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tumour microenvironment
in mantle cell lymphoma
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In Mantle Cell Lymphoma (MCL), the role of macrophages within the tumour

microenvironment (TME) has recently gained attention due to their impact on

prognosis and response to therapy. Despite their low absolute number in MCL

tumour tissue, recent findings reveal an association between the levels of

macrophages and prognosis, consistent with trends observed in other lymphoma

subtypes.M2-likemacrophages, identified bymarkers such as CD163, contribute to

angiogenesis and suppression of the immune response. Clinical trials with MCL

patients treated with chemoimmunotherapy and targeted treatments underscore

the adverse impact of high levels of M2-like macrophages. Immunomodulatory

drugs like lenalidomide reduce the levels of MCL-associated CD163+macrophages

and enhance macrophage phagocytic activity. Similarly, clinical approaches

targeting the CD47 “don’t eat me” signalling, in combination with the anti-CD20-

antibody rituximab, demonstrate increased macrophage activity and phagocytosis

of MCL tumour cells. Cell-based therapies such as chimeric antigen receptor (CAR)

T-cell have shown promise but various challenges persist, leading to a potential

interest in CAR-macrophages (CAR-M). When macrophages are recruited to the

TME, they offer advantages including phagocytic function and responsiveness to

microenvironment alterations, suggesting their potential as a manipulable and

inducible alternative when CAR T-cell therapies fails in the complex landscape of

MCL treatment.
KEYWORDS
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Introduction

Mantle cell lymphoma (MCL) corresponds to about 5% of all non-

Hodgkin’s lymphomas (NHL) and originates from the malignant

transformation of B-cells within the mantle zones of the lymph

nodes. MCL can also arise from antigen-experienced B-cells that

have undergone immunoglobulin heavy-chain variable (IGVH)

somatic hypermutations elsewhere in the lymphatic tissue (1). Due

to disease heterogeneity, MCL is challenging to treat and remains

mostly incurable, with patients exhibiting a median overall survival of

1.8 to 9.4 years depending on their individual genetic and pathological

risk factors (2–4). Furthermore, patients often relapse as a result of drug

resistance, leading to an overall poor prognosis (5, 6). Interestingly,

recently developed immunotherapies including anti-CD19 chimeric

antigen receptor T (CAR-T) cell therapy (7) and bispecific antibodies

(8) have shown promising treatment outcomes at relapse. Thus, in the

present review we aim to elucidate the current knowledge of the MCL

tumour microenvironment (TME) and discuss how targeting these

systems could improve patient response and survival even further.
Established prognostic factors in mantle
cell lymphoma

The primary oncogenic event that takes place in MCL cells is t

(11;14)(q13;q32), but this genetic aberration alone is not enough to

drive lymphoma pathogenesis (9, 10). Instead, MCL pathogenesis is

underpinned by increased genomic instability by mutations in genes

that regulate cell cycle progression, such as ATM, TP53 and RB1, as

well as genes that regulate DNA repair, NF-kB signalling and

apoptosis. As such, detection of TP53 mutations in the tumour cells

is one of the strongest negative prognostic markers in patients. In the

absence of these specific gene mutations, transcriptional dysregulation

can also cause aberrant protein function, as exemplified by the poor

prognosis for patients with MYC overexpression (11, 12).

Markers for poor prognosis that are used in the clinic include a

high mantle cell lymphoma international prognostic index (MIPI),

high proliferation rate measured with Ki-67, blastoid and/or

pleomorphic histology, as well as an abnormal karyotype (13–17).

However, it has become clear that patient outcome cannot be

determined by studying only the disease-specific cell types, but

must include the much wider system of supporting and interacting

cells that constitute the TME (18–20). The tumour architecture,

presence and composition of inflammatory cells in the tumour

tissue, and soluble biomarkers are important aspects of the TME.

However, markers reflecting the TME are not yet being used as

prognostic factors in MCL care. Despite this, the TME is highly

involved in the established treatments, and the prognostic factors of

the TME are becoming increasingly important to consider with the

future expansion of immunotherapy in MCL treatment.
Current therapeutic approaches in mantle
cell lymphoma

In younger MCL patients, the standard therapy has consisted of

monoclonal anti-CD20 antibody rituximab together with intensive
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chemotherapy, i.e., cyclophosphamide, doxorubicin, vincristine

prednisone (CHOP) and cytarabine or oxaliplatin, followed by an

autologous stem cell transplantation (21). However, the introduction

of novel targeted drugs, i.e., the Bruton tyrosine kinase inhibitor

(BTKi) ibrutinib as maintenance after induction chemotherapy, has

proven to be as effective with our without autologous stem cell

transplantation (22). On the other hand, for elderly patients there

is no general agreement on treatment internationally (23), but most

patients have received chemotherapy (CHOP or bendamustine) in

combination with rituximab.

