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Single-cell sequencing analysis
and multiple machine-learning
models revealed the cellular
crosstalk of dendritic cells and
identified FABP5 and KLRB1 as
novel biomarkers for psoriasis
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Background: Psoriasis is an immune-mediated disorder influenced by

environmental factors on a genetic basis. Despite advancements, challenges

persist, including the diminishing efficacy of biologics and small-molecule

targeted agents, alongside managing recurrence and psoriasis-related

comorbidities. Unraveling the underlying pathogenesis and identifying valuable

biomarkers remain pivotal for diagnosing and treating psoriasis.

Methods:We employed a series of bioinformatics (including single-cell sequencing

data analysis and machine learning techniques) and statistical methods to integrate

and analyze multi-level data. We observed the cellular changes in psoriatic skin

tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer

cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed

drugs on psoriasis treatment in modulating the dendritic cell-associated pathway,

and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and

immunofluorescence assays were used to validate.

Results: The regulatory influence of dendritic cells (DCs) on T cells through the

CD70/CD27 signaling pathway may emerge as a significant facet of the

inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-

regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT

cells, serving as potential biomarkers influencing psoriasis development.

Conclusion: Our study analyzed the impact of DC-T cell crosstalk in psoriasis,

elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis,

and highlighted the promise and value of tofacitinib in psoriasis therapy

targeting DCs.
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1 Introduction

Psoriasis, a prototypical immune-mediated disorder (1), is

characterized by erythematous skin lesions with scaling, which

include vascular hyperplasia, destruction of vascular endothelial

cells, and infiltration of inflammatory cell subpopulations, in

addition to keratinocyte overgrowth, epidermal alterations and

thickening (2, 3). While the pathogenesis of psoriasis remains

incompletely understood, the overactivation of components

within the innate and adaptive immune systems, particularly

involving DCs and T cells, is currently deemed central to its

etiology. Psoriasis involves three crucial inflammatory pathways:

Th17 and Tc17 responses, Th1 and Tc1 responses, and the IL-36-

neutrophil axis (1). With a genetic background and under the

influence of external triggers, keratinocytes (KCs) are prompted to

discharge endogenous DNA, RNA, and antimicrobial peptides

(AMPs) such as LL-37 and human b-defensin-2/3. AMPs create

complex structures with DNA or RNA, thus activating Toll-like

receptors 7 and 8 (TLR7/8), thereby prompting plasmacytoid

dendritic cells (pDCs) to initiate the production of IFN-a and

IFN-b, subsequently stimulating myeloid dendritic cells (mDCs) to

secrete pro-inflammatory factors. Natural killer T (NKT) cells and

KCs also discharge various cytokines and chemokines, notably

TNF-a, IFN-g, IL-1, IL-6, and CXCL1, influencing mDCs (4).

Changes in DCs have garnered increasing attention in the

pathophysiology of psoriasis (5, 6). Activated DCs migrate to

skin-draining lymph nodes, where their secretion of IL-23, TNF-

a, IL-1b, and IL-12 promotes the differentiation of CD4+ naïve T

cells into Th17, Th22, and Th1 cells, while IL-23 induces CD4-CD8-

T cells to differentiate into Gamma-delta (gd)T cells (7).

Inflammatory cytokines secreted by these cells trigger signal

transduction within KCs, resulting in gene transcription of

cytokines and chemokines, thus initiating diverse immune

pathways focused on IL-17 and IL-23 (1, 8). Previous studies

revealed that T cells’ interaction with monocytes triggered specific

DC subpopulations’ differentiation. The interplay of Th1 and Th17

cells with monocytes in skin lesions continued to promote DC

formation (9, 10). DCs contribute to psoriasis pathogenesis and

recurrence by eliciting T cell-associated inflammatory responses

through the IL-23/IL-17 axis in response to inflammatory

cytokines. Tissue-resident memory T (TRM) cells also contribute

significantly to the pathogenesis and recurrence of psoriasis, as the

sustained presence of IL-17-secreting CD8+ T cells and IL-22-

secreting CD4+ T cells can result in chronic inflammatory plaque

formation (11). Thus, it is hypothesized that the modulation of T

cells by DCs is a pivotal factor in psoriasis pathogenesis.

Current challenges in psoriasis research encompass differential

diagnosis, notably distinguishing it from inflammatory, infectious,

and neoplastic diseases without relying on pathologic testing. For

instance, plaque psoriasis is often misdiagnosed as candidiasis or

fungal infections, while pruritic psoriasis can be mistaken for atopic

dermatitis. Additionally, the early stages of cutaneous T-cell

lymphomas closely resemble those of psoriasis, and identifying

seborrheic dermatitis on the head and face poses challenges (1).

Beyond diagnostic intricacies, research grapples with the

diminishing efficacy of biologics and small molecule targeted
Frontiers in Immunology 02
agents, as well as the management of psoriasis co-morbidities.

Therefore, it is important to investigate biomarkers in the

progression of psoriasis.

In this study, we used bioinformatics tools such as single-cell

sequencing data analysis and machine learning to identify the key

molecular mechanisms associated with DCs in psoriasis, screened

FABP5 and KLRB1 as new biomarkers in the diagnosis and

treatment process, and investigated drugs with better efficacy in

targeting the altered number of DCs, which provided new insights

for the clinic. In conclusion, this study contributes to exploring the

underlying pathogenesis of psoriasis and provides new strategies for

more precise diagnosis and treatment.
2 Materials and methods

2.1 Datasets downloaded

The single-cell RNA sequencing data from 13 psoriasis skin

samples and 5 normal skin samples, retrieved from the GSE151177

dataset in the Gene Expression Omnibus (GEO) database, were

obtained for this study. Furthermore, the gene expression data and

comprehensive clinical information of normal individuals and patients

with psoriasis were acquired from the GSE41664, GSE85034,

GSE117468, and GSE69967 datasets. It is important to emphasize

that all the data reanalyzed in the current study were publicly available

in previous reports, as shown in Supplementary Table S1.
2.2 Single−cell RNA−seq
data preprocessing

Raw single-cell RNA sequencing (scRNA-seq) data underwent

processing with the Seurat R package (Version 4.3.0.1) to eliminate

low-quality cells and conduct data visualization. Unqualified cells

(with fewer than 500 genes per cell and less than 5 cells per gene)

were excluded, while mitochondrial genes and hemoglobin genes

were omitted from subsequent analyses. In addition, the scRNA-seq

data were normalized and scaled using Seurat after identifying the

top 2000 highly variable genes (HGVs). The harmony R package

(Version 0.1.1) was utilized to address sample batch effects.

