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Despite undeniable advances in modern medicine, lung cancer still has high

morbidity and mortality rates. Lung cancer is preventable and treatable, and it is

important to identify new risk factors for lung cancer, especially those that can be

treated or reversed. Obstructive sleep apnea (OSA) is a very common sleep-

breathing disorder that is grossly underestimated in clinical practice. It can cause,

exacerbate, and worsen adverse outcomes, including death and various diseases,

but its relationship with lung cancer is unclear. A possible causal relationship

between OSA and the onset and progression of lung cancer has been established

biologically. The pathophysiological processes associated with OSA, such as

sleep fragmentation, intermittent hypoxia, and increased sympathetic nervous

excitation, may affect normal neuroendocrine regulation, impair immune

function (especially innate and cellular immunity), and ultimately contribute to

the occurrence of lung cancer, accelerate progression, and induce treatment

resistance. OSA may be a contributor to but a preventable cause of the

progression of lung cancer. However, whether this effect exists independently

of other risk factors is unclear. Therefore, by reviewing the literature on the

epidemiology, pathogenesis, and treatment of lung cancer and OSA, we hope to

understand the relationships between the two and promote the interdisciplinary

exchange of ideas between basic medicine, clinical medicine, respiratory

medicine, sleep medicine, and oncology.
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1 Introduction

Obstructive sleep apnea (OSA) and lung cancer are common

conditions that pose serious public health risks and contribute to

healthcare pressures and economic burdens on society. OSA is

characterized by recurrent collapses of the upper airway (complete

or partial) occurring during sleep, accompanied by intermittent

hypoxia (IH), sleep fragmentation (SF), and sympathetic

hyperactivity. These conditions cause a series of adverse outcomes

related to cardio-metabolic and cerebrovascular diseases, among

others, that seriously affect patients’ quality of life while also

increasing the risk of mortality (1, 2). The current prevalence of

OSA ranges from 9–38%, depending on the demographic

characteristics of the investigated population (e.g., sex, age, and

ethnicity); approximately 900 million adults (30–69 years old)

worldwide are suffering from OSA (1, 3). The overall incidence of

lung cancer has shown a certain downward trend in recent years. In

contrast, concurrently, the progression-free survival (PFS) and overall

survival (OS) of patients with lung cancer have been prolonged

because of the undeniable recent advances in the field of oncology (4).

However, lung cancer remains one of the deadliest cancers,

responsible for nearly 2 million deaths worldwide in 2020, which is

approximately 18% of all cancer deaths (5). Therefore, efforts to

identify new risk factors for lung cancer, especially those that can be

reversed with treatment, are of great importance to its prevention and

therapy. Recent epidemiological studies have confirmed the increased

risk of lung cancer in patients with OSA during long-term follow-up

(6). Patients with lung cancer also have a higher prevalence of OSA

than the normal population (7). In addition, severe OSA leads to a

significantly increased risk of mortality in patients with intermediate-

and advanced-stage lung cancer (8).

Given the close pathophysiologic link between OSA and lung

cancer, recent preclinical studies addressing the association between

the two could explain the above phenomenon. The IH and SF

accompanying OSA lead to enhanced oxidative stress and chronic

inflammatory responses, immune dysfunction, and loss of

homeostasis in the body (9). The various pathophysiological

pathways mentioned above are important contributors that may

lead to the development and progression of lung carcinoma and its

resistance to therapy (10). Meanwhile, OSA shares some of the same
Abbreviations: AHI, apnea-hypopnea index; ASC, adipose tissue stem cell;

ATAD2, ATPase family AAA structural domain-containing protein 2; CH,

chronic hypoxia; CI, confidence interval; CPAP, continuous positive airway

pressure; CSCs, cancer stem cells; CTL, cytotoxic T lymphocytes; EEG,

electroencephalogram; EMT, epithelial-mesenchymal transition; ESM1,

endothelial cell-specific molecule-1; HIF-1a, hypoxia-inducible factor-1a; HR,

hazard ratio; IH, intermittent hypoxia; MDSC, myeloid-derived suppressor cell;

mtROS, mitochondrial reactive oxygen species; NSCLC, non-small cell lung

cancer; ODI, oxygen desaturation index; OR, odds ratio; OS, overall survival;

OSA, obstructive sleep apnea; PD-L1, programmed cell death-ligand 1; PFS,

progression-free survival; PGE2, prostaglandin E2; PSG, polysomnography;

SCLC, small cell lung cancer; SF, sleep fragmentation; SIR, standardized cancer

incidence ratio; T90%, percent nighttime with oxygen saturation <90%; TAMs,

tumor-associated macrophages; Tregs, regulatory T cells; VEGF, vascular

endothelial growth factor.
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risk factors as lung cancer, such as smoking, aging, obesity, and

respiratory disorders, such as chronic obstructive pulmonary

disease (1, 11). These risk factors may also be significant in lung

cancer progression.

There are many inconsistencies in current research, and the

research fields of OSA and lung cancer are full of opportunities and

challenges. Therefore, reviewing the link between OSA and lung

cancer is important. First, the current epidemiological status of lung

cancer and OSA comorbidity was summarized through an

examination of clinical studies. Subsequently, by reviewing studies

of lung cancer combined with OSA on both the cellular and

molecular levels, we were able to gain a more comprehensive

understanding of the pathophysiologic mechanisms between the

two. Additionally, we outline the current status of therapeutics for

lung cancer with OSA. Finally, we provide our insights to rationally

construct future clinical diagnosis and management strategies,

clinical studies, and basic research designs for patients with lung

cancer combined with OSA based on the findings and limitations of

current research.
2 Epidemiology

2.1 OSA in patients with lung cancer

The prevalence of OSA is relatively high among people with

hypertension (12, 13), type 2 diabetes (14), hyperlipidemia (14),

COPD (15), and cognitive decline (12, 16–18). This high prevalence

has also been found in patients with lung cancer. Cabezas et al.

evaluated 60 patients diagnosed with lung cancer using Home Sleep

Apnea Testing and showed that the median apnea-hypopnea index

(AHI) was 15.2 (6.4–31.2), the percentage of time spent with

saturation less than 90% of the total sleep time (T90%) was a

median of 11%, and 50% of patients suffered from moderate-to-

severe (AHI ≥15/h) OSA (7). Similar to this study, Bhaisare et al.

used polysomnography (PSG) to assess sleep in 30 patients newly

diagnosed with lung cancer (29 non-small cell lung cancers

[NSCLCs] and 1 small cell lung cancer [SCLC]), and the patients

had a mean AHI of 12.01 ± 15.52 events/h and a mean minimum

oxygen saturation of 84.53%. Patients that met the diagnostic

criteria for OSA were 17 (57%), with 26.6% experiencing mild

and 29.9% moderate-severe OSA (19). Another clinical cohort

study from Asia confirmed that the prevalence of OSA in patients

with lung cancer was 57%, with moderate-severe OSA accounting

for 27% of the total, especially in patients with SCLC, an elevated

AHI, and oxygen desaturation index (ODI), indicating that hypoxia

may be more severe (20). Liu et al. retrospectively analyzed the data

of 410 patients with newly diagnosed lung cancer, and a total of 128

patients (31.2%) had OSA, a slightly lower prevalence compared to

that reported by other studies (21).

