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Background: Increasing evidence have highlighted the biological significance of

mRNA N6-methyladenosine (m6A) modification in regulating tumorigenicity and

progression. However, the potential roles of m6A regulators in tumor

microenvironment (TME) formation and immune cell infiltration in liver

hepatocellular carcinoma (LIHC or HCC) requires further clarification.

Method: RNA sequencing data were obtained from TCGA-LIHC databases and

ICGC-LIRI-JP databases. Consensus clustering algorithm was used to identify

m6A regulators cluster subtypes. Weighted gene co-expression network analysis

(WGCNA), LASSO regression, Random Forest (RF), and Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) were applied to identify candidate

biomarkers, and then a m6Arisk score model was constructed. The correlations

of m6Arisk score with immunological characteristics (immunomodulators,

cancer immunity cycles, tumor-infiltrating immune cells (TIICs), and immune

checkpoints) were systematically evaluated. The effective performance of

nomogram was evaluated using concordance index (C‐index), calibration

plots, decision curve analysis (DCA), and receiver operating characteristic

curve (ROC).

Results: Two distinct m6Amodification patterns were identified based on 23m6A

regulators, which were correlated with different clinical outcomes and biological

functions. Based on the constructed m6Arisk score model, HCC patients can be

divided into two distinct risk score subgroups. Further analysis indicated that the

m6Arisk score showed excellent prognostic performance. Patients with a high

m6Arisk score was significantly associated with poorer clinical outcome, lower

drug sensitivity, and higher immune infiltration. Moreover, we developed a

nomogram model by incorporating the m6Arisk score and clinicopathological

features. The application of the m6Arisk score for the prognostic stratification of

HCC has good clinical applicability and clinical net benefit.
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Conclusion:Our findings reveal the crucial role of m6A modification patterns for

predicting HCC TME status and prognosis, and highlight the good clinical

applicability and net benefit of m6Arisk score in terms of prognosis,

immunophenotype, and drug therapy in HCC patients.
KEYWORDS

N6-methyladenosine, WGCNA, SVM-RFE, LASSO, consensus clustering algorithm,
TIICs, DCA
1 Introduction

Hepatocellular carcinomas (HCC, accounting for 90% of liver

cancer) is one of the most frequent fatal malignancies and ranks

fourth among cancer-related mortality worldwide (1). Despite

recent great advances in treatment interventions, 5-year overall

survival (OS) for HCC patients remains poor and unsatisfactory,

with only 5% to 15% of early-stage patients qualifying for surgical

excision (2). HCC is insidious and develops rapidly, and patients are

usually diagnosed at an advanced stage. The treatment strategies

that are currently available for more than 90% of liver cancer

patients mainly include chemotherapy, immunotherapy, natural

compounds, and nanotechnology (2). However, the clinical benefit

of these therapies remains unsatisfactory, mainly due to the lack of

effective pre-treatment predictive biomarkers. Besides, treatment of

regional resection and liver transplantation is still limited, and the

recurrence rate after regional resection is high. Therefore, it is

imperative to identify novel reliable biomarkers and therapeutic

targets that enable early diagnosis and treatment response

prediction for HCC patients.

Although the risk factors for liver carcinogenesis are well defined

(including hepatitis B and C viruses, fatty liver, alcoholic cirrhosis,

diabetes, obesity, etc), the underlying molecular mechanisms remain

ambiguous. Extensive evidence shows that epigenetic mechanisms is

implicated in multiple aspects of cancer biology, from driving

primary tumor growth and invasion to modulating the immune

response within the tumor microenvironment (TME). The complex

bidirectional dynamic cross-talk between cancer cells and their

microenvironment has been identified as a key factor that drives

tumor initiation, growth, progression, malignant conversion,

invasion, metastasis, drug resistance and patient prognosis (3–5).

TME is a complex and evolving multi-layered cellular environment

composed of stroma, vascular, and innate/adaptive immune cells, as

well as a community of malignant clones (6). N6-methyladenosine

(m6A)methylation is one of the most common types of modifications

in eukaryotic messenger RNA (mRNA). Similar to modifications in

DNA or proteins, it is regulated by various types of regulators,

including methyltransferases (“ writers “), RNA-binding proteins (“

readers “), and demethylases (“ erasers “). Dysregulation of m6A

regulatory factors is associated with malignant tumor progression

and TME-specific immunomodulation abnormalities (7, 8).
02
Nonetheless, the role of m6A regulators in TME heterogeneity and

immune cell infiltration in HCC remains to be further investigated.

Therefore, it is crucial to comprehensively understand the

relationship between RNA methylation modification patterns and

genetic alterations underlying cancer cell heterogeneity.

Cancer is both a genetic and epigenetic disease. Gene mutations

and epigenetic alterations have been identified as significant

contributors to human carcinogenesis. Unlike genetic mutations,

epigenetic modifications refer to heritable changes that mediate

gene expression without altering the genetic DNA sequence (9).

Extensive evidence shows that epigenetic mechanisms is implicated

in multiple aspects of cancer biology, from driving primary tumor

growth and invasion to modulating the immune response within the

TME. Epigenetics-based diagnostic and prognostic tools also greatly

contribute to the development of precision oncology. Recent studies

have reported that abnormal decreases or increases in the overall

abundance of m6A in some types of cancer may be associated with

cancer progression and clinical outcomes. It has been reported that

the overall abundance and expression level of m6A in mRNA or total

RNA in human gastric cancer and liver cancer tissues are significantly

increased, and are closely related to the expression level of m6A

methylation regulatory enzymes (10, 11). It has also been reported

that the overall abundance of m6A is significantly reduced in more

advanced human bladder cancer tissues and is associated with poor

prognosis in bladder cancer patients (12). Another study showed that

m6A abundance is associated with therapeutic drug response and

may be an epigenetic driver of chemotherapy resistance (13).

Together, these results suggest that m6A modification regulators

have different potential in prognosis stratification and the

development of new therapeutic strategies across various cancers.

Due to immune evasion and heterogeneity in the TME, only a

minority of patients respond favorably to immunotherapy. At this

point, better stratification is urgently needed for HCC patients to

enhance treatment efficacy. Therefore, comprehensive investigation

of m6A modification and its biological roles in HCC may contribute

to improving prognosis prediction and personalized precision

treatment approaches for HCC.

In this study, we first profiled the expression of 23 m6A

regulators and identified two distinct m6A regulator-mediated

modification patterns based on TCGA-LIHC cohort. We then

constructed a novel m6A-risk scoring system to quantify the m6A
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modification patterns in individual tumors and to predict the

clinical response of HCC patients to common chemotherapy or

targeted drugs. Additionally, we comprehensively evaluated the

association between m6A modification patterns and TME cell-

infiltrating characteristics.
2 Materials and methods

2.1 Data source and preprocessing

RNA-sequencing data (counts value) with corresponding

complete clinical information of HCC were obtained from

TCGA-LIHC program (https://portal.gdc.cancer.gov/repository)

and ICGC-LIRI-JP database (https://dcc.icgc.org). The annotation

file of GRCh38 (version 36) was downloaded from GENCODE to

identify the length of each mRNA. Subsequently, RNA-sequencing

data in counts format was transformed into transcripts per kilobase

million (TPM) format and further subjected to log2 transformation

for normalization. In addition, somatic mutation data and CNV

files were retrieved from the TCGA-LIHC program. Samples

lacking clinicopathological information or survival outcomes were

excluded from further analysis. Ultimately, 23 acknowledged m6A

regulator genes, including 8 writers, 13 readers, and 2 erasers, were

identified from previous studies (14–16).
2.2 Unsupervised clustering of m6A
regulator genes