Principal component analysis (PCA) was subsequently performed,

and 21 principal components (PCs) were selected for subsequent t-

distributed stochastic neighbor embedding (tSNE) analysis. Cell

types were annotated based on well-established marker genes, and

Seurat was used to identify highly expressed genes within each cell

cluster. Furthermore, the gene expression matrix and clinical

features were extracted for further analysis.
2.3 Gene set functional analysis

The gene ontology (GO) enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis of highly expressed genes in each cell cluster were

conducted using the clusterProfiler R package (Version 3.17).
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Firstly, highly expressed genes or differentially expressed genes

(DEGs) were derived from Seurat. Subsequently, these genes were

enriched using the clusterProfiler package, employing a significance

cutoff of p < 0.05. Moreover, gene set enrichment analysis (GSEA)

was performed with the clusterProfiler (Version 3.17) and msigdbr

(Version 7.5.1) R packages. The DEGs were sorted based on

log2Fold Change and matched with gene names, followed by

clusterProfiler analysis with default parameters. The enrichment

results from multiple gene sets with p < 0.05 were visualized using

the enrichplot R package (Version 3.17).
2.4 Cell-cell communication analysis

The gene expression matrix and clinical features of 20,076 cells

were extracted using Seurat to investigate cell-cell communication.

Specifically, we employed the CellChat R package (Version 1.1.0) to

analyze annotated gene expression data based on the official

workflow and default parameters. This analysis inferred receptor-

ligand interactions by measuring the expression levels of ligands

and receptors. The communication probability was assessed using

the “computeCommunProb” function, and the signaling pathways

with a significance level of p < 0.05 were visualized using the

“netVisual_aggregate” and “netVisual_chord_gene” functions.
2.5 Cellular trajectory analysis

The cellular trajectory analysis was performed using the R

packages CytoTRACE (Version 0.3.3) and monocle2 (Version

2.18.0). In summary, we constructed a KNN graph containing

information on DCs and calculated a pseudo-temporal ordering

using CytoTRACE. Subsequently, we visualized the graphs based on

transcriptional diversity on a tSNE plot. Additionally, the gene

expression matrix and clinical information were extracted using

Seurat and imported to create an object in monocle2. For the

subsequent trajectory analysis, genes with a mean expression ≥ 0.1

were selected. Differential expression genes (DEGs) with a q-

value < 0.01 between the DCs clusters were subjected to

dimension reduction using the “reduceDimension” function with

default parameters. Finally, the cells were ordered and visualized

using the “plot_cell_trajectory” function. Furthermore, the genes in

each cluster underwent GO enrichment analysis using

clusterProfilter, as previously described.
2.6 Identification of key markers in
psoriasis cohort

Three machine learning algorithms, namely the least absolute

shrinkage and selection operator (LASSO), random forest (RF), and

support vector machines-recursive feature elimination (SVM-RFE),

were employed to identify key genes involved in psoriasis

development. In short, the psoriasis cohort was randomly divided

into a training set and a test set, with a split ratio of 8:2, where the

training set contains 109 samples and the test set contains 48
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samples. Psoriasis and normal skin samples were analyzed using

LASSO regression with 10-fold cross-validation, implemented in

the R package glmnet (Version 4.1-7). A random forest model,

based on marker genes of DCs, was constructed using the R package

randomForest (Version 4.7-1.1). Furthermore, the SVM-RFE

model, generated using the R package e1071 (Version 1.7-13),

was used to rank the genes. The predictive value of these models

was assessed using receiver operating characteristic (ROC) analysis,

conducted with the R package pROC (Version 1.18.4).
2.7 Immune cell infiltration analysis

The analysis of immune cell infiltration was conducted using

the R package xCell (Version 1.1.0). The xCell algorithm used the

samples’ RNA-seq data to derive the immune cell index. Pearson’s

correlation analysis was performed to assess the correlation

coefficients between the expression of key genes and the

infiltration levels of immune cells. All visualizations were

generated using the R package ggplot2 (Version 3.4.2).
2.8 Pearson correlation analysis

The relationship between the expression of key genes and

infiltrating immune cells was assessed using Pearson correlation

analysis. Visualization of these relationships was performed using

the R package ggcor (Version 0.9.8.1).
2.9 Cell culture and exposure to
M5 stimulation

Human epidermal keratinocytes (HaCaT) were cultured in

DMEM medium (Gibco) containing 10% fetal bovine serum

(Hyclone, US) at 37°C in 5% CO2. In vitro modeling of psoriasis

was achieved through the M5 induction method. HaCaT cells were

seeded onto a 6-well plate until reaching 60–70% confluence,

followed by a 24-hour serum-free DMEM starvation period.

Subsequently, cells were stimulated for 48 hours with a medium

containing IL-1a, IL-17A, IL-22, TNF-a, and oncostatin M (10 ng/

mL for each cytokine, ProSpect, Israel).
2.10 mRNA isolation and quantitative
reverse transcription PCR assays

The M5 HiPer Universal RNA Mini Kit (Mei5bio, China) was

used to extract total RNA from tissues and HaCaT cells, and the

Transcriptor First Strand cDNA Synthesis Kit (Roche) was used to

create cDNA. The quantitative reverse transcription PCR (RT-

qPCR) experiments utilized the NovoStart SYBR qPCR SuperMix

Plus Kit (Novoprotein) on a Bio-Rad CFX96 Real-Time PCR

Detection System. Standardized relative mRNA expression levels

were determined using GAPDH values. Supplementary Table S2

contains the primers used in this test.
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2.11 Immunohistochemistry assays and
semi-quantitative analysis

Three psoriasis lesions and three healthy skin tissues were fixed,

dehydrated, and made into paraffin blocks, after which they were

cut into slices of 5 mm thickness using a slicer (Leica Co., Ltd.,

HistoCore BIOCUT) and baked at 60°C for 20 min. After a 25-

minute soak in xylene, the specimen underwent hydration with

anhydrous alcohol, followed by sequential immersion in 95%, 80%,

and 70% alcohol for 2 minutes each. It underwent three rinses with

PBS for 3 minutes each. The specimen was then placed in a

restorative solution at 95 degrees Celsius for 15-20 minutes to

facilitate antigenic restoration, followed by natural cooling for 20

minutes. Following this, a serum blocking solution was applied, and

the specimen underwent incubation at room temperature for 20

minutes. The application of FABP5 (D1A7T) Rabbit mAb (CST,

#39926, 1:3600) and KLRB1/CD161 Monoclonal antibody

(proteintech, 67537-1-Ig, 1:500) dropwise ensued, with overnight

incubation at 4 degrees Celsius. The subsequent steps included color

development, hematoxylin re-staining, routine dehydration,

sealing, and microscopic scanning. For each group of

immunohistochemistry result maps under 20x field of view, we

selected 3 representative images for semi-quantitative analysis. The

quantification of the stained area in each image and the integrated

optical density (IOD) of the indicated markers were measured using

Image J and assessed using the Average optical density (AOD =

IOD/Area) method. Also, Image J was employed to assess the

positive staining of KLRB1 and FABP5.
2.12 Fluorescence immunohistochemistry
and quantitative image analysis

The paraffin blocks were sliced into thin slices of 5 mm thickness

with a slicer and baked at 60°C for 1 hour. The portions were

deparaffinized with xylene 3 times, each time for 10 min.

Dehydrated with graded alcohol gradients (100%, 95%, and 70%

stepwise for 5 min each time), washed twice with water, and

microwaved, after which the sections were blocked with goat

serum blocking solution (CWBIO, 01380/34021). After being

washed with PBS and co-incubated with a secondary antibody for

10 min, the slices were blocked after treatment with Antifade

Mounting Medium with DAPI (Beyotime, PO131), observed and

photographed under a light microscope (CX23, OLYMPUS).