The conclusions are relatively consistent from the information

provided in the few available studies. In comparison to the general

population, patients with lung cancer are more likely to have

coexisting OSA. The diagnosis of OSA may be overlooked in the

lung cancer population. Whether this neglect has clinically

significant consequences relating to prognosis will be analyzed.
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2.2 Lung cancer in patients with OSA

OSA has been demonstrated to increase the incidence of cancer,

particularly prostate, breast, and kidney cancers (22). Justeau et al.

demonstrated that T90%, a parameter that measures the degree of

hypoxia in OSA but not its severity, increased the incidence of

cancer by approximately 30% (T90% ≥13 vs. <0.01, hazard ratio

[HR] 1.33, 95% confidence interval [CI] 1.05–1.68) (23). This

finding was recently confirmed by another study in which

nocturnal hypoxemia associated with OSA was found to be an

independent risk factor for increased cancer prevalence after fully

adjusting for demographic confounders, such as age, sex, and body

mass index (BMI) (24).

Simultaneously, scholars have conducted studies on whether

OSA has an impact on the incidence of lung cancer. In one of the

earliest studies, Gozal et al. demonstrated that OSA did not cause a

statistically significant increase in the risk of developing lung cancer

(HR 1.02, 95% CI 0.99–1.06) and did not correlate with the

progression of lung cancer (25). Subsequently, following veterans

for 7 years, Jara et al. demonstrated that OSA increased the

incidence of lung cancer by 32% (HR 1.32, 95% CI 1.27–1.38)

(26). Similar findings were obtained in another prospective study

conducted during the same period (HR 1.52, 95% CI 1.07–2.17).

When only non-smokers were included, the incidence of lung

cancer in patients with OSA was approximately 3-fold that in

patients with non-OSA (HR 2.96, 95% CI 1.42–6.18). However, it

should be noted that for this study, an OSA diagnosis was obtained

by questionnaire report rather than sleep monitoring (27).

Kendzerska et al. also confirmed that severe, but not mild-

moderate, OSA contributes to risk factors for lung carcinogenesis

(HR 1.34, 95% CI 1.00–1.80). They found that indicators of hypoxia

associated with OSA, AHI ≥28, and mean SaO2 <93.4% were also

independent risk factors for lung cancer incidence (28). In a recent

meta-analysis (comprising a total of 4,885,518 patients) pooling the

above four studies on lung cancer incidence, OSA increased the risk

of lung carcinogenesis by 25% (HR 1.25, 95% CI 1.02–1.53), and a

further increase was noted if the follow-up time was specified to be

at least 5 years or more (HR 1.32, 95% CI 1.27–1.53) (6). Another

meta-analysis that included 12 studies (22) showed that, although

the prevalence of lung cancer in the general population (0.023%) is

slightly lower than the prevalence of prostate cancer (1.1%), OSA

prevalence in lung cancer was higher (0.5%) (29). Seijo et al.

demonstrated that the severity of OSA (mild, moderate, or

severe) was unrelated to the prevalence of lung cancer after

adjusting for age and sex. Instead, sleep parameters such as AHI

(odds ratio [OR] 1.382, 95% CI 1.015–1.882) and T90% (odds ratio

(OR) 1.467, 95% CI 1.121–1.920) were independent risk factors for

the development of lung cancer (30). Similarly, a study by Justeau

et al. confirmed that neither mild-moderate nor severe OSA

increased the incidence of lung cancer, yet T90%, a parameter

reflecting the degree of hypoxia, acted as an independent risk factor

contributing to the development of lung carcinoma (T90% ≥13 vs.

T90% <0.01; HR 2.14, 95% CI 1.01–4.54) (23).

Another clinical cohort study from China could not replicate

these studies. Xiong et al. found no significant association between

OSA, AHI, T90%, and the incidence of lung carcinoma in 3,786
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hospitalized patients with OSA who were followed up for an average

of 9 years (31). In 2019, Brenner et al. concluded a study comprising

5,243 patients with suspected OSA (mean age: 51 ± 13.1 years) with

up to 5.9 years of follow-up. During this period, altogether, 265

patients were diagnosed with malignant tumors, including 14 with

lung cancer (incidence rate of approximately 0.045%), and this study

also failed to confirm a link between OSA and the incidence of lung

carcinoma (32). Similarly, in a recently completed study, Marriott

et al. demonstrated that neither AHI, a parameter reflecting the

severity of OSA, nor T90%, a parameter capturing the magnitude of

nocturnal intermittent hypoxia, was associated with lung cancer

incidence (AHI >30 vs. AHI <5, HR 0.80, 95% CI 0.51–1.26; T90%

≥2.2 vs. T90% <0.1, HR 0.96, 95% CI 0.67–1.38) (24).

Contrary to the findings of the above studies, OSA appeared to

be a protective factor for lung carcinogenesis (HR 0.87, 95% CI

0.82–0.93), as confirmed in another long-term follow-up of up to 6

years in an Asian population. In particular, for male patients, OSA

was revealed to be a protective factor against the development of

lung cancer (HR 0.84, 95% CI 0.78–0.90) (33). Interestingly, similar

findings were obtained by Sillah et al. They anticipated 175 cases of

lung cancer to occur in 34,402 patients with OSA by age–sex

standardized cancer incidence ratios (SIRs); however, only 115

patients eventually presented with lung cancer (SIR 0.66, 95% CI

0.54–0.79) (34).

Overall, 7 of the 13 studies mentioned above confirmed that

OSA may increase the incidence of lung cancer, including two

meta-analyses with a high level of evidence; two studies found a

negative association. However, we cannot conclude these studies

based on their heterogeneity, including differences in study design,

follow-up time, inclusion population, and reference indicators. The

first aspect to consider is the variability between study designs. All

but one study (30) had relatively large sample sizes; however, only

one was a prospective study (27), and the diagnosis of OSA was not

exclusively confirmed by sleep monitoring, even though Huang

et al. examined PSG data in a sample of 108 individuals, 98% of

whom met the criteria for the diagnosis of OSA. These

inconsistencies can lead to a decrease in the reliability of the

conclusions of the studies.

Meanwhile, among the studies, the duration of follow-up ranged

from 1.9 to 9.1 years. OSA is a chronic disease, and its effects on

human health can be slow and long-term (35, 36); an insufficient

length of follow-up results in a reduced number of positive events,

thus affecting the accuracy of the final results. In those studies that

have demonstrated that OSA can raise the risk of lung carcinogenesis

(26–28), the average duration of follow-up was more than 7 years.