Consensus unsupervised clustering analysis was employed for

identifying distinct m6A regulator modification patterns in the

TCGA-LIHC cohort by the k-means algorithms, which is available

in the “ConsensusClusterPlus” R package (17, 18). The

“ConsensusClusterPlus” package provides quantitative stability

evidence to determine a cluster count and cluster membership in

an unsupervised analysis. The quantity and stability of clusters were

determined by consensus clustering algorithm, and conducted for

1,000 iterations (18). The cumulative distribution function (CDF)

curves were used to determine the optimal number of clusters,

indexed by k-means algorithms value from 2 to 9. Ultimately,

based on the clustering effect, the clustering stability was higher

when k = 2.
2.3 Differentially expressed genes analysis

The expression profile data from TCGA-LIHC cohorts were

preprocessed by R software (V.4.0.5). The differential expression

analysis between two distinct m6A cluster subtypes were

performed using the “DESeq2” R package (19) (V.1.38.3). Genes

with |log2FoldChange| > 1 and P adj < 0.001 were regarded as

statistically significant. Furthermore, Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed for DEGs using the

“clusterProfiler” R package. GO categories comprised biological
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processes (BP), molecular functions (MF), and cellular

components (CC). The p-value was adjusted using the

Benjamini–Hochberg (BH) approach or False Discovery Rate

(FDR) for multiple testing corrections. The results satisfied FDR

< 0.05 were regarded as statistically significant.
2.4 Gene set enrichment analysis

This analysis aimed to discern potentially relevant gene

expression signatures between distinct m6A cluster subtypes

utilizing the ‘clusterProfiler’ package (V.4.6.0). The reference gene

set for GSEA analysis, ‘c2.cp.kegg.v7.4.symbols.gmt,’ was obtained

from MSigDB database (http://software.broadinstitute.org/gsea/

msigdb/index.jsp). Differential expression analysis between the

two cluster subtypes was conducted using “DEseq2” package

(V.1.38.3). Subsequently, all genes were ranked from high to

bottom according to log2-fold change, and this sorted gene set

was used for GSEA analysis. For achieving a normalized enrichment

score (NES) for each analysis, a permutation test with 1,000

iterations were performed. The pathways meeting the criteria of

|NES| > 1, p-value < 0.05, and q-value < 0.05 were regarded as

significant enrichment.
2.5 Gene set variation analysis

This analysis was performed to assess the variation of hallmark

pathway activity in distinct m6A cluster subtypes via ‘GSVA’

package (V.1.38.0) in an unsupervised manner (20). In this study,

the gene set ‘h.all.v7.4.symbols.gmt’ was selected as the background

gene set for GSVA analysis, which was downloaded from MSigDB

database (21). The ‘limma’ R package was utilized to analyze the

differences in hallmark pathways between two m6A cluster

subtypes. The criteria for screening significant difference were as

follows: |t-value| >2 and p-values < 0.05. The pathway with a t-value

> 0 was thought to be activated in the m6A cluster B, and conversely,

the pathway with a t-value < 0 was considered to be activated in the

m6A cluster A.
2.6 Weighted gene co-expression
network analysis

WGCNA R package was utilized to construct an unsigned

weighted co-expression network to identify m6A cluster-related

gene modules. First of all, TCGA-LIHC expression data in TPM

format were evaluated for availability and genes were screened

using the lowest median absolute deviation (MAD) for further

analysis. The Pearson’s correlation matrices between all included

genes were calculated, and then transformed into an unsigned

weighted adjacency matrix using a power function. The power b
was estimated by soft-threshold of 0.85 to obtain a network with

scale-free topology. Furthermore, a topological overlap measure

(TOM) matrix was generated to estimate the connectivity property

of nodes in the network. The node in the networks represented a
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coding gene in the modules and an edge connecting two genes

indicated a strong correlation. Average linkage hierarchical

clustering was used to construct a clustering dendrogram of the

TOM matrix. Dynamic tree-cutting algorithm was used to obtain

appropriate modules of co-expressed genes with deep split = 2 and

the minimum gene module size of 40, and the height cutting

threshold of merging similar modules was set to 0.3. Genes

outside of each module were denoted with color “grey”. The

association between module Eigengenes (ME) values with

clinicopathological characteristics was assessed by Pearson’s

correlation, and the modules with the strongest association with

m6A cluster were selected for further analysis.
2.7 Identification of optimal feature
gene biomarkers

To identify the optimal feature gene variables with the superior

discriminative power, three machine-learning algorithms were

implemented to predict disease status, including LASSO (least

absolute shrinkage and selection operator) regression, SVM-RFE

(support vector machine-recursive feature elimination), and RF

(random forest classifier). LASSO regression analysis was

performed using the ‘glmnet’ R package (22), and SVM-RFE

using the ‘e1071’ R package (23). In the LASSO regression

analysis, the response type was configured as binomial, and the

alpha parameter was set to 1. Meanwhile, SVM-RFE model was

compared by the average mis-judgement rates of their 10-fold

cross-validations (24). The final importance of features was based

on the average importance of each feature variable in each iteration.

In the RF algorithm, the importance ranking of each gene, and the

error rate and accuracy rate of the combination in each iteration

were obtained using the RFE method. The feature genes were the

corresponding genes in the optimal combination with the lowest

error rate. The overlapping genes between the three machine-

learning algorithms were regarded as optimal diagnostic

biomarkers. The accuracy of the overlapping genes for diagnosis

was evaluated using the receiver operating characteristic curve

(ROC) in TCGA-LIHC dataset, and the expression levels of

candidate genes were further validated in the ICGC-LIRI-JP dataset.
2.8 Construction of m6Arisk score model
for HCC prognosis

The overlapping feature genes obtained above were first

subjected to univariate Cox regression to obtain the OS related

DEGs. Followed by least absolute shrinkage and selection operator

(LASSO) penalties regression, we identified the most powerful

prognostic DEGs and their correlative coefficients using “glmnet”

R package. Meanwhile, the “caret” R package was utilized to

randomly divide the TCGA-LIHC cohort (n = 371) with a ratio

of 1:1, with 50% of the data used for training and 50% for

validation. Next, the independent prognostic feature genes were

identified using multivariate Cox regression analysis to construct a

m6A related prognostic risk score model in the training set. Then,
Frontiers in Immunology 04
the m6Arisk scores were calculated using the formula:

m6Arisk-score = S (gene expression * risk coefficient). Based on

the median of risk score, the training set and testing set were

stratified into low- and high-risk groups, respectively. Finally,

survival analysis and receiver operating characteristic (ROC)

curve analysis were carried out for the two risk groups using the

“survminer” and “survivalROC” R packages, respectively.
2.9 The immunological characteristics of
the tumor microenvironment

To confirm the role of m6Arisk score in modulating cancer

immunity in HCC, we analyzed the correlation between m6Arisk

and the immunological characteristics of TME. The immunological

characteristics included the activity of the cancer immunity cycle,

infiltration level of tumor‐infiltrating immune cells (TIICs), and the

expression of immunomodulators and inhibitory immune

checkpoints. The cancer immunity cycle consists of seven steps

that reflect the anticancer immune response and determine the fate

of the tumor cells (25) (Supplementary Table S12). The

immunomodulators comprise major histocompatibility complex

(MHC), receptors, chemokines, and immune stimulators (26)

(Supplementary Table S17). In this study, the activities of the

cancer immunity cycle were also quantified using a single sample

gene set enrichment analysis (ssGSEA) as previously reported (27).