Quantitative analysis was conducted using HALO’s (Indica Labs)

Highpex FL (V4.2.3) and Area Quantification FL (V2.2) module to

determine the percentage of positive cytoplasms and cells. The

FABP5 to KLRB1 fluorescence ratio was quantified with Fiji

(ImageJ), and the normalized ratios are graphically presented

adjacent to the HALO analysis image.
2.13 Statistical analysis

All data processing was conducted using R software (Version

4.2.1) and Graphpad Prism (Version 9.5.1). The error bars in the
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figures represent the standard error of mean (SEM). The statistical

analyses in the current study utilized the T-test and Wilcoxon test. A

significance level of P < 0.05 was considered statistically significant.
3 Results

3.1 Single-cell expression atlas of
psoriasis patients

To investigate the cell composition of psoriatic skin, we

integrated and reanalyzed the scRNA-seq cohort obtained from

GSE151177, including 13 psoriasis skin samples and 5 normal skin

samples (Supplementary Table S1). After quality control, we

excluded cells with low quality, including dead cells and doublets,

and ultimately acquired 20076 cells retained for subsequent analysis

(Supplementary Figures S1A–F). Then, we identified 2000 HVGs in

20076 cells (Supplementary Figure S2A), and integrated cells from

different samples via “harmony” algorithm, which removed batch

effects (Supplementary Figure S2B). Eventually, we observed 6

distinct psoriasis cell type clusters with K-means algorithm

(Supplementary Figure S2C). Based on Pearson’s correlation

analysis and universal marker genes, we annotated these 20439

cells as 5 distinct cell types, including KCs (8326 cells, marked with

LCE3D, KRT5 and KRT14), melanocytes (633 cells, marked with

DCT, TYRP1 and MLANA), T cells (7533 cells, marked with

CD3D, CD3E and PTPRC), macrophages (959 cells, marked with

CD68, CD163 and CD14), DCs (2988 cells, marked with LYZ and

HLA-DRB5) (Figure 1A, Supplementary S2D, E). To further

explore the additional marker genes of these cells, we performed

differentially expression analysis and identified CSTA and

KRTDAP as novel markers of KCs, whereas PMEL as novel

markers of melanocytes (Figures 1B, C). To validate the biological

functions of these cells, we performed gene set functional analysis.

The results showed that the epidermal cell differentiation, KC

differentiation and skin development pathways were activated in

KCs, while MHC class II protein complex assembly and peptide

antigen processing related pathways were activated in DCs and

macrophages, which were consistent with existing literature

(Figure 1D). We further performed cell composition analysis to

further compare the cell composition between normal skin tissues

and psoriasis skin tissues. The results revealed that KCs were

significantly decreased, whereas DCs were significantly increased

in psoriasis skin tissues, suggesting severe inflammation during

psoriasis development (Figures 1E, F).
3.2 RNA splicing pathways were inactivated
in KCs from psoriasis skins

To deepen our comprehension of the changes in KC function,

we conducted further analysis on different subsets of KCs from

normal and psoriasis skin tissues. Our findings revealed that KCs

displayed heterogeneity and could be classified into 5 distinct

subclusters (Supplementary Figure S3A). Notably, cluster 0

predominantly consisted of KCs from psoriasis skin tissues, while
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cluster 1 primarily contained KCs from normal skin tissues

(Supplementary Figures S3B–D). We also identified marker genes

specific to each subcluster of KCs. Cluster 0 was characterized by

the expression of SPRR2D, SPRR2F, and SPRR2A, whereas cluster 1

exhibited high expression of KRT23, CCL20, and SPINK5

(Supplementary Figure S3E). Interestingly, the association of

SPRR2A and SPRR2D with psoriasis has been previously

confirmed (12), supporting the relevance of our findings. We

further performed KEGG enrichment analysis to explore the
Frontiers in Immunology 05
functional implications of these keratinocyte subclusters. We

observed a significant downregulation of RNA modification, RNA

splicing, and spliceosome pathways in cluster 0 KCs compared to

cluster 1 KCs. These findings align with recent studies highlighting

the involvement of these pathways in psoriasis (13–15). To

investigate the transcriptional changes between KCs from normal

and psoriasis skin tissues, we identified differentially expressed

genes (DEGs). Among these DEGs, DEFB4A was significantly

upregulated in psoriasis (Supplementary Figure S3F). DEFB4A
B

C

D

E F

A

FIGURE 1

Single-cell expression atlas of psoriasis patients. (A) t-distributed stochastic neighbor embedding (tSNE) plots of 20076 cells extracted from healthy
and psoriasis skin tissues. Cell types are labeled by colors. (B) Bubble plot depicting expression and percentage of positive cells in different clusters.
(C) Violin plots depicting log normalised expression per cluster of key markers used in cluster annotation. (D) Dot plot showing the activated
signalling pathways in different cell clusters. (E) Bar plot showing the proportion of different cell types in normal and psoriasis skin tissues. (F) Bar plot
showing the proportion of different cell types in different samples.
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has been shown to mediate the activation of CCR6 Th17 cells,

further supporting its role in psoriasis (16). Moreover, enrichment

analysis revealed the activation of ATP metabolic process

and purine nucleoside triphosphate metabolic process in

psoriasis. These findings suggest that metabolic and immune

disorders play important roles in the development of psoriasis

(Supplementary Figure S3G).
3.3 DCs regulate T cells through the CD70/
CD27 signaling pathway

To investigate the potential mechanisms underlying the

increased effects of DCs in promoting psoriasis, we employed the

“CellChat” algorithm to analyze cell-cell communication among

five distinct cell types. Our analysis revealed significant increases in

the number of inferred interactions and interaction strength in

psoriasis skin tissues (Figures 2A, B). Particularly, the interaction

strength between DCs, T cells, and melanocytes was markedly

enhanced, while the interaction strength between macrophages, T

cells, and DCs was significantly inhibited (Figure 2C).

Mechanistically, we observed a significant increase in the relative

information flow of CD70, SEMA3, and TGF-b in psoriasis skin

tissues. Conversely, the relative information flow of SPP1 and TNF

was significantly decreased. These findings align with previous

studies and support the involvement of these molecules in

psoriasis (Figure 2D) (17–19). We further examined the outgoing

and incoming signaling patterns between cells in normal and

psoriasis tissues. The results revealed that the outgoing signals of

CD70, GRN, ncWNT, and GAS from DCs were significantly

increased in psoriasis. Additionally, the incoming signaling of

CD70 in T cells was significantly increased. These findings

suggest the importance of CD70-related pathways in the

development of psoriasis (Figures 2E, F). Furthermore, through a

more detailed analysis, we found that DCs regulate the functions of

KCs, melanocytes, T cells, and macrophages via specific pathways.