A new era utilizing targeted drugs and potentially omitting

chemotherapy is emerging in MCL care (24–26). The covalent

BTKi:s ibrutinib, acalabrutinib and zanubrutinib have shown

efficacy in relapsed patients (27). However, the survival benefit

when using BTKi as a first-line therapy compared to chemotherapy

is unknown, and we are eagerly awaiting the results for the

randomized ENRICH trial comparing chemotherapy to first-line

BTKi in elderly patients. A key question is whether BTKi can

replace chemotherapy or add to its efficacy. Furthermore, the non-

covalent BTKis pirtobrutinib and nemtabrutinib have also proven

effective when used in conjunction with covalent BTKis at disease

progression for various B-cell malignancies (28, 29).

The novel field of CAR-T cell therapy and bispecific antibodies

is the next step in treatment. The CAR-T cell-based therapies

tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta),

brexucabtagene autoleucel (Tecartus) and lisocabtagene

maraleucel (Breyanzi) have been FDA approved for treatment of

various hematological malignancies. In addition, the bispecific

antibody-based therapy epcoritamab has also recently been FDA

approved, but is not yet readily available in many countries due to

reimbursement regulations. Immunotherapy has revolutionized the

care of MCL patients relapsing after chemoimmunotherapy and

BTKi (7, 30, 31). Summarized in Tables 1, 2 are a selection of

ongoing and actively-recruiting clinical trials on the next generation

of CAR-T cell therapy in MCL (Table 1) as well as a table of ongoing

trials on different bispecific antibodies in MCL (Table 2). Resistance

mechanisms of BTKi have been attributed to mutations in the BTK

binding site as well as to various somatic mutations. However, for

novel drugs such as the new generation of BTKi, CAR-T cell therapy

and bispecific antibodies, specific resistance mechanisms are largely

underexplored. The most described cause is loss of the target

molecule, usually CD19, but other resistance mechanisms can

include exhaustion of the CAR-T cells. It now remains to be

determined which local factors in the TME and more general

factors of the individual’s immune response and immune state

can influence the response to treatment (Table 3).
The tumour microenvironment
causing resistance to therapy

Drug resistance has previously been attributed to cellular

processes within the TME. MCL cells are dependent on the TME

for increased proliferative capacity, cellular survival and immune

system evasion. As such, there is a rationale for targeting the TME

in combination with conventional and novel immunotherapeutic
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drugs to improve patient response and outcome (Figure 1). Recent

studies have shown that MCL cells invading the bone marrow

became resistant to rituximab as a result of losing CD20 expression,

while the tumour cells in the lymph node tissue maintained their

extensive CD20 expression (32). Here, the process of CD20

degradation was attributed to bone marrow stromal cell adhesion

(32). Combinatorial inhibition of focal adhesion kinase and

ibrutinib has been shown to overcome resistance to ibrutinib in

MCL cells (47) (Table 3).

It has previously been established that MCL cells are dependent

on the CD40-CD40L interaction between the tumour cells and T-

cells, and that this interaction plays an important role in promoting

MCL cell survival (Figure 1). MCL cells that express CD40 induce the

expression of the B-cell lymphoma (BCL) genes, a family of anti-

apoptotic proteins which inhibit mitochondrial apoptotic priming and

counteract pro-apoptotic proteins (33, 34) (Table 3), leading to

resistance to the BCL2 inhibitor venetoclax (35) (Figure 1).

However, treatment with the anti-CD20 antibody obinutuzumab

can overcome venetoclax resistance by counteracting NF-kB-
induced Bcl-XL expression (33, 35) (Figure 1). Interestingly,
Frontiers in Immunology 03
TABLE 2 Selected planned, ongoing and actively recruiting bispecific
antibody clinical trials in MCL on clinicaltrials.gov February 2024.