Moreover, to avoid the calculation error of different algorithms and

marker gene sets, six independent algorithms [including Cibersort

(28), MCP-counter (29), quanTIseq (30), TIMER (31), xCell (32),

and TISIDB (33)] were used to comprehensively calculate TIICs

infiltration level in TME (Supplementary Table S7). Thereafter, the

effector genes of TIICs and inhibitory immune checkpoints were

also identified and collected from previous studies (34)

(Supplementary Tables S18, S19).
2.10 Somatic mutation analysis

For genomic layer analysis, the mutation annotation format

(MAF) data of HCC patients was derived from the TCGA-LIHC

database (http://tcga-data.nci.nih.gov/tcga/) and analyzed using the

“maftools” R package (35). The mutation profile was visualized

using a waterfall plot, which displays the mutation types and

frequencies of the top driver genes. Fisher’s exact test was

conducted to compare the differential mutation patterns between

the two distinct m6Arisk score groups. Genes with a p-value less

than 0.05 were considered statistically significant and were

visualized in a forest plot. In addition, a lollipop diagram was

drawn to indicate the mutation types of the most frequently

mutated gene in order to provide insight into the molecular

alterations associated with hepatocellular carcinoma (HCC)

development. Furthermore, the exclusivity and co-occurrence of

mutations for the top 20 mutated genes were analyzed. The

prognostic value of TMB and the combination of TMB and

m6Arisk scores were comprehensively evaluated. Additionally, the

relationship between the m6Arisk scores and the cancer stem cell
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(CSC) index was evaluated to investigate their potential association

in tumor progression and treatment resistance.
2.11 Prediction of therapeutic response by
m6Arisk score

The T cell receptor (TCR) repertoire is a well-characterized

immune trait that plays a key role in the selective activation of the

adaptive immune system (36, 37), tightly linked to the immune

status and anti-tumor immune response. In this study, we

obtained the TCR Shannon diversity index and richness of the

TCGA-LIHC cohort from previous literature (36) and

investigated their differences between the two distinct m6Arisk

scores groups. The Tumor Inflammation Signature (TIS) is a

transcriptome-based algorithm consisting of 18 genes that

measures a pre-existing but suppressed adaptive immune

response within the tumor (38). We computed the TIS score of

each patient as previously reported (39) in TCGA-LIHC dataset to

speculate on the association between m6Arisk scores and the

adaptive immune response. Imunophenoscore (IPS), a machine

learning-based scoring scheme that represents the determinants of

immunogenicity, has been proven to be tightly linked to the

survival of multiple cancer and is a promising predictor of

response to immunotherapy (26). We obtained the IPS of HCC

from the Cancer Immunome Atlas (TCIA) (https://tcia.at/home)

and compared them between the two m6Arisk-score groups to

predict the immunotherapeutic sensitivities.

Moreover, to explore the potential clinical applications of the

m6Arisk score in treatment decisions, we utilized the “oncoPredict”

R package (40) to infer the semi-inhibitory concentration (IC50)

values of commonly used targeted/chemotherapy drugs. We then

performed a correlation analysis between the IC50 values and the

m6Arisk-score groups using the Wilcoxon test. The drugs and their

target information were derived from DrugBank (https://

go.Drugbank.com/). This analysis aimed to investigate the

relationship between m6Arisk score and the response to specific

drugs, providing insights into personalized treatment strategies.
2.12 Establishment and validation of a
nomogram scoring system

Them6Arisk scores and common clinical variables (including age,

gender, and TNM stages) were incorporated to establish a nomogram

scoring system using the “rms” R package (41). In this study, the time-

dependent ROC curves of nomogram and clinical prognostic variables

at 1-, 3-, and 5-year were generated, and the corresponding time-

dependent area under the curves (AUCs) was calculated to evaluate

the discrimination of nomogram. The calibration curves and the

decision curve analysis (DCA) of 1-, 3-, and 5-year were plotted to

assess the prediction accuracy and clinical net benefit of nomogram,

respectively (42, 43). In addition, concordance index (C-index) was

also performed to assess the prediction efficiency and accuracy of

nomogram. A C-index score around 0.70 indicates a good model,

whereas a score around 0.50 suggests random background.
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2.13 Clinical sample collection, RNA
isolation, and qPCR

Twenty-eight pairs of fresh-frozen tissues (HCC tissues and

adjacent tissues) were collected from the Zhongnan Hospital of

Wuhan University and approved by the ethics committee

(Approval Number 2017058). Written informed consent was

obtained from all the participants. Complementary DNA (cDNA)

was synthesized from total RNA using the Prime Script RT Reagent

Kit (Vazyme, R333-01, China). The SYBR Prime Script RT-PCR kit

(Vazyme, Q712-02, China) was used for qPCR on a CFX96

instrument (Bio-Rad, America). Gene expression levels were

calculated with the 2-DDct strategy and normalized to the

“housekeeping” gene b-actin. The primer sequences were

integrated into Supplementary Table S20.
2.14 Statistical analysis

All statistical analyses and graphical plotting were performed

using R software (version 4.0.5.) Unless stated otherwise, P <0.05

(two-sided) was considered statistically significant.
3 Results

3.1 Landscape of genetic variation of 23
m6A regulators in LIHC

In this study, we identified 23 m6A RNAmethylation regulatory

genes (including eight “writers,” thirteen “readers,” and two

“erasers”) from the published literature, and systematically

investigated the roles of them in LIHC. The workflow for this

study is shown in Figure 1A. Additionally, the significantly enriched

biological processes of the 23 m6A regulators were summarized

using the Metascape database, as depicted in Figure 1B. These

processes primarily revolve around mRNA stability, mRNA

transport, mRNA metabolic processes, mRNA modification, and

ncRNA processing. Figure 1C illustrates the dynamic reversible

process of the m6A regulators, showcasing their ability to recognize,

remove, and add m6A-modified sites. These analyses provided

insights into the regulatory complexity and functional

implications of m6A RNA methylation in gene expression and

RNA metabolism. The somatic mutations analysis of 23 m6A

regulators demonstrated that a total of 42 of the 371 (11.3%)

TCGA-LIHC samples experienced genetic alterations of m6A

regulators, primarily including missense mutations and splice site

(Figure 1D). Moreover, the CNA analysis revealed CNV alterations

were prevalent in the 23 m6A regulators, with most of the

alterations being focused on gene amplification (such as VIRMA,

METTL3, HNRNPC, IGF2BP2, and YTHDF3), whereas WTAP,

YTHDF2, and ZC3H13 showed the highest deletion frequency

(Figure 1E). Further investigation of the expression profiles of the

23 m6A regulators indicated that most of the m6A writers
frontiersin.org
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(METTL3/14/16, WTAP, VIRMA, and RBM15/15B), readers

(YTHDC1/2 , YTHDF1/2/3 , HNRNPC , FMR1 , LRPPRC ,

HNRNPA2B1, IGF2BP1/2/3, and RBMX), and erasers (FTO and

ALKBH5) were markedly upregulated in the tumor tissues

(Figure 1F). The survival analysis revealed that most of the m6A

regulators were significantly correlated with LIHC prognoses

(Supplementary Figure S1). Taken together, these results

demonstrate that m6A regulators may act as diagnostic

biomarkers and prognostic predictors for LIHC.
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3.2 Identification of m6A modification
subtypes and function enrichment analysis

Figure 2A presented the interactions and interconnections

among the 23 m6A regulators and their prognostic value in

TCGA-LIHC patients. Most of these genes were risk factors and

were significantly positively correlated with each other (p<0.001).

The results suggested that the cross-talk between these m6A

regulators probably play important roles in the formation of
B

C

D

E

F

A

FIGURE 1

The landscape of genetic and transcriptional alterations of m6A regulators in HCC. (A) The schematic workflow of this study. K-M plot, Kaplan-Meier
plot; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; WGCNA, weighted gene co-expression network analysis; ROC, receiver
operating characteristic; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination;
UniCox, univariate Cox; MultiCox, multivariate Cox; DCA, decision curve analysis, TCR, T cell receptor; TIS, Tumor Inflammation Signature; IPS,
Imunophenoscore. (B) The enrichment network of 23 m6A regulators visualized by Metascape (https://metascape.org/), showed the similarity of
enrichment terms within and between clusters. (C) The regulation mechanism of m6A “writer,” “eraser,” and “reader” proteins on RNA metabolism.
(D)Mutation frequencies of 23m6A regulators in 371 HCC patients from TCGA-LIHC cohort. (E) Frequencies of copy number variant (CNV) of the 23m6A
regulators. (F) The differential expression levels of 23 m6A regulators between tumor and normal tissues. ** P < 0.01; *** P < 0.001; ns, No significance.
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different modification patterns and was implicated in the

pathogenesis and progression of tumor. To further explore the

modification patterns of m6A regulators, unsupervised clustering

algorithms based on the expression profiles of 23 m6A regulators

were applied to construct m6A subtypes. As shown in Figure 2B and

Supplementary Figure S2, the consensus score matrix revealed that
Frontiers in Immunology 07
k = 2 appeared to be an optimal choice for ensuring the least

crossover between TCGA-LIHC samples. Next, Kaplan-Meier

survival curves showed that m6A cluster A presented significantly

better prognoses than cluster B (P = 0.006; Figure 2C).