The second drawback is that although the studies, including two

meta-analyses, have demonstrated that OSA increases the risk of lung

cancer, only Seijo et al. (30) and Kendzerska et al. (28) have

demonstrated a causal relationship between OSA-associated

hypoxia (AHI, ODI, mean SaO2) and the elevated incidence of

lung cancer. It is also noteworthy that mean SaO2 is more reflective

of the degree of nocturnal hypoxia rather than being a marker specific

to IH. Considering that many confounding factors accompanying

OSA, such as aging, smoking, and obesity, also increase the risk of

lung cancer, it would be highly arbitrary to generalize that IH because

of OSA increases the incidence of lung cancer. Finally, these studies
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did not consider a pathophysiological feature of OSA, namely SF. The

duration of sleep is linked to the progression of cancer, and sleep

deprivation increases the risk of its development (37, 38). For OSA,

SF is an objective reflection of sleep deprivation, and SF interacts with

IH to create a vicious cycle. For example, IH can lead to

microarousals and, therefore, to SF. In turn, decreased arousal

thresholds and SF lead to apneic events and IH (39).

Pathophysiologically, SF is still distinct from sleep deprivation and

shortened sleep duration alone. There is a lack of consistent metrics

to quantify SF, which may limit studies on the correlation between SF

and lung cancer. However, it would be interesting if multiple

parameters in PSG that reflect arousal and SF (e.g., microarousal

index, electroencephalogram (EEG)-based sleep staging conversion,

and electroencephalographic energy changes) were to be included in

future studies.
2.3 Prognosis of coexisting OSA and
lung cancer

OSA has a high prevalence among patients with lung cancer.

AHI >30/h has been shown to result in a higher risk of all-cause

mortality (40), while lung cancer is also a common cause of death

(41); however, it is unclear whether the combination of the two

would further increase the risk of mortality. Prognostic studies

addressing concurrent OSA and lung cancer are limited. The results

of a follow-up study of 45 patients with lung cancer (24 combined

with OSA) confirmed that in the OSA group, a total of 10 deaths

and 9 recurrences or metastases occurred, with a significantly

greater overall rate of deterioration (death + recurrence or

metastasis) than that in the non-OSA subgroup (5 deaths and 5

recurrences or metastases) (42). Liu et al. conducted a study of 44

patients with NSCLC (OSA: 22, non-OSA: 22) with a 2-year follow-

up. The survival rates of patients with OSA were lower than those

without sleep apnea (1-year: 90.9% vs. 95.5%, 2-year: 65.8% vs.

71.6%), although no significant difference was found between the

two groups based on the log-rank test. Vascular endothelial growth

factor (VEGF) is a proangiogenic cytokine that contributes to the

development of solid tumors by promoting tumor angiogenesis

(43). Currently, various anti-VEGF drugs, such as bevacizumab, are

being utilized for tumor treatment. After measuring the plasma

levels of VEGF, the study found that the expression of VEGF was

significantly higher in the OSA+NSCLC group (44). A study by

Huang et al. confirmed that in intermediate and advanced lung

cancer (stages III and IV), severe OSA increased the risk of death,

with 80% of patients with severe OSA+ lung cancer dying within

three years. Patients with mild-moderate OSA had longer PFS and

OS than the severe OSA group (8). Data from the above three

studies were included in a recent meta-analysis (a total of 112

patients with lung cancer, including 67 with coexistent OSA), and it

appeared that OSA did not increase the risk of death from lung

cancer (OR 2.005, 95% CI 0.703–5.715) (37).

To date, no studies have confirmed an increased risk of

mortality from lung cancer caused by OSA. However, drawing

such a conclusion might be hasty. It could even misdirect the

clinical management of this group of patients, given the high
Frontiers in Immunology 04
prevalence of OSA in patients with lung cancer. Our rationale is

as follows. First, the studies included a very small population, with

sample sizes totaling less than 200. Second, factors associated with

the prognosis of lung cancer include clinical stage and pathologic

and molecular type, which are elements that need to be clarified in

the clinical management of lung cancer. Third, there are many

indicators for evaluating the prognosis of lung carcinoma, such as

disease-free survival (DFS), PFS, OS, and 3- or 5-year survival rates

(45, 46). Study designs should not be one-sided based on a single

outcome metric. Finally, among the above studies, except for one

with a follow-up duration of approximately 5 years (8), the median

follow-up time in the other two was less than 2 years (42, 44), and

the shorter follow-up time could affect the reliability of the study

conclusions. By including a large sample of patients with lung

cancer, stratifying the design according to lung cancer type,

referring to several outcome indicators, and using the last patient

death as the follow-up endpoint, the conclusions of the studies can

be made more convincing. Unfortunately, none of the current

studies have addressed these issues. Accordingly, we cannot yet

conclude this issue, i.e., whether OSA affects the prognosis of

patients with lung cancer.
2.4 Summary

Epidemiologic studies addressing the correlation between lung

cancer and OSA have reported mixed results (Table 1). Limited

findings indicate that OSA is relatively common in patients with

lung cancer. OSA is also associated with an increased incidence of

lung cancer. To date, there is a lack of direct evidence that OSA

raises the mortality of lung cancer. Based on the above analysis of

the study limitations, we believe that there is an urgent need to

further improve the quality of studies, e.g., by conducting

prospective, large-sample, multicenter studies and setting the lung

carcinoma incidence and prognosis to the primary outcomes, to

draw more convincing conclusions and guide clinical practice.
3 Pathogenesis

What role do IH and SF, linked to OSA, play in the origin and

progression of lung cancer? Research on this topic has progressed

from macro to micro, from cellular to molecular, from the initial

study of the size and weight of tumor tissues to the further study of

the tumor-associated microenvironment and the genetic material

within tumor cells. Early studies of the pathophysiologic link

between OSA and lung cancer included how to construct animal

models of IH that mimic similarities to OSA and explore the impact

of IH on the progression of lung cancer. Lim et al. successfully

constructed a mouse model mimicking OSA+NSCLC by injecting

adenovirus into KrasG12D+, p53fl/fl genetically engineered mice and

stimulating them with hypoxemia. They found that IH increased

the volume of primary lung tumors (P<0.001), which also increased

significantly faster than that of the control group (47). Huang et al.

used 7-week-old male C57BL/6 mice and Lewis lung carcinoma

cells that were stimulated with nitrogen and oxygen to simulate the
frontiersin.org
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TABLE 1 Summary of the epidemiology of OSA and lung cancer.
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TABLE 1 Continued

Main findings References
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IH of OSA (120 s per cycle, minimum oxygen concentration of 6%

for 8 h for 5 weeks) and successfully constructed an OSA+NSCLC

mouse model. This study confirmed that programmed cell death-

ligand 1 (PD-L1) expression in lung cancer tissues was positively

correlated with IH (r=0.911, P=0.015). Compared with the NSCLC

group, the weight and volume of lung cancer tissues of the OSA

+NSCLC group were substantially increased. It also confirmed that

the increase in weight and volume of tumor tissue showed a dose-

dependent relationship with PD-L1 expression (P<0.05) (48).
3.1 Tumor immune microenvironment