NCT/
EUCT ID

Targeted
disease

Clinical
Trial

Therapy

NCT06054776 MCL Phase II
Glofitamab

(anti-CD3/CD20)
with acalabrutinib

NCT04703686

Relapse/Refractory
Lymphomas after

CAR T-
cells Therapy

Phase II Glofitamab

NCT00014560

Refractory or
Relapsed Non-
Hodgkin’s
Lymphoma

Phase I
4G7XH22

(anti-CD19/CD30)

NCT05861050
Newly Diagnosed
High Risk Mantle
Cell Lymphoma

Phase I/II

Glofitamab with
obinutuzumab,
venetoclax,

and lenalidomide

2023-503206-
37-00

Relapse/Refractory
MCL post

BTKi therapy
Phase III

Glofitamab vs
rituximab +

bendamustine or
rituximab +
lenalidomide

NCT04763083
ROR1+

Malignancies
Phase I NVG-111 (ROR1/CD3)

NCT03625037
Refractory B-

Cell Lymphoma
Epcoritamab (anti-

CD20/CD3)

NCT06192888 MCL Phase I
Glofitamab

with lenalomide

NCT05833763
MCL with prior
BTKi treatment

Phase II
Glofitamab

and pirtobrutinib

NCT06084936
Refractory or
Relapsed MCL

Phase III Glofitamab

NCT03888105
B-cell Non-
Hodgkin

Lymphoma
Phase II Odronextamab
TABLE 1 Selected planned, ongoing actively recruiting CAR-T cell
clinical trials in MCL on clinicaltrials.gov February 2024.

NCT/
EUCT ID

Targeted disease
Clinical
Trial

Therapy

NCT04484012
Relapse &

Refractory MCL
Phase II

CD19 CAR-T
& acalabrutinib

NCT05934838 B-cell Lymphomas Phase I
CAR-T

and tazemetostat

NCT05020392 B-cell Lymphomas Phase III
Anti-CD19 CAR-
Engineered T

Cells with BTKi

NCT06026319
Relapsed/Refractory

Non-
Hodgkin Lymphomas

Phase I
CD79b-19 CAR

T Cells

NCT05495464 High Risk MCL Phase I

Acalabrutinib plus
rituximab
followed by

brexucabtagene
autoleucel

NCT04007029
Relapse &

Refractory Lymphomas
Phase I

CAR-20/19-
T Cells

NCT05444322
Relapse &

Refractory Lymphomas
Phase I

CAR-T cell
RD14-01

NCT05370430
Relapse & Refractory

Non-
Hodgkin Lymphomas

Phase I
BAFFR-Targeting
CAR-T Cells

NCT03676504
CD19+

Lymphoid Disease
Phase I/II

Third generation
CD19 CAR-T

2022-502405-
15-00

CAR-T-cell treatment
after an abbreviated

induction therapy with
rituximab and ibrutinib

Phase II anti-CD19 CAR-T

NCT06002659 B Cell Lymphoma Phase I/II anti-CD20(NAP)

NCT05588440
Relapsed or Refractory
B-Cell Malignancies

Phase I/II
ROR1 targeting

autologous CAR T
TABLE 3 Example of drug resistance mechanisms in mantle
cell lymphoma.

Therapy
Target

Molecule
Mechanism
of resistance

Reference

Rituximab Anti-CD20
CD20 degradation due to

cell adhesion
(32)

Venetoclax BCL2
CD40 expression promote
BCL expression inhibiting
pro-apoptotic proteins

(33–35)

CAR-
T Therapy

Anti-CD19

Loss of target marker or
insufficient CAR-T cell

expansion. Exhausted CAR-T
cells, surrounding

immunosuppressive TME

(7, 36)

BTKi
Bruton
tyrosine
kinase

Mutations in BTK binding
site as well as mutations in

CCND1, TRAF2-3,
MAP3K14, CARD11

and MYD88

(30, 31,
37–41)
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obinutuzumab treatment of MCL cells impaired p52 expression and

reduced the expression of NF-kB target genes in cells with high

expression of CD20 (33). Venetoclax also reduces the number of T

regulatory cells (Tregs), lowers PD-1 expression in T-cells and

increases natural killer (NK) cell function (Figure 1). Many MCL

cells overexpress the transcription factor SOX11 which promotes

expression of another co-stimulatory molecule, such as CD70 (48).

CD70 bind to CD27 on T-cells in non-Hodgins lymphoma, resulting

in T-cell exhaustion (49).