DCs utilize the LGALS9/CD44 pathways to influence KCs, the

GAS6/TYRO3 pathways to interact with melanocytes, the CD70/

CD27 pathways to modulate T cell behavior, and the CCL5/CCR1

pathways to regulate macrophages (Figures 2G, H).
3.4 DCs are heterogeneous in patients
with psoriasis

In our investigation of the functional heterogeneity of DCs in

psoriasis development, we examined different subsets of DCs

isolated from normal and psoriasis skin tissues. Our analysis

using unsupervised clustering methods revealed 5 distinct clusters

of DCs (Figure 3A, Supplementary S4A). Further analysis of cell

proportions demonstrated that cluster 0 and cluster 2 DCs were

primarily found in normal skin tissues, while cluster 1 DCs were

primarily present in psoriasis skin tissues (Figures 3B, C,

Supplementary S4B). To validate the differences observed among

the clusters, we conducted a differential expression analysis and

identified significant upregulation of LTB, CD52, and TRAC in
Frontiers in Immunology 06
cluster 1 DCs. These genes have been extensively associated with

hyperinflammation (Figure 3D) (20–22). To gain further insights

into the molecular mechanisms driving the observed differences, we

performed differential expression analysis of DCs between psoriasis

and normal tissues. This analysis revealed the overexpression of

SPRR2D, CD52, and PI3 in DCs isolated from psoriasis skin tissues

(Figure 3E). Notably, consistent with our previous findings, gene

expression analysis confirmed the specific expression of CD70 in

cluster 1 DCs, providing further support for the significant

involvement of the CD70/CD27 signaling pathway in psoriasis

development (Figure 3F). To better understand the functional

implications of the DEGs and pathways in psoriasis-associated

DCs, we conducted KEGG enrichment analysis. The results

highlighted the activation of pathways involved in the regulation

of T cell activation, positive regulation of cell adhesion, and T cell

proliferation in DCs from psoriasis skin tissues (Figure 3G). These

findings suggest that DCs promote psoriasis through the activation

of T cells. Additionally, GSEA further supported our results,

showing significant activation of adaptive immune response and

lymphocyte activation in DCs from psoriasis skin tissues

(Supplementary Figure S4C).
3.5 Pseudotime and single-cell trajectory
analyses revealed the different cell fates
of DCs

To investigate the functional transition of DCs during psoriasis

development, we utilized the CytoTRACE algorithm and Monocle2

algorithm to assess their differentiation potential and evolutionary

direction. The results highlighted the heterogeneous nature of

differentiation potential and expression patterns among different

DC clusters (Figures 4A, B). Specifically, cluster 1 DCs exhibited a

higher CytoTRACE score, indicating greater cell stemness and

proliferation rate (Figure 4C). Concurrently, the Monocle2

analysis revealed a significant increase in the expression of CD27

and CD52 during cell differentiation (Figures 4D-F). Notably, the

CD27/CD70 signaling pathway has been extensively linked to the

promotion of autoimmune diseases, whereas CD52 has been

associated with inflammation suppression, suggesting that DCs

may exert a dual mode of action on T cells (23, 24). To explore

the potential molecular mechanisms underlying these observations,

we conducted gene pattern analysis. The results demonstrated that

gene clusters 1 and 2 were significantly downregulated, including

genes such as CD74, CCL20, and PI3. Conversely, gene clusters 3

and 4 were markedly upregulated, incorporating genes such as XIST

and FDPS (Figure 4G). These findings align with our previous

results and suggest distinct transcriptional changes associated with

the differentiation of DCs during psoriasis development. Functional

enrichment analysis provided further insights into the roles of these

gene clusters. Gene clusters 1 and 2 were associated with the

regulation of actin filament polymerization and keratinization,

which are processes relevant to skin homeostasis and barrier

function. On the other hand, gene clusters 3 and 4 were linked to

MHC protein complex assembly and the regulation of the execution

phase of apoptosis (Figure 4H). These findings are consistent with
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previous knowledge and underline the functional alterations

occurring during the differentiation of DCs in psoriasis.
3.6 Identifying FABP5 and KLRB1 as robust
markers in psoriasis via machine learning

To identify key genes associated with psoriasis development, we

employed a combination of the LASSO, random forest, and SVM-
Frontiers in Immunology 07
RFE algorithms. Using the LASSO algorithm, we identified 50 genes

as robust markers in psoriasis (Figures 5A, B). The prediction

performance of the LASSO Cox proportional hazard model, as

assessed by ROC analysis, demonstrated relatively high accuracy

(Figure 5C). The random forest algorithm further identified 28 genes

significantly associated with psoriasis, including FABP5, CD47, and

UBE2F (Figures 5D-F). FABP5 has been widely reported in

autoimmune diseases such as multiple sclerosis, inflammatory

neuronal remodeling, and DCs dysregulation (25–27). Similarly,
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FIGURE 2

DCs regulate T cells through the CD70/CD27 signaling pathway. (A) Circle plot showing the differential number of interactions between normal
tissues and psoriasis tissues. (B) Bar plots showing the number of inferred interactions and interaction strength in normal and psoriasis tissues.
(C) Heat map showing the differential number of interactions and differential n interaction strength between normal tissues and psoriasis tissues.
(D) Bar plot showing the relative information flow in normal and psoriasis tissues. (E) Heat map showing the outgoing signaling patterns in normal
and psoriasis tissues. (F) Heat map showing the incoming signaling patterns in normal and psoriasis tissues. (G) Dot plot showing the potential
mechanism of cell-cell communications from DCs to other cell types. (H) Heat map showing theCD70 signaling pathway in psoriasis tissues.
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CD47 and UBE2F are involved in aberrant functions of DCs and T

cells in various tumors (28–30), indicating their potential relevance to

psoriasis development. The random forest algorithm thus

demonstrated high accuracy in predicting psoriasis. Furthermore,

through the integration of the LASSO, random forest, and SVM-RFE

algorithms, we identified FABP5 and KLRB1 as robust markers in

psoriasis (Figure 5G). To validate these findings, we performed gene

expression analysis of scRNA-seq data, which confirmed the

overexpression of FABP5 and KLRB1 in cluster 1 DCs, reinforcing

their potential role in psoriasis (Figure 5H). To further verify the

predictive effect of FABP5 and KLRB1, we conducted differential

expression analysis in two independent psoriasis cohorts. The results
Frontiers in Immunology 08
demonstrated that FABP5 and KLRB1 were significantly upregulated

in psoriasis skin tissues (Figures 5I, J).
3.7 Clinical drug treatments change the
composition of DCs

To investigate the effects of different clinical drug treatments on

DCs in psoriasis patients, we performed immune infiltration analysis.