The tumor immune microenvironment (TIME) comprises

immunosuppressive molecules, matrix components, inhibitory

immune cells, and cytokines. Its primary function is attenuating

the anti-tumor immune response, sustaining cell proliferation,

preventing cell apoptosis, maintaining an immunosuppressive

milieu, and facilitating angiogenesis (49, 50). Xie et al. (51)

discovered that the responses of various immune cell types in the

peripheral blood of patients with OSA exhibited dissimilarities and

were positively associated with the severity of hypoxemia. Studies

have demonstrated that IH exerts its immunosuppressive effects

through various hypoxia-inducible factor-1a (HIF-1a)-related
signaling pathways: inducing remodeling of the HIF-1a metabolic

pathway and enrichment of lactate in the TIME; impeding T-cell

proliferation, tumor invasion, and cytokine production; and

augmenting myeloid-derived suppressor cell (MDSC) numbers

while inhibiting natural killer (NK) cell and CD8+T cell activity

(52). Simultaneously, IH-induced tumor cells release interleukin 10

and promote M2-type differentiation of tumor-associated

macrophages (TAMs) (53), which exhibit immunosuppressive

properties. This further fosters the accumulation of other

immunosuppressive populations, such as MDSCs, granulocytes,

and regulatory T cells (Tregs) (54). Akbarpour et al. constructed a

murine model of NSCLC in vitro that mimicked OSA, which

demonstrated that IH and SF reduced tumor killing by cytotoxic

T lymphocytes (CTLs) by significantly decreasing the secretion of

granzyme B by CTLs (55). The alteration in immune function

allows cancer stem cells (CSCs) to undergo immune evasion and

maintain their self-renewal capacity, the growth and progression of

lung cancer (55).

TGF-b plays a pivotal role in the initiation and progression of

tumorigenesis. The classical and non-classical signaling pathways

mediated by TGF-b participate in tumor cell growth, invasion, and

metastasis and play a crucial role in regulating diverse immune cell

types within the tumor microenvironment. TGF-b has emerged as a

central immune regulator in the tumor microenvironment, and its

combination with immunotherapy can exert significant anti-tumor

effects (56). An analysis of the phenotype and immune response

activity of 29 healthy volunteers and 32 patients with continuous

positive airway pressure (CPAP)-treated OSA revealed that

glycoprotein-A repetitions predominant protein monocytes from

untreated patients with OSA inhibit NK cells through the release of

TGF-b; however, reoxygenation eventually restores their altered

phenotype and cytotoxicity (57). Subsequent studies have
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demonstrated that IH can enhance lung cancer cell migration by

upregulating the TGF-b signal, increasing the activation and

proportion of lung cancer-associated fibroblasts (CAFs), thereby

promoting lung cancer progression (58).

The programmed cell death protein 1/programmed cell death-

ligand 1(PD-1/PD-L1) pathway is an important signaling pathway

for the body to negatively feedback suppress immune responses and

maintain autoimmune homeostasis (59, 60). In the tumor

microenvironment, the over-activated PD-1/PD-L1 pathway

inhibits the body’s immune surveillance and immune clearance

effects on tumor cells (61). In a murine model of sleep apnea (48),

PD-L1 expression levels were significantly increased in the

intermittent hypoxia group, and HIF-1a levels were strongly

correlated with PD-L1 expression. In a multicenter observational

study, 360 patients with cutaneous melanoma were enrolled, and

serum soluble programmed death ligand 1 (sPD-L1) levels were

measured, which showed that sPD-L1 levels were higher in patients

with severe OSA than in those with non-severe OSA and those with

non-OSA (62). Carolina et al. showed that IH-induced PD-L1/PD-1

overexpression in patients with severe OSA reduced autologous T

cell proliferation and cytotoxic activity of CD8+T cells, increased

recruitment of myeloid-derived suppressor cells, and showed an

increase in PD-L1 on monocytes and PD-1 on CD8+T cells in

patients with OSA (63). Theoretically, the higher the PD-L1

expression, the stronger the tumor cell immunosuppression. IH

associated with OSA promotes the expression of PD-L1 in tumor

cells, and by blocking the binding between PD-1 and PD-L1, PD-1/

PD-L1 inhibitors enable immune cells to maintain their activity and

restore their recognition and killing of tumor cells. Therefore, we

speculate that PD-1/PD-L1 inhibitors may have a significant effect

on the treatment of lung cancer patients with OSA, which might be

an interesting area of research to be further confirmed in the future.
3.2 Tumor-associated macrophages

TAMs, MDSCs, and Tregs are involved in tumorigenesis,

invasion, and metastasis. TAMs can be differentiated from

MDSCs and are involved in constructing tumor stroma. MDSCs

themselves can suppress T cell responses. Under various

chemokines and cytokines, monocytes are recruited to the

periphery of lung cancer cells and differentiate into TAMs. Under

hypoxic conditions, TAMs secrete mitogenic factors and

immunosuppressive agents that promote the progression of lung

cancer (64). The phenotypes that make up human TAMs include

two main types, M1 and M2. M1-TAMs play a role in inhibiting

lung cancer progression by killing tumor cells.

Conversely, M2-TAMs are promoters for tumorigenesis and

progression. They inhibit cellular immune responses and the

activity of natural killer cells (NK cells), releasing inflammatory

factors and protein hydrolases. They are considered important

immunosuppressive cells in the tumor microenvironment (65).

The polarization process (M1 to M2) of TAMs, i.e., the decrease

in M1/M2 values, has also been proposed to predict the poor

prognosis of lung cancer (66). IH associated with OSA can

further promote the growth of lung cancer tissues by promoting
Frontiers in Immunology 08
the differentiation and polarization of TAMs (M1 to M2), as well as

increasing the invasiveness to the surrounding tissues and distant

metastasis of lung cancer cells. Almendros et al. constructed an IH

model mimicking OSA and implanted a lung epithelial tumor into

mice. They found lung carcinoma cells in the IH group were more

invasive than those without hypoxia after 28 days. Concurrently,

compared to the control group, there was a 2.6-fold increase in

TAMs around the tumor tissue (P=0.02), with a simultaneous

increase in Tregs and MDSCs (2.2-fold and 3.7-fold, respectively).