Next, the representative DEGs (|log2FoldChange| > 1, P-adj <

0.001) between m6Acluster were identified to explore the
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FIGURE 2

Identification and functional enrichment analysis of m6A cluster subtypes. (A) The interaction analysis of expression on 23 m6A regulators in TCGA-
LIHC. Different colored circles represent different modification types of m6A regulators. The size of the circle represents the prognostic effect of
each m6A regulator and scaled by p value. Connecting lines represent interactions between each other. (B) The consensus score matrix of 371
samples (k = 2). (C) Kaplan‐Meier curves for estimating the overall survival between subtypes of m6A cluster. (D) GO enrichment and (E) KEGG
enrichment analyses of the DEGs (|log2FoldChange| > 1, P-adj < 0.001) between m6A cluster B and A. The top 25 enriched terms are shown. The
color of the bars denotes the negative logarithm of the p-value of the hypergeometric test. (F) The bar charts showing KEGG pathway annotation.
The color indicates the category A of annotation terms. The horizontal coordinate presents the category B of annotation terms, and the ordinate
denotes the number of genes (hits) of category B. (G) Bar charts showing the top 10 KEGG pathway terms enriched by GSEA. Red and blue
represent the upregulated pathway terms in m6A cluster B and A, respectively. (H) The GSVA score of hallmark pathway activities curated from
MSigDB in distinct m6A modification patterns. T values are from two-sided unpaired limma-moderated t test (linear models), corrected for effects
from the patient of origin.
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underlying biological functions (Supplementary Table S1). GO

analysis revealed that the DEGs had a significant enrichment in a

number of cell cycle biological processes, including mitotic nuclear

division, mitotic sister chromatid segregation, nuclear chromosome

segregation, regulation of chromosome segregation, and nuclear

division (Figure 2D, Supplementary Table S2). KEGG analysis

indicated that cell cycle and metabolic pathways such as DNA

replication, cellular senescence, bile secretion, Glycolysis/

Gluconeogenesis, biosynthesis of amino acids were significantly

enriched, as well as cancer-related pathways such as ECM-receptor

interaction and p53 signaling pathway (Figure 2E, Supplementary

Table S3). KEGG pathway annotation results revealed that many

cancer-related pathways were identified, including those with

functions in the immune and endocrine system, signaling

transduction, DNA/RNA replication and repair, cell growth and

death, and metabolism (Figure 2F). To explore the underlying

biological mechanism of distinct m6Acluster subtypes, GSEA and

GSVA analyses were conducted. The GSEA analysis also prompted

that signaling transduction/cell cycle-related pathways were highly

activated in m6Acluster B while metabolism biological processes

were highly activated in m6Acluster A (Figure 2G, Supplementary

Table S4). In addition, a direct comparison of hallmark pathway

expression using GSVA revealed a strong enrichment of signaling

transduction and metabolism in m6Acluster B versus A, such as

fatty acid and bile acid metabolism, oxidative phosphorylation, IL2-

STAT5 signaling, MYC targets, PI3K-AKT-mTOR signaling, E2F

targets, and G2M checkpoint (Figure 2H, Supplementary Table S5).

All above results demonstrated that m6Acluster subtypes was

correlated with dysregulation of signaling transduction and

metabolism, which may be implicated in the poor prognosis of

TCGA-LIHC patients.
3.3 Weighted gene co-expression network
construction and selection of
feature genes

To identify m6Acluster-related modules, WGCNA was

constructed based on the expression profiles of TCGA-LIHC and

clinical trait. Here, we selected the top 5000 genes with the lowest

median absolute deviation (MAD) to build a co-expression network.

A dendrogram of 344 samples with complete clinical information was

clustered using the average linkage method and Pearson’s correlation

method, and no discrete samples were found (Figure 3A). Next, the

power value of b = 7 (scale-free topology fitting index R2 = 0.85) was

selected as the soft threshold to construct a scale-free network with

high average connectivity (Supplementary Figures S3A, S3B). After

merging the similar modules using two settings: clustering height = 0.3

and min module size = 40, six modules were identified for subsequent

analysis (Figure 3B, Supplementary Figure S3C). Through the

transcription correlation study within modules, there was no

substantial linkage between modules (Supplementary Figure S3D).

The relevance between ME (Module Eigengene) and clinical features

(m6Acluster, fu-time, fu-stat, age, gender, grade, and stage) was

evaluated based on module-trait relationships (MTRs). The module-

trait relationship results indicated that the MEblue (r = 0.73, P = 9e-
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59), the MEbrown (r = 0.42, P = 5e-16), the MEred (r = 0.35, P = 3e-

11), the MEgreen (r = -0.39, P = 8e-14) are significantly associated

with m6Acluster (Figure 3C). Moreover, the MEblue and MEgreen

were significantly related to other clinical features, and the two

modules showed an inverse correlation trend. Considering the high

correlation with m6Acluster, we selected the MEblue module as the

target module for the subsequent study. The scatterplot of GS versus

MM indicated that significant correlation existed in the module

membership (MM) and gene significance (GS) of the MEblue (cor

= 0.48, P = 1.6e-58) module (Supplementary Figure S3E).

Here, the differentially expressed genes (DEGs) (|

log2FoldChange| > 1, P-adj < 0.001) between different cohorts

were illustrated by the volcano plot. As shown in Figures 3D and

3E, a total of 3081 DEGs (2609 up-regulation and 472 down-

regulation) were identified between tumor and tumor-adjacent

tissues, and 910 DEGs (737 up-regulation and 173 down-

regulation) between m6Acluster A and cluster B. Then, 343

overlapping genes were obtained by intersecting the blue module

genes and the differential genes using a Venn diagram (Figure 3F).

To identify key feature genes, the 343 candidate genes were

submitted into LASSO regression algorithm, SVM-RFE algorithm,

and RF model. LASSO regression analyses with a 10-fold cross-

validation identified thirty-five gene signatures (Figure 3G). An

eleven-gene signature was identified by SVM-RFE algorithm with a

10-fold cross-validation accuracy of 0.962 (Figure 3H). The RF

model algorithm sorted sixteen gene signatures with

MeanDecreaseGini scores greater than 2.5 (Figure 3I). To obtain

a robust feature gene for m6Acluster, we intersected the genes

screened out by the above three algorithms and identified three key

feature genes: IGF2BP2, MAPRE1, and ACTL6A, as shown in

Figure 3J. The ROC curves of IGF2BP2, MAPRE1, and ACTL6A

revealed the probability of them as valuable biological markers with

AUCs higher then 0.7 (Figure 3K), indicating that the three

diagnostic markers had a higher diagnostic value. Furthermore,

our PCR results demonstrated that the expression levels of

ACTL6A, MAPRE1, and IGF2BP2 were upregulated in HCC

tissues compared to adjacent tissues (p < 0.01, as shown in

Supplementary Figure S4).
3.4 Construction and evaluation of m6Arisk
scoring model