The analysis included psoriasis patients treated with etanercept

(GSE41664), brodalumab (GSE117468), ustekinumab (GSE117468),

methotrexate (GSE85034), adalimumab (GSE85034), and tofacitinib
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FIGURE 3

DCs are heterogeneous in patients with psoriasis. (A) tSNE plot showing the 2988 DCs in 5 distinct clusters with K-means algorithm. (B) Bar plot
showing the DCs proportion in 4 normal skin tissues and 13 psoriasis skin tissues. (C) tSNE plot showing the 2988 DCs extracted from normal and
psoriasis skin groups. (D) Volcano plot showing the highly expressed genes in 5 distinct DCs clusters. (E) Volcano plot showing DEGs of DCs
between psoriasis and normal skin tissues. (F) Feature plot showing the expression of CD70 in DCs. (G) Bar plot showing the alternative pathways of
DCs between psoriasis and normal skin tissues.
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(GSE69967). The results of the analysis revealed specific effects of

certain drugs on the composition of DC subsets. Both etanercept and

adalimumab significantly decreased the composition of activated DCs

(aDCs) and plasmacytoid DCs (pDCs) (Figures 6A, B). This suggests

that the specific inhibition of TNF-a, which is the target of these

drugs, leads to a reduction in aDCs and pDCs, thereby relieving the

symptoms of psoriasis. Ustekinumab and brodalumab significantly

decreased the composition of pDCs (Figures 6C, D). This indicates
Frontiers in Immunology 09
that the targeted blocking of IL-12 and IL-17, respectively, inhibits the

differentiation of pDCs, thus contributing to the therapeutic effect in

psoriasis. Methotrexate treatment was found to inhibit pDCs

(Figure 6E). This suggests that methotrexate has a specific

suppressive effect on pDCs in psoriasis patients. Tofacitinib

treatment demonstrated inhibition of multiple DC subsets,

including total DCs, aDCs, conventional DCs (cDCs), immature

DCs (iDCs), and pDCs (Figure 6F). This broad inhibition indicates
frontiersin.or
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FIGURE 4

Pseudotime and single-cell trajectory analyses revealed the different cell fates of DCs. (A) tSNE plot showing the CytoTRACE score of DCs clusters.
(B) Bar plot showing the genes correlated with CytoTRACE. (C) Box plot showing the CytoTRACE score of different DCs subclusters. (D) PCA plot
showing the subclusters of DCs. (E) PCA plot showing the psedotime of different DCs subclusters. (F) Scatter plot showing the expression of CD27
and CD52. (G) Heat map showing the alternation of gene clusters. (H) Bar plot showing the biological functions of different gene clusters.
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that tofacitinib affects various DC populations, potentially

contributing to its therapeutic effect in psoriasis. Overall, the

immune infiltration analysis of psoriasis patients treated with

different drugs revealed distinct effects on DC subsets. These

findings provide insights into the mechanisms of action of these

drugs and their specific targeting of DC populations in the context of

psoriasis treatment.
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3.8 FABP5 and KLRB1 were associated with
the fraction of T cell during
clinical treatments

To investigate the relationship between FABP5, KLRB1, and T

cells in psoriasis, we performed Pearson’s correlation analysis using

data from a psoriasis cohort. The results of the correlation analysis
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FIGURE 5

Identifying FABP5 and KLRB1 as robust markers in psoriasis via machine learning. (A) Cross-validation for parameter optimization classification
model. (B) Construction of the LASSO regression model using GSE41664 samples as the training set. (C) ROC curve of LASSO regression
classification model in GSE117468 validation set. (D) Construction of the random forest model using GSE41664 samples as the training set. (E) ROC
curve of random forest classification model in GSE117468 validation set. (F) The key genes of psoriasis identified by random forest model. (G) Venn
diagram showing the robust markers identified by LASSO, random forest, and SVM-RFE. (H) tSNE plot showing the expression of FABP5 and KLRB1 in
DCs subclusters. (I, J) Box plot showing the expression of FABP5 and KLRB1 in normal and psoriasis skin tissues in GSE41664 and GSE117468,
respectively. Significance levels: ***p < 0.001.
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revealed associations between the expression of FABP5 and KLRB1

and specific T cell subpopulations in different treatment conditions.

For etanercept and adalimumab treatments, FABP5 expression

showed a significant correlation with CD4+ T central memory

cells (Tcm) and Th2 cells, while KLRB1 expression was associated
Frontiers in Immunology 11
with the activation of CD4+ T effector memory cells (Tem), CD8+

Tcm, and Th2 cells (Figures 7A, B). For ustekinumab and

brodalumab treatments, FABP5 expression demonstrated a

correlation with Th2 cells, whereas KLRB1 expression was

associated with CD8+ Tcm and Th2 cells (Figures 7C, D). For
frontiersin.o
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FIGURE 6

Clinical drug treatments change the composition of DCs. (A) Box plot showing the composition of DCs during etanercept treatment. Etanercept
significantly decreased the composition of aDCs and pDCs. (B) Box plot showing the composition of DCs during adalimumab treatment.
Adalimumab significantly decreased the composition of aDCs and pDCs. (C) Box plot showing the composition of DCs during ustekinumab
treatment. Ustekinumab significantly decreased the composition of pDCs. (D) Box plot showing the composition of DCs during brodalumab
treatment. Brodalumab significantly decreased the composition of aDCs and pDCs. (E) Box plot showing the composition of DCs during
methotrexate treatment. Methotrexate treatment was found to inhibit pDCs. (F) Box plot showing the composition of DCs during tofacitinib
treatment. Tofacitinib treatment demonstrated inhibition of multiple DC subsets, including total DCs, aDCs, cDCs, iDCs, and pDCs.
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methotrexate and tofacitinib treatments, both FABP5 and KLRB1

expressions were associated with Th2 cells (Figures 7E, F). These

findings suggest specific associations between FABP5 and KLRB1

expressions and particular T cell subpopulations in the context of

different treatments for psoriasis. The correlation analysis indicates

potential roles of FABP5 and KLRB1 in modulating immune

responses mediated by CD4+ Tcm, CD8+ Tcm, and Th2 cells

during the respective treatment regimens. These correlations

provide insights into the interactions between FABP5, KLRB1,

and T cells, contributing to our understanding of the underlying
Frontiers in Immunology 12
immunological mechanisms in psoriasis and the effects of different

therapeutic interventions.
3.9 FABP5 and KLRB1 are highly expressed
in psoriatic human skin tissues and M5-
induced HaCaT cells

To validate the results of single-cell and machine learning

analyses, we conducted experimental validation through
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FIGURE 7

FABP5 and KLRB1 were associated with the fraction of T cell during clinical treatments. (A, B) The correlation between the expression of FABP5,
KLRB1 and the composition of different T cells during etanercept and adalimumab treatments. FABP5 expression showed a significant correlation
with CD4+ Tcm and Th2 cells, while KLRB1 expression was associated with the activation of CD4+ T Tem, CD8+ Tcm, and Th2 cells. (C, D) The
correlation between the expression of FABP5, KLRB1 and the composition of different T cells during ustekinumab and brodalumab treatments.
FABP5 expression demonstrated a correlation with Th2 cells, whereas KLRB1 expression was associated with CD8+ Tcm and Th2 cells. (E, F) The
correlation between the expression of FABP5, KLRB1 and the composition of different T cells during methotrexate and tofacitinib treatments. FABP5
and KLRB1 expressions were associated with Th2 cells.
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immunohistochemistry, RT-qPCR, and immunofluorescence. In

psoriasis patients, KLRB1 exhibited heightened expression in the

stratum corneum and dermis, while FABP5 showed increased

expression in the entire dermis and epidermis, as indicated by

brownish-yellow coloration in corresponding immunohistochemistry

images (Figures 8A, B). Semi-quantitative analysis revealed an average

positively stained area of 0.5016 for KLRB1 in the psoriasis group,

compared to 0.1971 in the normal group. Conversely, FABP5 averaged

4.409 in psoriasis and only 0.1871 in the normal group. AOD values for

KLRB1 and FABP5 in psoriatic skin tissues were 0.03278 and 0.04656,

respectively, versus 0.01833 and 0.001889 in normal tissues

(Figures 8C-F). RT-qPCR results demonstrated a 2.595-fold increase

in KLRB1 and a 9.418-fold increase in FABP5 expression in psoriatic

skin tissues compared to the control group. Moreover, KLRB1 and

FABP5 expression in HaCaT cells, an in vitro model of psoriasis

induced by M5, was 1.93-fold and 4.158-fold higher than the control

group, respectively (Figures 8G-J). The substantial evidence suggests an
Frontiers in Immunology 13
elevation in FABP5 and KLRB1 expression in psoriasis, with a more

pronounced trend in FABP5 than in KLRB1.
3.10 Immunofluorescence reveals co-
localization of KLRB1 and FABP5 in human
psoriasis skin tissues