Applying TAMs isolated from IH mice to in vitro cultures

significantly increased tumor cell proliferation, migration, and

invasiveness (Figure 1A) (67). A similar study also confirmed that

IH-exposed mice had significantly higher lung cancer tissue weights

(1.363 ± 0.143 g) than hypoxia-free mice (0.677 ± 0.097 g), with a

2.2-fold increase in IH-induced TAM infiltration, which further

confirmed that prolonged exposure to IH induces adipose tissues to

recruit adipose tissue stem cells (ASCs) and pro-inflammatory cells,

leading to the migration of adipose tissue macrophages and ASCs to

tumors, promoting tumor tissue growth and enhancing its

invasiveness (70). The effect of sex on the relationship between

IH and lung cancer was first explored by Torres et al. by mimicking

postmenopausal mice (oophorectomized). They demonstrated that,

compared to mice exposed to CH, IH promoted greater lung cancer

tissue growth in ovariectomized mice. Although not statistically

significant (P=0.08), this study also demonstrated that IH promotes

TAM aggregation around tumor tissues and facilitates the

conversion of TAM phenotype from M1 to M2 (Figure 1B). This

study confirmed that IH associated with OSA can facilitate the

progression of lung carcinoma (68). Recently, a study confirmed

that TAMs and PD-L1 expression were upregulated in patients with

OSA with lung adenocarcinoma. OSA-related IH activated HIF-1a
and its associated signaling pathways, enhanced the expression of

PD-L1 in tumor cells, and increased the activity of TAMs while

decreasing cytotoxic T cell activity. Lung cancer growth was

promoted through the tumor-associated immune response

mediated by IH (71). Campillo et al. constructed an IH+NSCLC

model in vivo and in vitro (69). The exposure of IH promoted the

proliferation of lung cancer by upregulating the number of TAMs as

well as mediating the polarization of the phenotype of TAMs (the

ratio of M2/M1 was increased 2-fold in the IH group compared to

that in the control group). Cyclooxygenase-2 and its downstream

secreted prostaglandin E2 (PGE2) were shown to be important

mediators in regulating this process. PGE2 expression was 1.5-fold

higher in the IH+NSCLC group (Figure 1C). This study confirmed

that OSA-associated IH exacerbated lung cancer progression by

activating the inflammatory response pathway (COX-2/PGE2) and

promoting the proliferation of TAMs (69).
3.3 Cancer stem cells

Since the proposal of CSCs by Mackillop et al. in 1983 (72), they

have been acknowledged as a highly tumorigenic subpopulation

capable of facilitating tumor growth, drug resistance, recurrence,

and metastasis through the process of epithelial-mesenchymal

transition (EMT) reprogramming (73, 74).
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The study by Gu et al. conclusion that IH promotes the

differentiation, proliferation, invasion, and migration of CSCs

through HIF-1a and can simultaneously induce drug resistance.

This study also identified another important molecule: endothelial

cell-specific molecule-1 (ESM1), and using an ESM1 antagonist,

they reversed the negative effects of IH on a murine model of

NSCLC (Figure 2A) (75). In vitro and vivo, Hao et al. demonstrated

that IH promoted tumor proliferation, invasion, and distant

metastasis and identified a series of mechanisms by which IH

promotes the progression of NSCLC through the upregulation of

CSC expression. In vivo and in vitro, IH promoted the aggregation

of mitochondrial reactive oxygen species (mtROS), mediated

oxidative stress, and induced the generation of more CSCs by

upregulating the expression of transcription factor BTB and CNC

homology 1 (Bach1). This response mediated by IH disappeared

after gene silencing of Bach1 (Figure 2B) (76). Meanwhile, by

measuring the levels of HIF-1a and ATPase family AAA

structural domain-containing protein 2 (ATAD2)-associated

genetic products in A549, H460, H1299, and SPC-A1 cells, which

are the representative NSCLC cells, the levels of ATAD2-related

mRNA and protein levels were found to be significantly elevated in

the IH+NSCLC model. Knockdown of ATAD2 significantly
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inhibited the invasion and migration of lung carcinoma cells. The

production of mtROS and the number and activity of CSCs were

also reduced. This study confirmed that IH regulates the interaction

between mtROS and CSCs by mediating HIF-1a/ATAD2,

promoting lung cancer progression (77).
3.4 Endothelial cells

Continuous neovascularization guarantees the tumor tissue’s

thirst for nutrients, necessary to maintain lung carcinoma cells’

proliferation, infiltration, and distant metastasis. Vascular

endothelial cells are the cornerstone in this process, and VEGF

promotes lung cancer carcinogenesis and progression by inducing

the differentiation and maturation of endothelial cells (78, 79).

Zhang et al. investigated the expression of serum VEGF and

endothelin-1 in lung cancer associated with IH. Their results showed

that the volume and weight of tumors exposed to IH were

significantly higher than those of tumors under normal oxygen

conditions (3974.50 ± 1748.20 vs. 2268.54 ± 1874.48 mm2 and 5.76

± 1.48 vs. 4.49 ± 0.96 g, respectively). VEGF and its mRNA levels

were also significantly increased in serum as well as tumor tissues of
B

C

A

FIGURE 1

Intermittent hypoxia (IH) facilitates lung cancer progression by mediating tumor-associated macrophages (TAMs). (A) Comparison of TAMs in room
air (RA) and IH groups. (i) In the RA group, TAMs are present in the connective tissue surrounding the tumor (brown arrow). (ii) In the IH group, in the
IH state, the invasion of lung cancer is enhanced, and TAMs are present in the connective tissue (brown arrow) and muscle (black arrow)
surrounding the tumor (67). (B) Effects of IH and oophorectomy (OVX) on invasion and distant metastasis of lung cancer in mice. (i) In IH, the
primary lung cancer (white arrow) infiltrates the skeletal muscle (yellow arrow). (ii) When exposed to both IH and OVX, lung cancer metastases (white
arrows) increased (68). (C) The invasive and metastatic potential of lung cancer in IH and RA are compared. (i) RA group (left), no invasion; IH group
(right side), lung cancer invading muscle tissue. Cancer cells (yellow arrows), muscle cells (white arrows). (ii) IH stimulates lung cancer metastasis,
and the yellow arrow indicates metastatic lesions (69). Reprinted with permission from Ref (67–69).
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mice. This research also demonstrated that IH promoted the

proliferation and differentiation of endothelial cells by upregulating

the expression of VEGF and endothelin-1, which accelerated the

progression of lung cancer by inducing neovascularization in tumors

(Figure 3A) (80). The same finding was replicated in another study

during the same period. Kang et al. confirmed the role of VEGF and

endothelial cells in promoting IH-mediated lung cancer progression.

The expression level of VEGF was markedly higher in the IH+lung

adenocarcinoma mice model than in the normoxia+lung

adenocarcinoma group (308.1 ± 104.3 vs. 172.0 ± 90.6 pg/mL).

Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Beta-catenin

(b-catenin), but not HIF-1a, appear to be the key intermediary

mediators promoting VEGF expression (Figure 3B) (81).