To explore potentially valuable prognostic genes more broadly, we

included overlapping genes that appeared in any two algorithms for

subsequent analysis. Overall, 11 out of thirteen genes were found to

affect prognosis based on univariate Cox analysis (Figure 4A,

Supplementary Table S6). Next, we performed LASSO and

multivariate Cox regression analysis for eleven prognostic genes to

further select optimum prognostic signature. Followed by LASSO

analysis, seven best candidate DEGs (SRD5A2, IGF2BP2, ZSWIM5,

PAK1, ACTL6A, PRKCD, LRRC1) were retained according to the

minimum partial likelihood deviance (Figures 4B, C). Subsequently,

the seven candidate DEGs underwent multivariate Cox analysis,

resulting in the retention of four genes (SRD5A2, IGF2BP2,

ZSWIM5, PRKCD) according to the Akaike information criterion
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FIGURE 3

Construction of WGCNA and selection of feature genes. (A) Clustering dendrogram of 344 samples with clinical trait heatmap in TCGA-LIHC
database. (B) Gene clustering dendrograms showing the original and combined modules, various colors represent different modules. (C) The
relationship of seven traits (including m6Acluster and clinicopathology) and six modules, red and blue represents positive and negative correlations,
respectively. Each cell contains the corresponding correlation value and p-value. (D) Volcano plot of DEGs between tumor and normal tissues.
(E) Volcano plot of DEGs between cluster B and cluster A. (F) Venn diagram demonstrating 343 overlapping genes between the WGCNA blue
module gene and the identified DEGs. (G) Cross-validation for selecting the optimal tuning parameter log (l) in LASSO regression algorithm.
(H) Eleven feature genes were identified by SVM-RFE algorithm with a 10-fold cross-validation accuracy of 0.962. (I) Gene importance scores in RF
model. MeanDecreaseGini score greater than 2.5 was selected for the inclusion threshold of feature genes. (J) Venn diagram demonstrating three
diagnostic markers shared by three algorithms (LASSO, SVM-RFE, and Random Forest). (K) Performance of three biomarker genes in discriminating
tumor from normal controls based on TCGA-LIHC database.
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(AIC) value. Consequently, the m6Arisk score model was developed

according to RNA-expression profiles using the following formula:

Risk score = (−0.1430* expression of SRD5A2) + (0.2223*expression of

IGF2BP2) + (0.2784* expression of ZSWIM5) + (0.4081* expression of

PRKCD). As shown in Supplementary Figure S4, HCC tissues

exhibited decreased SRD5A2 expression levels (p < 0.01), while
Frontiers in Immunology 10
ZSWIM5, PRKCD, and IGF2BP2 expression levels (p < 0.01) were

upregulated compared to adjacent tissues.

After the construction of m6Arisk score model, we performed

evaluation and validation analysis of the risk model. In the TCGA-

LIHC training dataset, 185 patients were divided into high m6Arisk

score group (n=92) and low m6Arisk score group (n=93) using the
B C

D E F

G H I

J K L

A

FIGURE 4

Construction and evaluation of prognostic signature using m6A-related candidate genes. (A) Univariate Cox regression analysis. (B, C) LASSO
regression analysis and optimal parameter (lambda) selection of the eleven prognostic genes by using 10-fold cross-validation. Dotted vertical lines
represents the optimal values selected by the minimum criteria (right) and the 1- standard error (SE) of the minimum criteria (left). (D) Development
of m6Arisk model in TCGA-LIHC training set (E) Validation of the m6Arisk model in TCGA-LIHC internal validation set. (F) Validation of the m6Arisk
model in external independent validation sets: ICGC-LIRI-JP. (G–I) The predictive accuracy of m6Arisk model for survival. (J) Differences in m6Arisk
score between two distinct m6Acluster subtypes. (K) Differences in m6Arisk score between HCC patients with AJCC stages III–IV and stages I-II.
AJCC, American Joint Committee on Cancer. (L) Differences in m6Arisk score between HCC patients who had deceased and HCC patients who
were alive.
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median m6Arisk score as the risk cutoff. As shown in Figures 4D, G,

individuals with elevated m6Arisk scores experienced notably shorter

overall survival (OS) times compared to those with lower m6Arisk

scores. The area under the curve (AUC) values for them6Arisk scoring

model were 0.707, 0.689, and 0.663 for the 1-year, 3-year, and 5-year

OS periods, respectively. The predictive accuracy of the m6Arisk

scoring model was well validated in TCGA-LIHC internal validation

cohort, with AUC values of 0.733, 0.623, and 0.632 for 1-, 3-, and 5-

year OS, respectively (Figures 4E, H). In addition, we further verified

the predictive capacity of the m6Arisk scoring model in external

ICGC-LIRI-JP cohort (Figures 4F, I). As shown in Figure 4J, a

significant difference in the distribution of m6Arisk scores was

observed between m6Acluster A and B. The risk scores of the

patients in m6Acluster B were substantially higher than those of the

patients in m6Acluster A. We also determined the relationship

between m6Arisk score and clinicopathological features of HCC

patients. HCC patients diagnosed with AJCC stages III–IV had

significantly higher m6Arisk scores than those diagnosed with stage

I-II (Figure 4K). Similarly, the m6Arisk score of patients who died was

significantly higher than that of patients who survived (Figure 4L).

These results indicate that the m6Arisk scoring model may serve as a

powerful indicator for the prognosis of liver cancer patients.
3.5 The m6Arisk score significantly
correlates with tumor immune phenotypes
of HCC

Here, we investigated the existence of immune heterogeneity in

different m6Arisk score groups, and the association between the

m6Arisk score and various immune characteristics (expression of

immunomodulator and TIIC effector genes, immunotherapy-

related characteristics, and immune checkpoints). As shown in

Figure 5A, Supplementary Table S7, we first investigated the

infiltration level of Tumor infiltrates immune cells (TIICs) using

six independent algorithms. The result indicated that the m6Arisk

score was positively correlated with the infiltration level of CD8+ T

cells, dendritic cells, and macrophages under different algorithms

(Figure 5B; Supplementary Table S8). As expected, m6Arisk score

was also found to be positively correlated with the effector genes of

these TIICs (Supplementary Figures S5A, S5B). We also analyzed

the correlations between m6Arisk score and the immunotherapy

predicted pathways signatures (Supplementary Tables S9–S11). As

shown in Figures 5C, E, the m6Arisk score was positively correlated

with a majority of the immunotherapy predicted-related pathways,

including IFN-Gamma signature, base-excision repair, cell cycle,

Fanconi anemia pathway, p53 signaling pathway, MicroRNAs in

cancer, proteasome, and pyrimidine metabolism.

In addition, the activities of a portion of the cancer immunity

cycle were also found to be upregulated in the high-m6Arisk score

group, including the release of cancer cell antigens (Step 1) and

trafficking of immune cells to tumors (Step 4, mainly those that

exert antitumor immunity), such as CD8 T cell recruiting, NK cell

recruiting, and MDSC recruiting (Figure 5D, Supplementary Table

S12). The activities of the cancer immunity cycle are a direct

comprehensive performance of the functions of the chemokine
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system and other immunomodulators (25, 27). The elevated activity

of these steps might increase the infiltration levels of effector TIICs

in the TME. Interestingly, the activity of infiltration of immune cells

to tumors (Step 5) and recognition of cancer cells by T cells (Step 6)

was upregulated in the low-m6Arisk score group. Moreover, the

correlation analysis indicated that m6Arisk score demonstrated a

predominantly positive correlation with the critical steps of cancer-

immunity cycle (Step 1 and Step 4) and the enrichment scores of

immunotherapy-predicted pathways gene signatures, including the

interferon-g signature, base-excision repair, cell cycle, DNA

replication, homologous recombination, the p53 signaling

pathway, and others (Figure 5E, Supplementary Table S11).

