncotarget.v7i39
https://doi.org/10.1038/sj.onc.1203523
https://doi.org/10.1016/j.immuni.2015.02.007
https://doi.org/10.1016/j.jacig.2022.07.007
https://doi.org/10.1016/j.jacig.2022.07.007
https://doi.org/10.1016/j.immuni.2012.06.012
https://doi.org/10.4049/jimmunol.164.4.1829
https://doi.org/10.4049/jimmunol.164.4.1829
https://doi.org/10.1128/MCB.00688-06
https://doi.org/10.1016/j.immuni.2008.03.003
https://doi.org/10.1002/JLB.2MR0220-549R
https://doi.org/10.4049/jimmunol.168.11.5530
https://doi.org/10.4049/jimmunol.168.11.5530
https://doi.org/10.3389/fimmu.2020.542818
https://doi.org/10.1038/s41385-021-00445-z
https://doi.org/10.3389/fcell.2019.00212
https://doi.org/10.1038/s41418-020-00633-7
https://doi.org/10.1038/s41418-020-00633-7
https://doi.org/10.1172/jci.insight.156713
https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/
https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/
https://www.covid.gov/be-informed/longcovid/about
https://doi.org/10.3389/fimmu.2024.1374828
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kaushik et al. 10.3389/fimmu.2024.1374828
49. Fuss IJ, Kanof ME, Smith PD, Zola H. Isolation of whole mononuclear cells from
peripheral blood and cord blood. Curr Protoc Immunol. (2009) 7:7.1.1–7.1.8.
doi: 10.1002/0471142735.im0701s85

50. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–3587.e3529.
doi: 10.1016/j.cell.2021.04.048

51. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat society: Ser B (Methodological). (1995)
57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

52. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-
Verlag (2016). doi: 10.1007/978-3-319-24277-4

53. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat Commun. (2019) 10:1523. doi: 10.1038/s41467-019-09234-6
Frontiers in Immunology 13
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et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory
networks. Bioinformatics. (2019) 35:2159–61. doi: 10.1093/bioinformatics/bty916

56. Herrmann C, Van de Sande B, Potier D, Aerts S. i-cisTarget: an integrative
genomics method for the prediction of regulatory features and cis-regulatory modules.
Nucleic Acids Res. (2012) 40:e114. doi: 10.1093/nar/gks543

57. Sekula M, Gaskins J, Datta S. Single-cell differential network analysis with sparse
bayesian factor models. Front Genet. (2021) 12:810816. doi: 10.3389/fgene.2021.810816

58. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and
enhances circular visualization in R. Bioinformatics. (2014) 30:2811–2. doi: 10.1093/
bioinformatics/btu393
frontiersin.org

https://doi.org/10.1002/0471142735.im0701s85
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1093/bioinformatics/bty916
https://doi.org/10.1093/nar/gks543
https://doi.org/10.3389/fgene.2021.810816
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.3389/fimmu.2024.1374828
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Single cell multi-omic analysis identifies key genes differentially expressed in innate lymphoid cells from COVID-19 patients
	Introduction
	Results
	Single-cell transcriptome analysis of ILCs from COVID-19 patients
	Single cell mRNA expression revealed key genes differentially expressed in ILC1, ILC2 and ILCp subsets in COVID-19 patients
	Genes differentially expressed in subsets of ILCs from COVID-19 patients
	Identification of ILC specific regulons by reconstructing gene regulatory networks

	Discussion
	Materials and methods
	Study participants, blood draws and processing
	ILC Enrichment, single cell captures for Abseq and targeted mRNAseq
	Computational data analysis

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