Serum midkine (MDK), as a lymphangiogenesis-related

biomarker, its overexpression has been identified in patients with

NSCLC as a potential therapeutic target for its development,

metastasis, and angiogenesis (82, 83). Lymphangiogenesis, in

addition to angiogenesis, mediates tumor vascularization, which

meets the oxygen and nutrient requirements for tumor growth and

metastasis (84). Recent studies have shown that individuals at high risk

for lung cancer with moderate-to-severe OSA have elevated expression

of MDK (non-OSA: 1536 pg/mL, 95% CI 840–2360 pg/mL; moderate-

to-severe OSA: 5902 pg/mL, 95% CI 816–8337 pg/mL) (85).
3.5 Exosomes

Exosomes are important bioactive factors that can participate in

cell communication, immune response, cell differentiation, and

tumor invasion and can also be used as carriers for drug therapy

(86, 87). Exosomes increase the proliferation of lung cancer by

stimulating glucose anaerobic fermentation metabolism and

ensuring oxygen supply to lung cancer cells by promoting

neovascularization during lung cancer carcinogenesis and
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progression. Concurrently, exosomes can induce EMT and deliver

regulatory factors between cells, thus promoting distant tumor

metastasis (88).

Almendros et al. extracted exosomes from blood samples from

10 adult patients with OSA in fractions (before CPAP treatment and

after 6 weeks of treatment) and confirmed that exosomes before

CPAP treatment significantly enhanced the differentiation,

maturation and migration of adenocarcinoma cells, which was

validated in an animal model. In parallel, this study also

identified several miRNA sequences (such as mmu-miR-92a-3p

and mmu-miR-709) associated with exosomes (Figure 4A) (89).

Subsequently, a study by Liu et al. also confirmed that exosomes

derived from lung cancer cells under IH-exposed conditions

upregulated the expression of PD-L1 on the surface of

macrophages surrounding tumor tissues and promoted lung

cancer progression (Figure 4B). Compared with patients with

lung cancer without OSA, the percentage counts of monocytes

positively expressing PD-L1 were markedly higher in serum

samples from patients with lung carcinoma with concomitant

OSA (95.3% vs. 86.0%), and this result was positively related to

the parameters AHI and ODI, which reflected the severity of OSA

(r=0.419 and 0.387, P<0.05, respectively) (90).
3.6 Genetic materials

The metabolism of normal tissues and cells results from a

combination of multiple gene regulation processes. Proto-

oncogenes promote the process of cell mitosis and developmental

maturation by regulating the cell cycle. Oncogenes mainly prevent

excessive cell proliferation. The dynamic balance between the two

maintains the normal metabolism of the body. The carcinogenesis

and progression of lung carcinoma is the adverse consequence of

dysregulation of proto-oncogenes/oncogenes (91–94).
BA

FIGURE 2

Mouse lung cancer cells exposed to intermittent hypoxia (IH) had greater stem cell potential and stronger proliferation and differentiation ability.
(A) Lung cancer cell lines (PC-9, A549) were exposed to IH. (i) Colony formation of lung cancer cell lines. CSCs measured at 0 h, 24 h, and 48 h
after exposure to IH. (ii) Immunohistochemistry of CSCs (PC-9, A549). (iii) Immunofluorescence staining of CSCs (PC-9, A549) (75). (B) Lung
carcinoma cell lines (A549, SPCA1) were exposed to IH. (i) After exposure of A549 or SPCA1 to normal oxygen (Nor) or chronic intermittent hypoxia
(CIH) for 48 h, cell proliferation was assessed with EDU and DAPI staining. (ii) Colony formation analysis shows that IH could promote the
proliferation of CSCs (A549, SPCA1). (iii) Comparison of EDU staining positive ratio in CSCs (A549, SPCA1) between Nor and CIH (left) and
comparison of CSC (A549, SPCA1) colonies between Nor and CIH (right) (76). Reprinted with permission from Ref (75, 76).
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Genetic material is equally vital in regulating the carcinogenesis

and progression of OSA-related IH and lung carcinoma. Cortese

et al. studied NSCLC mice exposed to IH. They confirmed a

significant increase in the amount of cirDNA compared to

NSCLC mice in normoxic environments by measuring cirDNA

levels in plasma (difference between the two: 510.62, P=0.015).

Meanwhile, with the increase in the amount of cirDNA, the size and

weight of the tumor increased (R2 = 0.580 and 0.765, respectively,

P<0.05). These cirDNAs may carry specific epigenetic modifications

for information transfer between OSA and lung cancer (95). RNA is

an important carrier of genetic information, controlling cell growth

and differentiation by conducting protein synthesis, transmitting

genetic information, and regulating transcription and translation

(96). Chao et al. constructed human lung adenocarcinoma cell lines

exposed to IH in vitro and inhibited the proliferation and

invasiveness of IH-exposed tumor cells by knocking down the

demethylation enzyme ALKB homologous protein 5 (ALKBH5).

This process may be mediated by downregulation of the level of n6-

methyladenosine (m6A)-modified mRNAs. This finding was

confirmed in vivo and in vitro (97). MicroRNAs are a class of

small RNAs about 20–24 nucleotides in length that do not encode

proteins but can regulate the translation of mRNAs. Li et al.

identified a specific fragment of genetic material, microRNA-

320b. In patients with lung cancer who also experienced OSA, IH

induced a decrease in the expression of microRNA-320b, with

downstream expression of ubiquitin-specific peptidase 37
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(USP37) upregulated secondary to IH and USP37 promoting lung

cancer progression by mediating the deubiquitination of Cdc10-

dependent transcript 1 (CDT1) (98). Public databases and big data

platforms have recently provided us with rich research resources.

Zhao et al. analyzed 734 patients (230 adenocarcinomas and 504

squamous carcinomas) with NSCLC accompanied by OSA

by combining genetic databases. This study confirmed that

the metabolic pathway-related genes HK2 and GBE1 were

significantly altered in lung cancer cells under IH conditions.

HK2 and GBE1 are located downstream of the HIF-1a signaling

pathway, and their expression was positively correlated with tumor

size, primary tumor stage T, and tumor lymph node stage N.

Meanwhile, higher expression of HK2 and GBE1 has also been

shown to affect OS in lung adenocarcinoma but not squamous lung

cancer (99). From the Gene Expression Omnibus and The Cancer

Genome Atlas, Wang et al. used a weighted gene co-expression

network analysis screening method to identify four key genes that

are shared with OSA and lung cancer, namely modulator of

apoptosis 1 (MOAP1), chromobox 7 (CBX7), platelet-derived

growth factor subunit B (PDGFB), and mitogen-activated protein

kinase 3 (MAP2K3). In this study, a model was constructed to

predict the prognosis of patients with lung cancer using an

innovative machine-learning approach. Although the area under

the receiver operating characteristic curve for this model was 0.707,

indicating that the model was moderately effective, this study

pioneered the combination of artificial intelligence and OSA with
BA

FIGURE 3

Intermittent hypoxia (IH) promotes endothelial cell proliferation through upregulation of vascular endothelial growth factor (VEGF) expression and
ultimately accelerates lung cancer progression. (A) Comparison of tumor size in each group. (i) The tumor size of lung cancer in the IH group was
larger than that in the control (CTL) group. Endostatin (ED) inhibits the proliferation of endothelial cells (CTL+ED, IH+ED) and slows tumor growth.
(ii) After 15 and 30 days of exposure to IH, 18F-FDG PET demonstrated tumor size. Endothelial cells were the target of ED treatment, and lung
cancer proliferation is inhibited by ED. Yellow arrows point to tumors (80). (B) In contrast to room air (RA), chronic intermittent hypoxia (CIH)
promotes lung cancer proliferation by inducing neovascularization. (i) The number and volume of tumors are larger in the CIH group. (ii) The effect
of CIH on the neovascularization of lung cancer. Representative immunohistochemistry images (left: Ki-67 and right: CD31) (magnification, ×200).
(iii) Hypoxia-inducible factor-1a (HIF-1a) and VEGF expression levels in the CIH group are higher than those in the RA group (81). Reprinted with
permission from Ref (80, 81).
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lung cancer, providing ideas for future research (100). Qi et al. also