In addition, the enrichment scores for several immunosuppressive

oncogenic pathways (such as radiotherapy-predicted pathways and

EGFR ligands) were significantly higher in the high-m6Arisk group

(Figure 5F; Supplementary Tables S13, S14). Previous studies have

found that inhibiting these oncogenic pathways promoted the

formation of an inflamed tumor microenvironment (TME), thereby

reactivating cancer immunity. We also examined the relationship

between known biological signatures and the m6Arisk score through

Spearman analysis. A heatmap of the correlation matrix demonstrated

that the m6Arisk score was markedly positively correlated with the

immune activation process and DNA repair signatures (Figure 5G,

Supplementary Tables S15, S16). Consistently, a significant proportion

of immune checkpoint genes were observed to be highly expressed in

the high-risk score group within this study, such as CD27, CD28,

CD40, CTLA4, CD44, CD48, NRP1, CD276, LAG3, TNFSF4, PDCD1

(PD-1), and TIGIT (Figure 5H). Similarly, another heatmap was

drawn to show the mRNA expression profiles of immunomodulator

genes including chemokine, immune inhibitor, immune stimulator,

MHC, and receptor in two m6Arisk score groups (Supplementary

Figure S5C). The m6Arisk score positively correlated with the mRNA

expression profiles of immunomodulator genes. Most MHC

molecules were upregulated in the high-m6Arisk group, suggesting

that antigen presentation and processing capacity were upregulated in

the high-m6Arisk group. The chemokines, including CCL4, CCL5,

CCL8, CCL20, CCL26, CXCL1, CXCL3, CXCL5, CXCL9, CXCL11,

CXCL16, and paired receptors including CCR1, CCR5, CXCR3,

CXCR4, and CXCR6, were positively correlated with m6Arisk score.

These chemokines and receptors promote the recruitment of effector

TIICs such as CD8+ T cells and antigen-presenting cells. However,

given the complex and diverse functions of the chemokine system,

although the relationship between m6Arisk score and individual

chemokines is not sufficient to clarify the overall immune effect of

m6Arisk in TME, it also reflects that the high score of m6Arisk is

closely related to the development of inflammatory TME to

some extent.
3.6 Genomic alterations between different
m6Arisk score groups

To give a hint of m6Arisk-related mechanisms for OS

classification of HCC from genomic layer, available somatic

mutations of the TCGA-LIHC dataset were acquired, and the

distribution differences in the high- and low-m6Arisk groups
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FIGURE 5

Correlation between the m6Arisk score and immune phenotypes. (A) Six independent algorithms including CIBERSORT, MCP-counter, xCell, EPIC,
quantiseq, and TIMER, further verified the stability and robustness of the ssGSEA results. (B) Correlation between m6Arisk score and the infiltration
levels of five types of TIICs (CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells). (C) Differences in the enrichment scores of
immunotherapy-predicted pathways between the two m6Arisk groups in TCGA-LIHC cohort. The enrichment scores were calculated using ssGSEA
algorithms. (D) Differences in the various steps of the cancer immunity cycle between the two m6Arisk groups in TCGA-LIHC cohort. (E) Pearson’s
correlation analysis of the m6Arisk score with cancer immunity cycle activity (top right) and immunotherapy-predicted pathways (bottom left) based
on TCGA-LIHC cohort. The color of the line represents the size of the P value, and the thickness of the line represents the size of the r value. The
solid and dotted lines represent positive and negative correlations, respectively. (F) Correlations between m6Arisk scores and the enrichment scores
of several therapeutic signatures such as targeted therapy and radiotherapy. (G) Correlations between m6Arisk scores and the known biological gene
signatures using Spearman analysis. The color presented the Spearman correlation coefficient. (H) Difference analysis of immune checkpoints effect
genes between high- and low-m6Arisk groups in TCGA-LIHC cohort. * P < 0.05; ** P < 0.01; *** P < 0.001. ns, No significance.
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were analyzed by the package “maftools”. Figures 6A, B showed the

top 20 genes with the highest mutation frequencies in the two

m6Arisk-score groups. The summary of the mutation information,

along with statistical calculations, is presented in Supplementary

Figures S6A, S6B. TP53 (35%) and TNN (26%) were the most

frequently mutated genes in the high- and low-m6Arisk patients,

respectively, with TP53 having the highest frequency. The Forest

plot (Figure 6C) illustrates genes with significant differences in

mutation frequency between the two m6Arisk score groups,

including TP53, RB1, PCDHB1, SMCHD1, ZC3H6, SPEG,

DNAH17, SPAG17, and DOCK2. As TP53 was the most

frequently mutated gene, a lollipop diagram (Figure 6D) was

created to illustrate the specific mutation sites of TP53, with a

higher number of missense mutations observed in the high-m6Arisk

group. Furthermore, the associations of exclusivity and co-

occurrence across mutated genes from the high- and low-m6Arisk

score groups are shown in Figure 6E, with green representing co-

occurrence and brown representing mutual exclusion. Here, the

tumor mutation burden (TMB) quantification results demonstrated

an elevated level in the high-m6Arisk group, although in a non-

significant mode (Supplementary Figure S6C), and HCC patients

with a lower TMB score presented a better overall survival (OS)

(Figure 6F). This finding suggests the presence of heterogeneity and

complexity among cancer patients, which is consistent with existing

literature reports (44). To further investigate, we categorized all

HCC patients into four subgroups based on TMB and m6Arisk

score: high-TMB and high-m6Arisk, low-TMB and high-m6Arisk,

high-TMB and low-m6Arisk, and low-TMB and low-m6Arisk.

Survival curves were plotted for each subgroup, and it was

observed that the high-TMB and high-m6Arisk score group

exhibited the worst prognosis among them (Figure 6G). We then

assessed the potential correlation between the m6Arisk score and

the cancer stem cell (CSC) index in HCC. As shown in Figure 6H, a

positive linear correlation between the m6Arisk score and CSC

index was observed (R = 0.14, P < 0.01). The results suggest that

HCC cells with a higher m6Arisk score may have more pronounced

stem cell properties and a lower degree of cell differentiation.
3.7 The m6Arisk score predicts therapeutic
responses in HCC

Here, we firstly estimated the T cell receptor (TCR) repertoire

for HCC patients and HCC patients (TCGA-LIHC cohorts) in the

high-m6Arisk score group exhibited a significantly higher TCR

richness and diversity, indicating that they possessed greater

tumor immune potential (Figure 7A). Besides, the Tumor

Inflammation Signature (TIS), an 18-gene index that measures

adaptive immune resistance within tumors, was utilized to

evaluate the immune potential of the two risk groups. As shown

in Figure 7B, patients in the two m6Arisk score groups exhibited a

non-significant TIS score, indicating no significant difference in

anti-tumor immune potential. Imunophenoscore (IPS) is a

recognized indicator of patients’ response to immunotherapy, and

no significant differences were observed between the two m6Arisk
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score groups, suggesting no difference in response to immune

checkpoint blockade (ICB) between the two groups (Figure 7C).

These results suggest that the m6Arisk score may not help identify

effective anti-tumor immunotherapy precision medicine therapies.

We subsequently investigated whether the m6Arisk score could

accurately guide precision treatments by assessing the differences in

anticancer drug sensitivity between the two m6Arisk score

subgroups, aiming to identify potential individualized therapy

modalities for LIHC patients. The IC50 values demonstrated that

LIHC patients with a lower m6Arisk score exhibited a higher

sensitivity to common chemotherapeutic drugs, including

vincristine, vinblastine, pevonedistat, paclitaxel, osimertinib,

navitoclax, docetaxel, vinorelbine, and 5-fluorouracil (Figure 7D).