Different T-cell-engaging treatments such as CAR-T cells and

bispecific antibodies function by targeting the TME directly or

indirectly. In CAR-T cell treatment, T-cells are harvested from the

patient, modified, and returned to take part in targeting the

lymphoma cells and inducing anti-tumoral immune responses.

Anti-CD19 CAR-T cell therapy has been approved for treatment

of MCL patients that relapse after BTK treatment, who typically

have a poor prognosis (7) (Figure 1). However, CAR-T cell

treatment failures are frequent due to loss of target marker or

insufficient CAR T-cell expansion (Table 3). Different armed CAR-

T cells, the addition of co-stimulatory factors, production of CAR-T

cells from T-cells harvested earlier in the disease course and dual

binding sites are ways to improve the efficacy of CAR-T cells (36).

Another way of improving efficacy is to use combinatorial therapies.

Bispecific antibody therapy after CAR-T treatment is also currently

undergoing evaluation of efficacy when loss of target for the CAR-T

cells occurs and in abrogating T-cell exhaustion. The bispecific

antibodies (anti-CD20/CD3) bind T-cells to lymphoma cells,

facilitating T-cell engagement and activation of antibody-

dependent cellular cytotoxicity (ADCC) against the lymphoma
Frontiers in Immunology 04
cells (50) (Figure 1). However, resistance is also observed in

treatments with bispecific antibodies, particularly over time.
Macrophages in MCL therapy

Macrophages in MCL

Macrophages are a crucial component of the immune infiltrate

in MCL. These immune cells are often referred to as tumour-

associated macrophages (TAMs) when found within the TME.

TAMs are highly plastic and can exhibit distinct functional states,

with the two primary polarization states being M1-like (pro-

inflammatory and anti-tumoral) and M2-like (anti-inflammatory

and pro-tumoral). This division is likely an over-simplification but

still useful. CD32, CD64, CD68, CD80 and CD86 have all been

reported as surface markers for M1-like macrophages (51). M2-like

macrophages are most commonly assessed using CD163, a

scavenger receptor on the macrophage surface that can be

released into the surrounding tissue or bloodstream upon

activation (52). Another cell surface marker for identifying M2-

like macrophages that are induced as a result of inflammation is

CD206 (53). In addition, M1 and M2 cellular differentiation is highly

dependent on several TME conditions such as hypoxia and

hypoglycaemia. TAM utilize lipid metabolic pathways to sustain

energy needs which can promote or inhibit tumour pathogenesis

(54). Furthermore, other studies suggests that TAMs are subjected to

the Warburg effect by utilizing oxidative phosphorylation rather than

aerobic glycolysis for ATP production, which promotes the
A

B

D

E

F

C

FIGURE 1

Schematic representation of the impact of treatment regimens on the MCL tumour microenvironment (TME). (A) The current strategies targeting the
tumour microenvironment (TME), especially macrophages, include anti-CD24 and anti-CD47 monoclonal antibodies to enhance phagocytosis by
inhibiting the “don’t eat me’ signalling (42). (B) Furthermore, treatment with lenalidomide and venetoclax increase natural killer (NK) cell activity and
(C) reduce tumour-associated macrophages (TAMs) within the TME (35, 43–45). (D) CD40/CD40L interaction induces venetoclax and bendamustine
resistance by promoting release of anti-apoptotic signalling such as BCL family proteins (33–35). (E) CD20 monoclonal antibody therapy results in
the induction of phagocytosis, and more recently (F) bispecific antibodies promote the interaction between T-cells and tumour cells, causing T-cell
induced cytotoxicity (46). Image was created with biorender.com.
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differentiation of M2-like macrophages. This provides a rationale to

target the lipid metabolic pathway and/or mechanism of theWarburg

effect to promote M1-like phenotypic differentiation of TAM which

could promote response to conventional immunotherapies and

reduce resistance (55, 56).