applied a machine learning approach to the study of OSA and

NSCLC by screening for two OSA-associated target genes (EXO1

and KRT6A) affecting lung adenocarcinoma treatment and

prognosis and obtaining three sets of clusters after clustering and

analyzing the relevant populations. Patients in Cluster 1 were the

most sensitive to conventional chemotherapeutic agents but also

had the worst prognosis. Patients in Cluster 2 had a poor response

to immunotherapy, which could be attributed to T cell depletion

because of the chronic inflammatory response associated with long-

term IH. In contrast, those in Cluster 3 could maximize the benefits

of treatment with immune checkpoint inhibitors (101). This finding

provides a new biomarker for predicting lung adenocarcinoma

prognosis, although the model requires external validation.
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3.7 Summary

The carcinogenesis and progression of lung cancer involve

various factors, including genetic mutations, immunosuppression

and evasion, and alterations in the immune microenvironment

(Figure 5). The two core pathophysiological mechanisms of OSA,

IH and SF, lead to secondary oxidative stress, chronic inflammatory

response, and dysfunction of the neuro-endocrine and immune

functions, closely associated with cancer (102). IH can cause

changes in cells, factors, and signaling pathways in the TIME,

such as remodeling HIF-a1 and TGF-b signaling pathways,

activating TAMs, CAFs, and other cells, and promoting PD-1

expression. Meanwhile, scholars have attempted to establish a

bridge connecting the pathophysiological link between OSA
B

A

FIGURE 4

Exosomes are involved in regulating the progression of lung cancer under intermittent hypoxia (IH) conditions. (A) IH promotes the proliferation of
lung cancer cells and is associated with exosomes. (i) Effects of exosomes derived from room air (RA) or IH mouse plasma on proliferation,
migration, and invasion of mouse lung cancer cells. (ii) Comparison of lung cancer cell proliferation between RA and IH under electron microscope,
light microscope, and in vitro colony (89). (B) Non-small cell lung cancer (NSCLC) cell-derived exosomes contribute to the progression of NSCLC by
promoting the upregulation of PD-L1 expression in macrophages (90). Reprinted with permission from Ref (89, 90). *P<0.01.
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and lung cancer and have confirmed that IH, which is

associated with OSA, results in the overexpression of some

signaling molecules that promote cell proliferation by activating

the HIF-1a signaling pathway, which further activates downstream

signaling pathways (including inflammation, cell proliferation,

and neovascularization). CSCs influence and modify the

tumor microenvironment, and vascular endothelial cells

differentiate and mature under VEGF stimulation to participate in

neovascularization, supplying nutrients required for the growth of

lung cancer cells. Although HIF-1a responds differently to IH,

sustained hypoxia, and acute hypoxia, IH activates HIF-1a more

rapidly than sustained hypoxia (103).

Meanwhile, IH and SF can also promote the recruitment of

MDSCs to lung cancer tissues, induce the polarization of TAMs,

and inhibit the function of Tregs by regulating the immune system.

Exosomes are emerging bioactive factors with multiple biological

functions closely related to the progression of lung cancer and

therapeutic resistance by transporting nucleic acids and proteins,

transmitting biological information, and participating in tumor cell

migration and differentiation, immune response, and regulation

(104). Long-term exposure to IH induces the activation of proto-

oncogenes, and the inactivation of oncogenes, and the body

eventually loses the regulation of normal cell proliferation/

apoptosis. Many of the above factors combine to contribute to the

progression of lung cancer, and these factors may also be promising

therapeutic targets.

The entire process of lung cancer progression includes

carcinogenesis, tumor tissue proliferation, local invasion, and
Frontiers in Immunology 13
distant metastasis. The studies mentioned above explain the role

played by IH in promoting local invasion and tumor tissue

proliferation of lung cancer cells. However, one current limitation

is that no study has been able to confirm that IH activates lung

carcinogenesis, i.e., that there is a direct causal relationship between

IH and lung cancer genesis. In future studies, it is necessary to

determine if IH has direct tumorigenicity for lung cancer. Second, a

lack of standardized animal models adequately explains the

heterogeneity between different studies. In addition, as another

important pathophysiological mechanism of OSA, SF may be more

complex than IH (105). Unfortunately, to date, only one study has

explored the effect of SF on lung cancer (55), and even in that study,

SF was not specifically quantified. Finally, IH associated with OSA is

also complex, with differences in the duration, frequency, and depth

of hypoxia leading to large differences in the degree of hypoxia

between patients with a similar AHI. Current in vivo animal models

or in vitro cellular models do not simulate the most realistic state of

OSA, which underlies the difficulty of the current work.
4 Therapeutic options

It has been demonstrated that tumorigenic expression is

upregulated in circulating leukocytes of untreated patients with

severe OSA and that the upregulation of the expression of these

genes can be reversed after 1 month of CPAP treatment (106).

Recently, data from another prospective, multicenter clinical study

were published. Untreated severe OSA was associated with a poor

prognosis in melanoma (HR 2.96, 95% CI 1.36–6.42), and the HR fell

by about half with CPAP treatment (HR 1.66, 95% CI 0.71–3.90) (107).

However, clinical studies exploring the efficacy of CPAP in the

field of lung cancer combined with OSA are lacking. Meanwhile,

current studies are scarce and limited to basic experiments.

Campillo et al. found that IH could promote lung cancer

progression by activating the inflammatory pathway (COX-2/

PGE2), which in turn induced the prol i ferat ion and

differentiation of TAMs in a mouse model of OSA+NSCLC. The

proliferation of primitive tumor cells was inhibited by

administering a nonsteroidal anti-inflammatory drug (celecoxib)

that also inhibited the polarization of TAMs (69). IH associated

with OSA also induces downstream VEGF overexpression by

activating the HIF-1a signaling pathway. VEGF levels in serum

and tissues were significantly reduced by endostatin treatment. The

effect of endostatin treatment for lung cancer was more significant

in the IH group than in the normoxia+NSCLC group (80). ESM1

can also be overexpressed via the HIF-1a signaling pathway, and IH

promotes NSCLC invasion and migration and induces NSCLC drug

resistance by activating ESM1/HIF-1a (75). After the knockdown of

ESM1, the tumor growth- and metastasis-promoting effects of IH

were significantly inhibited.