Additionally, LIHC patients with lower m6Arisk score also showed

higher sensitivity to several targeted drugs, such as alpelisib,

bortezomib, cediranib, ibrutinib, axitinib, crizotinib, buparlisib,

dasatinib, and ruxolitinib (Figure 7E). In contrast, patients with a

high m6Arisk score exhibited relatively high sensitivity to the

chemotherapy drug mitoxantrone (Figure 7D) and the targeted

drug selumetinib (Figure 7E). These results demonstrate that the

m6Arisk score may contribute to identifying effective antitumor

agents and precision medicine therapies for LIHC treatment.
3.8 Construction and validation of
a nomogram

To assess whether the m6Arisk scores predicting model was an

independent predictor in HCC (TCGA-LIHC cohorts), univariate

and multivariate Cox regression analyses were conducted. As shown

in Figures 8A, B, the HR of m6Arisk scores in univariate and

multivariate analysis was 1.573 (95%CI: 1.314-1.883; p<0.001) and

1.485 (95%CI: 1.223-1.803; p<0.001), suggesting that m6Arisk scores

could be used as an independent prognostic indicator compared with

the other clinical features (age, gender, AJCC stage, and TNM stage).

To facilitate the clinical feasibility of the m6Arisk score, a nomogram

was constructed by integrating the m6Arisk score and

clinicopathological features to predict overall survival (OS) at 1-, 3-,

and 5- years. As shown in Figure 8C, the predictors included the

m6Arisk score and TNM stage, which had the greatest influence on

OS. We subsequently validated the predictive capability and accuracy

of this nomogram by concordance index (C-index), calibration curve,

and decision curve analysis (DCA). The C-index of the nomogram

was 0.680 (95% CI: 0.562–0.779) in the TCGA-LIHC cohort

(Figure 8D) and 0.733 (95% CI: 0.553–0.859) in external validation

cohort (Supplementary Figure S7A), indicating that the nomogram

had a relatively good discriminatory power. Similarly, the calibration

plots show an ideal consistency between the actual observations and

the nomogram predictions of the 1-, 3-, and 5-year OS in both the

TCGA-LIHC cohort and external validation cohort (Figure 8E,

Supplementary Figure S7B). The ROC analysis revealed that the

AUC values of the constructed nomogram for predicting 1-, 3-, and

5-year OS were 0.742, 0.704, and 0.713, respectively, further

demonstrating the predictive capability of the nomogram
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(Figures 8F–H). As showed in Figures 8I–K, nomogram

incorporating the m6Arisk model yielded a relatively better net

benefits than other clinical traits in predicting 1-, 3-, and 5-year OS

for HCC patients in the TCGA-LIHC cohort, suggesting that the

nomogram had a relatively good prognostic accuracy and clinical

applicability. The ROC and decision curve (DCA) analysis indicated

that the proposed nomogram had a similar performance in the

ICGC-LIRI-JP cohort (Supplementary Figures S7C–S7H).
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4 Discussion

Hepatocellular carcinoma (HCC) remains a major health

challenge with a growing incidence worldwide today,

characterized by high recurrence rates and heterogeneity (45).

The existing prognostic staging system still has some limitations

in evaluating clinical prognosis and individual treatment for HCC

patients. How to control its progression and improve the survival
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FIGURE 6

Distinctive genomic mutation patterns between the m6Arisk score groups. (A, B) Waterfall plots depicting the somatic mutation landscapes of the
top 20 most frequently mutated genes in the high- and low-m6Arisk score groups. (C) Forest plot displaying the common driver genes mutating
significantly differentially in the high- and low- m6Arisk score groups. (D) Lollipop diagram visualizing the differential mutation site for TP53 between
the two distinct m6Arisk score groups. (E) The mutual exclusivity and co-occurrence of mutations in the most frequently mutated genes of the
high- and low-m6Arisk score groups. (F) Kaplan-Meier curves of TMB in the high- and low-m6Arisk score groups. (G) Kaplan-Meier curves for HCC
patients in the whole TCGA-LIHC cohort stratified by both TMB and m6Arisk score. TMB, tumor mutation burden. (H) Relationships between m6Arisk
score and cancer stem cell (CSC) index. ***P < 0.001, *P < 0.05.
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rate of patients remains an urgent issue to be solved in the current

treatment of liver cancer. Accumulating evidence demonstrates that

hepatocellular carcinogenesis is regulated by complex genetic and

epigenetic mechanisms, and influenced by immune cell infiltration

and the tumor microenvironment (46–49). A study using whole-

genome and -exome sequencing analysis has shown that epigenetic
Frontiers in Immunology 15
regulation is the most unusual differential modifier in HCC. As the

most predominant epigenetic modification, RNA methylation

modification plays an indispensable and pleiotropic biological role

in malignant transformation and cancer progression. N6-

methyladenosine modification affects gene expression by

regulating RNA processing, decay, and translation, and abnormal
B

C

D

E

A

FIGURE 7

m6Arisk score based prediction of treatment response. (A) TCR repertoire analysis illustrating significantly higher levels of TCR richness and diversity
in the high-m6Arisk score group based on the TCGA-LIHC cohort. (B) Comparison of TIS between the two distinct m6Arisk score groups based on
the TCGA-LIHC cohort. (C) IPS comparison of the high- and low- m6Arisk score groups based on the TCGA-LIHC cohort. (D) Boxplots depicting
differential sensitivities of common chemotherapeutic drugs between the two distinct m6Arisk score groups. (E) Differential sensitivities of common
molecular-targeted therapeutic drugs between the distinct m6Arisk score groups. *, P <0.05; ***, P <0.001; ns, No significance.
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expression of the m6A methylase complexes is strongly associated

with various human cancers (8, 50–52), including HCC.

Recent studies have shown the impact of m6A RNA

modification on various inflammatory development of cancer.
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Inflammation predisposes patients to cancer, especially affecting

the composition of the tumor microenvironment and the plasticity

of tumor cells, including surrounding stromal and inflammatory

cells (53). m6A dysregulation may lead to aberrant expression of
B

C

D

E

F G H

I J K

A

FIGURE 8

Construction and validation of nomogram based on TCGA-LIHC dataset. (A, B) Univariate and multivariate Cox regression analysis for m6Arisk score,
respectively. (C) The established nomogram for predicting the 1-, 3-, and 5-year OS of HCC patients. The red arrow signifies an example to visualize
the assessment of risk for 1-, 3-, and 5-year OS. (D) C-indexes for the generated nomogram and single variables in predicting OS of HCC patients.
The C-index was estimated by truncating the follow-up time to 1 to 10 years and plotting it on the X-axis as the truncation year. (E) Calibration
curves of the nomogram in terms of the agreement between predicted and observed outcomes. (F–H) The ROC curves of the nomograms and
clinical characteristics for predicting 1-year, 3-year, and 5-year OS in HCC patients. (I–K) The DCA curves of the nomograms and clinical
characteristics for predicting 1-year, 3-year, and 5-year OS in HCC patients. OS, overall survival; DCA, decision curve analysis; ROC, receiver
operating curve.
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oncogenic or the tumor-suppressive genes, contributing to HCC

initiation and progression. m6A dysregulation may also contribute

to epigenetic alterations in HCC cancer cells, and may affect cancer

stem cell potential, thereby impacting tumor growth and therapy

resistance (54). Besides, another study indicated that the

construction of polygenic risk prediction model based on m6A

related genes has good clinical predictive ability and accuracy in

predicting the survival and prognosis of glioma patients, and is an

independent risk factor for glioma. These results suggest that the

construction of polygenic risk prediction models based on m6A

associated genes has different potential in the stratification of cancer

prognosis and the development of new treatment strategies. Thus,

comprehensively investigating m6A modification in HCC and its

biological roles may facilitate improved prognostic predictions and

individual precise treatment modalities for HCC. In this study, we

identified two distinct m6A modification patterns in HCC, each

being associated with immunological properties, therapeutic

response, and prognoses. Finally, we further developed an

m6Arisk score model to quantify the m6Arisk subtype in HCC

patients and independently validated this model using the ICGC-

LIRI-JP cohorts.