Although absolute numbers of macrophages are low in MCL

tumour tissue, their presence was recently shown to be associated

with poorer prognosis (19). This is not surprising, since it is known

from the literature that macrophages correlate with poorer prognosis

in many lymphoma subtypes (46, 57–60). However, this knowledge

has only recently begun being utilized in predicting prognosis (19),

identifying soluble markers (18) and enhancing the efficacy of novel

immunotherapy treatments in the MCL setting (61).
Targeting macrophages in MCL

Macrophages play an important role in regulating the response to

classical chemotherapy (62). The underlying biological mechanisms

of CHOP response, which has been the backbone in MCL treatment,

are also dependant on alteration of the microenvironment. In mice

with diffuse large B-cell lymphoma (DLBCL) that were treated with

CHOP and R-CHOP (addition of rituximab to standard CHOP

therapy), the proportion of CD163+ macrophages were lower after

both treatments, indicating a repolarization of M2-like macrophages

toM1-like with these regimens (Figure 1) (63). It has however not yet

been investigated how much of this effect was due to the

glucocorticoid prednisolone, which itself has a modulatory effect on

macrophages. In a wound repair model, macrophages treated with

glucocorticoids upregulated CD163 and CD206 expression, thus

demonstrating polarization towards anti-inflammatory M2-like

macrophages which also showed a decreased migration ability (64).

Although glucocorticoids are widely used in oncology, the effects on

the TME are not yet fully understood and the elucidation of their

impact will require further investigation.

In MCL, M2-polarization of macrophages is common,

contributing to angiogenesis and inhibition of the immune

response (65). Co-culture of monocytes with MCL cells isolated

from newly diagnosed patient biopsies promotes M2-like

macrophage differentiation with increased expression of CD163,

which is associated with poor patient outcome and blastoid

morphology, independent of T-cell infiltration (19). Clinical trials

of NHL (including MCL patients treated with rituximab, intensive

chemotherapy and autologous stem cell transplantation) showed a

poorer outcome for patients exhibiting a high presence of M2-like

macrophages, and it was suggested that infiltration of these

macrophages could have an impact on the response to anti-CD20

therapy (19, 57, 60, 66). Furthermore, MCL cells secrete colony

stimulating factor 1(CSF1), which promotes the differentiation of

monocytes into M2-like CD163+ macrophages and thereby

stimulates MCL proliferation and survival (67). Depletion of

macrophages by blocking the CSF1/CSF1R axis in vivo has been

demonstrated to reduce differentiation and survival of M2-type

macrophages (68). Other drugs such as the BTKi ibrutinib also

impacts the TME by exerting an immunomodulatory effect through

regulation of tumour-infiltrating macrophages (69). In addition,
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ibrutinib downregulates PD-1 expression on T-cells, disrupts

communication between MCL cells and macrophages, and

impairs macrophage phagocytic function (70) (Figure 1).

We have previously confirmed the prognostic value of CD163

by measuring soluble CD163 (sCD163) in the serum of patients

with MCL. High sCD163 was associated with shorter progression-

free survival and poor outcome in patients treated with rituximab,

ibrutinib and lenalidomide in a phase 2 clinical trial (18). Although

sCD163 levels were higher in patients with p53-deficient tumours,

the prognostic value of sCD163 was independent of TP53

mutations and other clinical factors such as MIPI, Ki-67 or

blastoid morphology, while low sCD163 levels could identify

patients with a favourable prognosis (18). Various clinical

approaches have been investigated to target M2-like macrophages

and disrupt MCL proliferative advantage. One such approach is

lenalidomide, which is an immunomodulatory drug targeting

cereblon (CRBN), a highly conserved gene that promotes

ubiquitination. Lenalidomide is currently approved for treatment

of multiple myeloma (MM) and MCL (71), and has been found to

affect many cells of the TME, including macrophages. Accordingly,

lenalidomide reduced the abundance of TAMs (43), enhanced

macrophage phagocytic activity and increased macrophage

communication with CD8+ T-cells (44) (Figure 1). In addition,

treatment with lenalidomide has a clinical benefit in relapsed MCL

patients, defined by increased NK cell activity (45). Just recently, the

combination of lenalidomide, venetoclax and rituximab was shown

to be feasible and efficacious in relapsed MCL patients, using a

minimal residual disease (MRD)-driven treatment design (72).

To be able to study the MCL lymph node signalling,

heterogeneity and TME, 3D models of MCL-spheroids have been

created (70). These spheroids caused monocytes to differentiate into

M2-like macrophages, which were interestingly reprogrammed into a

more immunogenic phenotype upon blockade of the chemokine

receptor CCR1 (53, 70). Prior studies have shown that co-culturing

MCL cells with TAMs assisted the tumour cells to avoid phagocytosis.