The mechanisms by which IH promotes the progression of lung

cancer, including induction of PD-L1 expression and upregulation

of VEGF levels, have been demonstrated in basic research.

Therefore, we speculate that immune checkpoint inhibitors or

anti-VEGF monoclonal antibodies might additionally benefit

patients with lung cancer and OSA. However, these therapeutic
FIGURE 5

Signaling pathways potentially impacted by IH in lung cancer. IH
promotes lung cancer invasion and metastasis by upregulating EMT-
related proteins through HIF-1a and ESM1, while HIF-1a enhances
the properties of CSCs and increases ROS generation (especially
mtROS), resulting in altered genetic material. IH can up-regulate the
expression of PD-1 and TGF–b, consequently influencing the tumor
immune microenvironment. At the same time, there is a mutual
interaction between PD-1 and HIF-1a. IH enhances the expression
of Nrf2 and Wnt/b-Catenin-related genes, leading to the up-
regulation of their downstream target genes, such as VEGF, which
promoted angiogenesis in lung cancer. IH up-regulates the
expression of ALKBH5 in lung cancer, which led to the increase of
FOXM1 protein level in tumor tissues.
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options should be fully validated in preclinical models before they

can be used in clinical studies. We are just taking our first steps in

the field of therapeutics for OSA and lung cancer.
5 Conclusions and prospects

Although the last decade has witnessed advances in our

understanding of the connection between OSA and lung cancer,

by summarizing the results of the above clinical and

epidemiological data and pathophysiological mechanism studies,

it is clear that there are more questions than answers.

Current data from human epidemiological studies indicate that

OSA is a relatively common comorbidity in patients with lung

cancer; therefore, it seems important to include screening for OSA

in the clinical evaluation of patients with a first diagnosis of lung

cancer. Concurrently, the incidence of lung cancer appears to be

higher in patients with OSA than in the normal population, and

future prospective clinical studies with larger sample sizes will be

required to demonstrate whether OSA is an independent risk factor

for lung cancer. Although there is a lack of evidence that OSA leads

to a worse prognosis in lung cancer, it would be arbitrary to

conclude at this point that OSA does not increase the risk of

mortality from lung cancer, as the current level of evidence in

this area of research is very low. Therapeutic research on lung

cancer and OSA is sparse and preclinical and is still in its infancy.

Regarding the current situation of epidemiologic studies, we believe

that, in the future, we need to focus on the following aspects for

improvement. First, considering the original purpose of the study of

the interrelationship between OSA and lung cancer, it is important

to establish a large-sample clinical or population cohort with a long

follow-up so that the study can determine the carcinogenicity of

OSA. This is important because lung cancer is preventable

by blocking risk factors (e.g., smoking cessation) (108).

Hypothetically, if we can confirm OSA as an independent risk

factor for lung carcinoma and provide early intervention (CPAP

treatment) for reversible factors (e.g., chronic IH), this would be

important for lung cancer prevention. Second, patients should be

evaluated using PSG if possible. While traditional parameters such

as AHI, ODI, arousal index, sleep stage, and sleep duration were

included, some promising and innovative parameters such as

hypoxia burden (109), arousal intensity (110), OR product (111),

and cardiopulmonary coupling (112) were included that could help

establish a causal relationship between OSA and lung carcinoma.

Third, important confounding variables, such as shift work,

objective sleep duration, and the inclusion of important

concomitant symptoms of OSA, such as excessive daytime

sleepiness and insomnia, need to be adequately accounted for in

studies that are more specifically stratified.

Moreover, to better understand the impact of OSA on the

prognosis of lung cancer, it is recommended that a stratified design

be based on the pathologic type, analytic type, and clinical stage of

lung cancer. Concurrently, a more meticulous setting of study

endpoints, such as recurrence rate, metastasis rate, OS, PFS, and

5-year survival rate, is needed. Finally, there is an urgent need for

clinical trials to confirm the role of CPAP therapy in patients with
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lung cancer with coexisting OSA, as well as to validate the efficacy

and safety of immune checkpoint inhibitors and anti-VEGF

monoclonal antibodies in this particular group.

Adequate in vivo or in vitro models provide a more complete

and in-depth understanding of lung cancer and OSA association.

Current studies have confirmed that IH associated with OSA leads

to a secondary inflammatory response, oxidative stress injury,

immune dysfunction, and tumor-related gene mutations;

upregulates the expression of various signaling molecules, such as

PD-L1 and VEGF; and induces the proliferation and differentiation

of TAMs, CSCs, and endothelial cells. At the same time, with the

help of exosomes, signals regulating cell proliferation and invasion

are transmitted between cells. The above multiple pathways

promote the proliferation of tumor cells, increase the invasiveness

of tumor tissues, induce neovascularization, and ultimately promote

the progression of lung cancer (Figure 6). The current dilemma is

that there is a lack of standardized animal models. Most existing

animal models are designed to mimic IH and thus verify the causal

relationship between OSA and lung carcinoma. SF, another

necessary pathophysiologic process of OSA, is being neglected.

Second, the existing in vitro or in vivo models only demonstrated

that IH promotes the proliferation and invasion of lung cancer cells

and tissues. However, they did not sufficiently clarify the effect of IH

on the distant metastasis of lung cancer and, in particular, failed to

validate whether IH can be carcinogenic. Finally, the genesis and

progression of lung cancer are related to various factors such as

oxidative stress , inflammation, immune evasion, and

neuroendocrine disorders; however, a comprehensive study of all

these mechanisms is lacking at present. Future studies can consider

using EEG to quantify SF and arousal behavior. Utilizing the

information from big data platforms and genetic databases,

combining genomics, metabolomics, and imaging genomics, and

then fully integrating the data through machine learning will help

us gain a deeper insight into the pathophysiological mechanisms

that interact in OSA and lung carcinoma.
FIGURE 6

Pathophysiological association of obstructive sleep apnea (OSA) with
lung cancer. CSCs, cancer stem cells; HIF-1a, hypoxia-inducible
factor-1a; PD-L1, programmed cell death-ligand 1; TAMs, tumor-
associated macrophages; VEGF, vascular endothelial growth factor.
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Undoubtedly, the initial stage of the knowledge acquisition

process is both a challenge and an opportunity for researchers,

and the unknowns in the field provide fertile ground for future

research. In the future, through the integration of traditional

medicine and artificial intelligence, the multidisciplinary

combination of respiratory medicine, sleep medicine, and

oncology, and the conjunction of basic and clinical medicine, the

pathophysiological mechanism of the association between lung

cancer and OSA could be revealed, which would provide us with

a theoretical basis for formulating the optimal clinical

management strategy.
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