To explore the correlation between FABP5 and KLRB1, we

examined skin lesions from three psoriasis patients and three

healthy controls using immunofluorescence double staining. In

the Merge plot, blue represents DAPI-stained nuclei, green

indicates KLRB1, and yellow denotes FABP5. The psoriasis group

exhibited more pronounced green and yellow fluorescence in the

images. For analysis, we employed the HALO platform, marking

FABP5-positive cells with yellow circles, KLRB1-positive cells with

green circles, and negative cells with white circles (Figure 9A).
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FIGURE 8

Expression of FABP5 and KLRB1 in human skin tissue and HaCaT cells. (A, B) Immunohistochemical (IHC) staining demonstrates FABP5 and KLRB1
expression in the skin of psoriasis patients (n=3) and healthy controls (n=3). Full-size and zoom-in images were acquired at 5x and 20x.
(C, E) Quantification of IHC images is represented as the percentage of occupied area ± SEM. (D, F) Quantification of IHC images is represented as
the average optical density ± SEM. (G-J) Relative mRNA expression of FABP5 and KLRB1 in the skin of psoriasis patients and psoriasis model in vitro
by RT-qPCR. (*P<0.05; **P<0.01).
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Quantitative data from HALO revealed significantly higher mean

values of positive cytoplasmic percentage for KLRB1 (33.24) and

FABP5 (55.47) in the psoriasis group compared to the control

group (9.932 and 14.30, respectively) (Figure 9B). Quantitative

analysis further demonstrated a statistically significant elevation

in FABP5 positivity (55.47 vs. 33.24) and KLRB1 positivity (14.30

vs. 9.932) in the psoriasis group (p-values 0.0253 and 0.0211,

respectively). Double positivity for FABP5 and KLRB1 was 14.91

in the psoriasis group and 2.389 in the control group, exhibiting a

slightly lower yet statistically more significant tendency for

elevation than the first two groups (p-value 0.0024). FABP5

positivity coupled with KLRB1 negativity was observed at 40.56 in

the psoriasis group and 11.91 in the normal group, while KLRB1

positivity with FABP5 negativity stood at 18.33 in the psoriasis

group and 7.542 in the normal group. Despite these numerical

differences between psoriasis and normal groups, no statistically

significant distinction emerged (Figure 9C). The intensity plot

reveals a synchronized trend in fluorescence intensity profiles of

both staining channels, demonstrating convergence in the

fluorescence of FABP5 and KLRB1 at the same position. The

corresponding Pearson’s correlation coefficients for the psoriasis

and control groups were 0.89 and 0.86, respectively (Figures 9D, E).

Combined with the analysis of fluorescence intensity curves, we

deduce a co-localization of KLRB1 and FABP5 in both psoriasis and
Frontiers in Immunology 14
normal skin tissues, elucidating the characteristics of KLRB1 and

FABP5 in these contexts.
4 Discussions

We looked at the specific immune microenvironment of clinical

relevance and screened for new key genes in diagnosis and new

targets in therapy based on data obtained from single-cell RNA

sequencing analysis of 13 psoriatic skin tissues versus 5 normal

control skin tissues in the original literature and information

obtained from the GSE dataset (31). We analyzed KCs,

melanocytes, T cells, macrophages, and DCs in psoriasis lesions.

We identified unique expression profiles of KCs and DCs, further

explored the importance of altered DC function in the development

and progression of psoriasis, and identified two key genes, FABP5

and KLRB1, from the initially predicted 50 genes by a machine

learning approach. Our results highlight the potential molecular

mechanisms and novel biomarkers for psoriasis. At the same time,

the specific targeting of DCs by different drugs observed in therapy

could provide more powerful information for better treatment of

gene-driven autoimmune diseases.

This study investigates the aberrant function of DCs in psoriasis

pathogenesis. DCs possess the ability to acquire, process, retain, and
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FIGURE 9

Immunofluorescence analysis of FABP5 and KLRB1 in human skin tissues. (A) Representative images of fluorescence immunohistochemistry for
FABP5 and KLRB1. Numbers 1-3 are normal human skin from different individuals, 4-6 are from psoriasis patients. Digital image analysis utilizing
HALO to quantify the percentage of FABP5 and KLRB1 positive cells. Each Intensity plot demonstrates the colocalization analysis of FABP5 with
KLRB1 for different groups. (B) The percentage of positive cytoplasm increased for both KLRB1 and FABP5 within the psoriasis group by HALO
analysis. (C) The percentage of positively stained cells for KLRB1 and FABP5(single-positive, double-positive, and double-negative instances) by
HALO analysis. (D, E) Colocalization analysis for images 1-3 (D) and 4-6 (E) by Image J. Data are presented as mean ± SEM. Significance levels:
* p < 0.05, ** p < 0.01, and ns indicates non-significance.
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present peptides on major histocompatibility complex (MHC)

molecules, crucial for regulating adaptive immunity and activating

auto-reactive pathogenic T cells (32), which cross-present exogenous

soluble cell-associated antigens to CD8+ T cells and regulate

histopathology through multiple mechanisms, including pathogenic

and regulatory T cell initiation and differentiation, local reactivation

of autoimmune T cells within target tissues, and control of epitope

spreading, so that the development of many autoimmune diseases is

associated with genetics and variation in DC function (33–36).

Central to the pathogenesis of psoriasis is the cross-talk between

the innate and adaptive T cell-based immune systems involving

mainly DCs, macrophages, mast cells, and granulocytes, as well as

the effects of the immune response on and interactions between

various cellular subpopulations in the skin (37). DCs serve as both

initiators of antigen presentation and orchestrators of inflammatory

pathways in psoriasis. PDCs induce mDCs to release pro-

inflammatory mediators, establishing type I and type II IFN

inflammatory cascades in collaboration with IFN-g-producing T

cells (Tc1 and Th1), mediated by CXCL10 and CXCL9 feedback

mechanisms (1). Inflammatorymyeloid DCs andmature dermal DCs

produce cytokines such as IL-12 and IL-23 to activate Th1, Th17,

Th22, and Tc17 cells, which in turn act on KCs (38). ADCsmigrate to

the draining lymph nodes, secreting inflammatory factors like IL-23,

TNF-a, IL-1b, and IL-12. Single-cell analysis showed increased

expression of CD5-CD163+CD14+ DCs in psoriatic lesion skin

and production of IL23A and IL1B (39). CD4+ naïve T cells,

stimulated with IL-12, differentiate into Th1 cells, secreting IL-23

to support the survival and proliferation of Th17 and Th22 cells.