In this study, we found that these m6A regulatory genes present

a tight and highly interconnected molecular interaction network,

which are mainly involved in mRNA stability, mRNA transport,

and mRNA metabolism. Analysis of copy number alterations

(CNA) and expression profiles revealed a significant abnormal

imbalance in the expression levels of m6A writers, readers, and

erasers between tumor and normal tissues. In theory, these

imbalances could lead to aberrant m6A modification patterns,

ultimately contributing to HCC formation and progression.

Furthermore, based on the expression profiles of 23 m6A

regulators, we identified two independent m6A modification

patterns in the TCGA-LIHC cohort using the consensus

unsupervised clustering algorithm. Subsequent survival analysis

revealed significantly worse prognoses for HCC patients in

m6Acluster B compared to those in m6Acluster A. Additionally,

we observed that cluster-specific DEGs were also associated with

cell cycle and metabolic pathways, as well as cancer-related

pathways, such as ECM-receptor interaction and p53 signaling

pathway. These findings provide further insights into the

potential biological mechanisms underlying the distinct m6A

modification patterns and their implications in HCC development

and progression.

Moreover, we identified modules significantly correlated with

clinical features and m6Acluster subtypes in the subsequent

WGCNA based on TCGA-LIHC cohort. To screen potential

prognostic biomarkers, we performed three different algorithms

(LASSO, SVM-RFE and RF) on the above overlapping 343 DEGs.

We also developed a robust m6Arisk score model based on the

expression of four m6A-related genes. Our results indicated that the

m6Arisk score performed well in predicting the prognoses of HCC

patients. Particularly, a high m6risk score was significantly

associated with poorer clinical outcomes and lower drug

sensitivity. In clinical practice, the TNM stage is a conventional

reference for evaluating clinical outcomes and treatment decisions.

Surprisingly, multi-Cox regression analysis further validated the
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superiority of the established m6Arisk score model in predicting OS

in HCC patients, independent of other clinical features such as age,

gender, and TMN stage. Finally, by integrating the m6Arisk score

and clinical features, we developed a quantitative nomogram that

enhances the clinical operability of m6Arisk score. The prognostic

model can be used for stratifying the prognosis of HCC patients and

provides new ideas for targeted therapies. Moreover, the patients in

the high- and low-m6Arisk score groups presented distinct

clinicopathological features, mutation patterns, immune cell

infiltration and immune checkpoint characteristics.

Wi th in -dep th re sea rch on tumor immuno logy ,

immunotherapy has emerged as a promising strategy for tumor

treatment. Immune checkpoint blockade (ICB) is currently the

most successful and common immunotherapy strategy (55, 56).

Currently, PD-1/PD-L1 monoclonal antibodies have become

important targeted therapeutic drugs for a variety of tumor

immunotherapy. Thus, the therapy immunotherapy strategies

targeting m6A methylation provide direction for a direction for

improving the therapeutic efficacy of immune checkpoint inhibits.

Previous studies have shown that epigenetic-based targeted

therapies and immunotherapies work better in clinical tries (57).

A study on HCC stem cells found that knockdown AMD1 leaded

decreased FTO to regulate m6A methylation levels, which reduced

the resistance of HCC cells to sorafenib. They also verified the

specific inhibitor of AMD1 may be an effective alternative agent for

the treatment of HCC in combination with sorafenib (58). In a

similar study of lung cancer, targeting the m6A methylation

regulatory enzyme could inhibit cancer cell growth or increase

the sensitivity of anti-cancer drugs (59). In glioblastoma, reversing

temozolomide resistance conferred by m6A methylation could aid

in the development of new therapeutic interventions (60). Another

study showed that targeted m6A therapy mediated by knockdown

of ALKBH5 expression participated in and promoted angiogenesis,

which may also play a role in HCC, providing a new avenue for

combined immunotherapy (61). Although clinical immunotherapy

(such as anti-PD-1, anti-PD-L1, and anti-CTLA-4) for HCC has

been widely used for HCC worldwide (62, 63), only a minority of

patients benefited from immunotherapy. Therefore, there is an

urgent need for more effective biomarkers to assess whether

patients with HCC benefit from tumor immunotherapy. In this

study, our findings indicated that high-m6Arisk group appeared to

coexist with high expression levels of common immune checkpoint

molecules (such as CTLA-4, PDCD1(PD-1), and TIGIT), indirectly

suggesting that m6Arisk score may be a better predictor of

immunotherapy in HCC patients. The upregulation of immune

checkpoints such as PD-L1/PD-1 is a critical characteristic of an

inflamed TME, which is driven by pre-infiltrating tumor infiltrating

immune cells (TIICs) (64). These immune checkpoints suppress

pre-existing cancer immunity to avoid an excessive immune

response, but also lead to immune evasion. Here, the expression

of immune checkpoints (such as CTLA-4, PDCD1(PD-1), and

TIGIT) was significantly upregulated in the high-m6Arisk group,

which might be attributed to the upregulation of pre-existing TIICs.

These results suggested that the HCC patients with high-m6Arisk

score were more sensitive to immune checkpoint blockade (ICB).

However, in this study, immunophenotypic scores (IPS) showed no
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significant difference in response to ICB between the two m6Arisk

score groups. This might be due to the complexity and multiple

functions of the TME system, the relationship between m6Arisk and

individual immune checkpoints was insufficient to clarify the

overall immunological effect of m6Arisk in TME.

Moreover, we also observed a positive correlation of m6Arisk

score with the infiltration level of CD8+ T cells under different

algorithms. A growing number of studies have evaluated the

contribution of cytotoxic cells, especially CD8+ T cells. The cancer

immunity cycle represents the immune response of our body to

cancer. The activities of the cancer immunity cycle are a direct

reflection of the final effect of complex immunomodulatory

interactions in tumor microenvironment (TME). In this study, we

noted that m6Arisk score presented a positive correlation with the

activities of a portion of the cancer immunity cycle. For example, the

release of cancer cell antigens (Step 1) and trafficking of immune

cells to tumors (Step 4, mainly those that exert antitumor immunity),

such as CD8 T cell recruiting, NK cell recruiting, and MDSC

recruiting, was significantly upregulated in the high-m6Arisk

group. Consequently, the infiltration levels of several effector

TIICs, such as CD8+ T cells, dendritic cells, and macrophages,

were also significantly increased in the high-m6Arisk group, which

had been validated in six different algorithms. Therefore, the high

m6Arisk-score reflected an inflammatory phenotype in TME.

Meanwhile, m6Arisk score was positively correlated with the

enrichment scores of immunotherapy-predicted pathways.

Besides, our findings further indicated that HCC patients with a

high m6Arisk score were more sensitive to some common

chemotherapy and molecular-targeted drugs, suggesting that the

m6Arisk score might contribute to guiding personalized treatment

for patients. However, the drug mechanisms and their effects on

HCC progression need to be further studied. Additionally, we

developed a nomogram model by incorporating the m6Arisk

score and clinicopathological features, and further validated and

evaluated the predictive capability and accuracy of this model in

external verification cohort. These results suggested that the

application of the m6Arisk score for the prognostic stratification

of HCC has good clinical applicability and clinical net benefit.

Finally, it’s worth noting that despite its intriguing and

promising findings, this study has several limitations. First, this

study is a retrospective study based on public online databases

(TCGA-LIHC and ICGC-LIRI-JP), which may have inherent

selection bias. Second, although our results were generalized and

robust in validation cohorts, the batch effects from different cohorts

should be considered. Third, although we highlighted the predictive

power of m6Arisk scores for HCC TME status and prognosis, we

did not identify the molecular mechanisms involved.
5 Conclusion

In our study, our findings reveal the crucial role of m6A

modification patterns for predicting HCC TME status and

prognosis, and highlight the good clinical applicability and net

benefit of m6Arisk score in terms of prognosis, immunophenotype,

and drug therapy in HCC patients.
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