Other inflammatory cells co-produce IL-17, IL-22, and IL-12 with T

cells. This cascade leads to downstream proliferation of KCs,

heightened expression of inflammatory mediators, endothelial

adhesion molecules, and immune cell infiltration. The skin

inflammation in psoriasis is predominantly caused by pathogenic

cytokines produced by overly dysregulated T cells (40, 41). Our

findings are consistent with the existing views and reaffirm the

interaction between DCs and T cells in psoriasis. The finding that

the CD70/CD27 signaling pathway serves as an important link

between the two provides a new theoretical basis for unraveling the

molecular mechanisms of DCs in psoriasis.

The CCR7/CCL19 signaling pathway is an important signaling

pathway present in psoriasis, and studies demonstrate that

inhibiting TNF leads to suppression of this pathway, resulting in

dispersal of lymphoid clusters marked by the activation of this

pathway, leading to amelioration of psoriasis symptoms (42, 43).

This provides evidence that TNF-a inhibitors, represented by

etanercept and adalimumab, can treat psoriasis by altering the

composition of DCs. CCR7 is a pivotal chemokine receptor in

immune function driven by lymphocytes and is expressed across

diverse immune cell subpopulations, with CCL19 and CCL21 as its

ligands (44). Prior research indicates that CCL19 is selectively

synthesized near perivascular T cells and DCs, potentially

facilitating the recruitment of CCR7+ T cells and DCs to these

sites (43). DCs can enhance their responsiveness to CCL19 and

CCL21 by upregulating CCR7 expression, and additionally

modulate T cells via their production of CCL19 (45). DCs and T

cells utilize the CCR7/CCL19 axis as a conduit in influencing the
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pathogenesis of psoriasis via interactions within psoriatic dermal

aggregates. These studies have augmented the understanding of DC

involvement in psoriasis at the molecular level and furnish crucial

theoretical underpinnings for the findings presented herein.

However, our current study underscores the significant role of

DCs in psoriatic skin by orchestrating T cell regulation through the

CD70/CD27 signaling pathway. CD70, belonging to the TNF

superfamily and acting as a ligand for CD27, exhibits

predominant expression on aDCs but is also present on Th1 and

Th17 cells. CD27 signaling suppresses the expression of Th17-

associated genes in regulatory T cells (Tregs) (46, 47). The CD70/

CD27 signaling pathway is mainly regulated by CD70 expression,

which directly regulates T cell-T cell interactions and influences the

development of effector T cells. The high expression of CD70 can

directly High CD70 expression can directly induce CD27+

lymphocyte over-infiltration, while CD27 and CD70 co-

stimulation of the pathway can impede Th17 effector cell

differentiation and associated autoimmunity (48). CD27 signaling

does not affect master regulators of T helper cell lineage

commitment. However, it selectively inhibits the psoriasis-

associated pathogenic factor IL-17 and chemokine receptor CCR6

in differentiated Th17 cells through the c-Jun N-terminal kinase

(JNK) pathway transcription in differentiated Th17 cells (49). CD27

serves as a distinguishing marker for gd T cell subsets based on their

cytokine profiles, delineating IFN-g producers as CD27+ and IL-17

producers as CD27-CCR6+ (50). IL-1b induces keratinocytes to

secrete chemokines, specifically attracting CD27-CCR6+ gd T cells

(51). CD19(+)CD27(+)CD24(high) Breg cells exhibit reduced

expression in psoriasis and psoriatic arthritis patients, correlating

inversely with Psoriasis Area and Severity Index (PASI) scores (52).

Moreover, psoriasis patients demonstrate reduced expression of

CD27 and CD28 on skin T cells (53). Patients with psoriasis exhibit

a decreased frequency of CD27(+) memory B cells, contrary to

observations in atopic dermatitis (AD), which has a predominantly

Th2 response (54). CD27+ Tregs can inhibit the expression of their

co-stimulatory molecule CD70 on the plasma membrane of DCs.

Down-regulation of CD70 necessitates contact between Tregs and

DCs facilitating the endocytosis of CD27 and CD70 by the DCs.

This mechanism enables Tregs to sustain tolerance or inhibit

excessive proinflammatory Th1 responses (55, 56). During the

triggering phase of allergic contact dermatitis, there is an increase

in the expression of CD70 and the Th17-specific transcription

factor retinoid orphan receptor gamma T. Managing this

phenomenon could ameliorate symptoms of other autoimmune

diseases like psoriasis. Additionally, activated NKT cells can induce

the expression of CD70 on DCs (57). Therefore, we hypothesized

that DCs are involved in the pathogenesis of psoriasis by regulating

T cells via the CD70/CD27 signaling pathway.

FABP5, also known as epidermal-FABP (E-FABP) (58), was

first identified due to its significant up-regulation in psoriatic KCs

(59). FABP5 is highly expressed in epidermal cells and is also

present in brain, kidneys, liver, lungs, testes, adipose tissue and

macrophages (60–62). It is crucial to maintain lipid and glucose

homeostasis and regulate insulin responses and inflammation (63).

Studies on cardiometabolic risk suggest an association between

FABP5 and the development of obesity-related metabolic syndrome
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(MetS) and atherosclerosis (64). Consequently, FABP5 may link

psoriasis and MetS, although further investigation is required to

investigate the underlying mechanisms. FABP5 is strongly

expressed in human cutaneous CD8+ TRM cells and is critical for

the long-term persistence of this cell in the skin. T-cell-specific

deficiency of Fabp5 impairs the uptake of exogenous free fatty acid

by CD8+ TRM cells and reduces the long-term viability of CD8+

TRM cells in vivo. Also, cutaneous CD8+ TRM cells lacking Fabp4/

Fabp5 in a mouse model were significantly reduced in their ability

to resist cutaneous viral infections. Psoriasis, a disease that can be

mediated by CD8+ TRM cells co-expressing CD8 and CD69, has

detectable FABP5 protein expression in skin lesions. We

hypothesize that FABP5 may play a role in the pathogenesis of

psoriasis by affecting lipid metabolism and causing TRM cell

dysfunction (65–67). Additionally, FABP5 might regulate the

differentiation of psoriatic KCs through the NF-kB signaling

pathway (68, 69). Previous studies have correlated serum FABP5

with both the PASI score and the basic inflammatory index in

psoriasis patients, indicating its potential as a marker for psoriasis

severity and clinical outcomes post-treatment with NB-UVB (70,

71). However, Tomomi Miyake et al. concluded that FABP5 was not

associated with PASI scores and that there was no significant,

consistent increase or decrease in FABP5 levels after treatment

with Adalimumab, Infliximab, and NB-UVB (72). Further studies

are essential to reconcile these discrepancies. FABP5 expression has

been linked to the activation of various pathways, including

NLRP3/IL-1b, RAR/CD11c, LTA4/LTB4, or STAT1/2/IFNb (58).

The novel topical drug VX-509 also has shown efficacy in

diminishing psoriasis inflammation by targeting the STAT3/

FABP5 pathway (73).

The gene KLRB1 encodes the cell surface molecule CD161 (74),

which is expressed in T cells, natural killer (NK) cells, and various

lymphocyte populations in the thymus, cord blood, and peripheral

blood. Numerous studies have illustrated the association of KLRB1

expression with the prognosis of various cancers (75). Additionally,

CD161-expressing T cells exhibit highly functional pro-

inflammatory characteristics, contributing to autoimmune disease

development (76, 77). NK cells, a class of innate lymphocyte

populations capable of distinguishing between infected or stressed

cells and healthy cells (78), have been found to produce the

psoriasis-causing cytokines IL-17 and IL-22 (79). CD161 is early

in its expression during NK cell development and may facilitate

crosstalk between NK cell precursors and bone marrow cells,

leading to CXCL8 release. Moreover, in psoriatic lesions, the

upregulated expression of CD1d in KCs activates NKT cells,

leading to increased production of the pathogenic factor IFN-g,
thereby promoting psoriasis progression (80, 81). The primary

functional disparity between CD161+ and CD161- NK cells lies

in their responsiveness to pro-inflammatory cytokines. CD161

serves as a marker for NK cells that can respond to IL-12 and IL-

18 during differentiation, leading to the subsequent upregulation of

NKp30, CD160, CD25, CD69, and IFN-g—an identified psoriasis-

associated pathogenic factor (82). Research has shown that a subset

of CD4 T memory cells, both circulating and residing in the
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intestines, expressing CD161, can respond to IL-23. This response

leads to the full differentiation and activation of Th17 cells,

underscoring the significance of this subpopulation in the

inflammatory response (83).

FABP5 and KLRB1 have been previously studied in relation to

other dermatologic conditions. FABP5 is elevated in patients with

AD, especially in combination with atopic march, and correlates with

the severity of skin involvement (84, 85). Up-regulated FABP5 is

implicated in radiation-induced skin fibrosis via modulation of the

TGF-b signaling pathway. Proteomic profiling revealed heightened

expression of KRT6C and FABP5 in arsenic-induced keratosis pilaris

(86, 87). Additionally, FABP5 plays a significant role in skin tumors;

suppressing FABP5 or S100A9 expression impedes the proliferation

and migration of cutaneous squamous cell carcinoma cells via the

NF-kB pathway (88). Within extramammary Paget’s disease tumor

tissues, FABP5 exhibits co-localization with CK7, CK20, and EMA,

accompanied by substantial expression levels (89). Similarly, mycosis

fungoides manifests elevated expression levels of FABP5, S100A8,

and SOD2. The study of KLRB1 in dermatology has been limited.

Still, single-cell analysis of skin tissues and peripheral blood

mononuclear cells from Palmoplantar pustulosis, a specific

psoriasis subtype, revealed heightened expression and co-expression

of TH17 (KLRB1/CD161) and TH2 (GATA3) in a subset of memory

CD4+ T cells. Memory CD4+ T cell subsets labeled with TH17

demonstrated plasticity towards TH2, with high expression and co-

expression of CD161 and GATA3 observed in skin lesions (90).

FABP5 is linked to the fatty acid-rich microenvironment of the skin,

and its elevation is common in various dermatologic conditions.

While KLRB1 and FABP5 have been noted in other dermatologic

conditions, their precise molecular mechanisms and disease risks

remain unclear. FABP5 alone lacks specificity as a biomarker for

psoriasis, but its combination with KLRB1 enables differentiation

from other skin diseases. Thus, FABP5 and KLRB1 hold promise as

significant biomarkers for psoriasis diagnosis. The downstream

pathways of FABP5 vary across various dermatologic diseases, and

our team’s future research will concentrate on the detailed

mechanistic examination of FABP5 and KLRB1 in psoriasis.

In this study, we evaluated six commonly prescribed psoriasis

treatments, and overall, tofacitinib emerges as the preeminent choice

for targeting DCs in psoriasis treatment. As a first-generation Janus

kinase inhibitor, tofacitinib is the initial oral JAK approved in the

European Union and the United States (91–93), demonstrating

superior efficacy in clinical trials. Currently, these inhibitors are in

use for treating rheumatoid arthritis, psoriatic arthritis, and ulcerative

colitis, demonstrating significant efficacy and safety in clinical trials

(94, 95). Tofacitinib inhibits kinases such as JAK1, JAK2, and JAK3,

along with cytokines such as g-chain cytokines, IFN-g, and IL-6 (96).

Additionally, in vitro studies reveal its inhibition of the signaling

process of IFN-a/b and IL-22 in isolated KCs (97). While several

clinical trials affirm its effectiveness in psoriasis by suppressing

various psoriasis-related cytokines (98–101), the U.S. Food and

Drug Administration, the European Medicines Agency, and China

have not yet added psoriasis to the indications for tofacitinib. Despite

scarce clinical data, our study’s observation of tofacitinib significantly
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reducing DCs in psoriasis suggests its potential as an efficacious

psoriasis treatment. Our immunohistochemistry, PCR, and

immunofluorescence experimental validation demonstrated the

upregulation and co-localization of FABP5 and KLRB1 in human

psoriatic skin tissues and M5-induced HaCaT cells. The lack of

significance in the percentage of cells positive for either KLRB1 or

FABP5, while concurrently being negative for the other, could stem

from the limited number of studies and potential errors. However,

combined with the analysis results in the previous part of this paper,

this may also be a conclusion in line with the objective facts. The

double positive of FABP5 and KLRB1 has higher specificity in the

psoriasis group. The elevation of FABP5 in the psoriasis group is

more pronounced. Conversely, negativity for either FABP5 or KLRB1

could indicate a protective factor against psoriasis. Additional

investigations are needed to explore the relationship and

mechanisms of action between FABP5 and KLRB1 in psoriasis.

Our study delved into the mechanisms underlying DCs-T cell

interactions in psoriasis pathogenesis, identifying novel biomarkers

and molecular targets for diagnosis and treatment. We hope our

discoveries offer fresh insights into psoriasis diagnosis and

therapeutic strategies. Nevertheless, our study has limitations;

firstly, relying on bioinformatics analysis introduces potential bias

due to limited data and varying statistical methods. Secondly, the

sample size for RT-qPCR and immunohistochemistry might need

to be increased. Hence, further research must substantiate our

findings with more robust evidence.
5 Conclusion

We explored psoriasis’s pathogenesis and diagnostic

biomarkers through advanced bioinformatics methods, including

single-cell sequencing data analysis and machine learning. Findings

were validated using RT-qPCR, immunohistochemistry, and

immunofluorescence. Our data indicate that DCs, particularly

through the CD70/CD27 pathway, mediate inflammatory

responses in psoriasis by influencing other cells, especially T cells.

Additionally, FABP5 and KLRB1 emerge as potential therapeutic

targets, exhibiting correlation with specific T-cell subsets during

treatment. Tofacitinib demonstrates advantages in studying drugs

targeting DCs, with elevated expression and co-localization of

FABP5 and KLRB1 in psoriasis. These insights enhance our

understanding of psoriasis, elucidate the connection between key

genes and the immunoregulatory network, and pave the way for

novel diagnostic and therapeutic strategies.
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