However, dual inhibition of CD24 and CD47, two molecules

enhancing the “don’t eat me” signal, in combination with

rituximab induced increased macrophage activity and promoted

phagocytosis in MCL cells (42) (Figure 1). Interestingly, other

“don’t eat me” signalling pathways have been identified and

include the PD-1/PD-L1, MHC-I/LILLRB1/2 and CD24/SIGLEC-

10 axes. Targeting these mechanisms have been shown to induce

activation of macrophages and increase phagocytosis (73–75). In

addition, monoclonal antibodies targeting CD47 on the tumour cells

have been demonstrated to activate macrophages and induce

phagocytosis of the tumour cells. Furthermore, ongoing clinical

trials in MCL are exploring the targeting of “don’t eat me”

signalling by utilizing anti-CD24 therapy. CD24-expressing

cells promotes immune response escape by reprogramming

macrophages not to target them for phagocytosis (NCT05888701).

Clinical studies have demonstrated the importance of blocking the

“don’t eat me” signalling pathways in various haematological

malignancies including MCL by specifically targeting the CD47/

SIRPa axis (76). Thus, utilizing CD47-targeting bispecific

antibodies to enhance the response may be a promising therapeutic

intervention to increase treatment efficiency. Preclinical evaluation of
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CD47/PD-1, CD47/CD33 CD47/PD-L1, CD47/CD20, CD47/CD19

and CD47/CD20 are currently ongoing (77–82).
CAR-macrophage therapy

Despite the relatively high success rate of CAR T-cell therapies in

haematological malignancies, numerous challenges remain, including

a lack of specific targets. Furthermore, CAR T-cell trafficking and

infiltration to tumour sites is difficult due to the abnormal vasculature

and dysregulated adhesion matrices (83). Another limitation in CAR

T-cell therapies is that the TME includes Tregs, TAMs, tumour-

associated fibroblasts and myeloid-derived suppressor cells that

create a hostile environment by secreting immunosuppressive

cytokines that impair CAR T-cell function. Antigen escape and lack

of CAR T-cell expansion and persistence during treatment can also

limit the effectiveness of the therapy (84). Direct TAM-targeted

therapies have been reported but are highly dependent on the

presence of either activating or suppressive macrophage markers,

and can cause adverse effects. Clinical data of these therapies is

currently lacking for MCL.

Recently, the development of CAR-macrophages (CAR-M) has

become increasingly interesting as a potential solution to the

challenges observed with TAM-targeting and CAR T-cell therapies.

As of now, CAR-M is not yet in clinical trials for MCL, but since

macrophages are recruited to the TME as a result of the production of

cancer-associated cytokines and hypoxic conditions, it has been

suggested that CAR-M could be utilized to overcome the problem

of poor capacity for trafficking and infiltration (85). Early precursors

of CAR-M were the simultaneous blocking of CD47/SIRPa which

have been shown to promote phagocytotic activity with high
Frontiers in Immunology 06
specificity against the tumour antigen (86). In fact, next generation

CAR-M therapies targeting CD19 promoted phagocytosis in an

antigen-specific manner and converted M2-like macrophages to

M1-like. Interestingly, these CAR-M also secreted proinflammatory

cytokines and chemokines, upregulated antigen presentation,

promoted activation of cytotoxic T-cells and overcame the

immunosuppressive microenvironment in vivo (87, 88). Additional

preclinical studies of CAR-M include the target antigens CD5, CD22,

HER2, CCR7 and ALK (89, 90). Another potential advantage of this

therapy is that, even when in the immunosuppressive M2-like state,

macrophages still maintain the function of phagocytosis. It has also

been suggested that macrophages are more responsive to alterations

in the TME, making them easier to manipulate and induce than CAR

T-cells (91) (Figure 2). However, several challenges remain on this

front, including finding an appropriate source of macrophages for

modification, since immortalized cells cannot be applicable for

clinical utility while blood and bone marrow samples cannot be

modified efficiently (Figure 2). Interestingly, induced pluripotent

stem cells (iPSCs)-derived macrophages have been demonstrated to

recapitulate similar anti-tumour function described by Klichinsky

et al. (87), in both solid and haematological malignancies (92).

Currently, there are two ongoing phase I clinical trials evaluating

the potential of CAR-M in HER2-overexpressing solid tumours and

advanced gastric cancer with peritoneal metastases (NCT04660929 &

NCT06224738), but no clinical trials have been performed in MCL to

date. To conclude, the strengths of CAR-M include increased tumour

infiltration, reduction of TAMs and alteration of TAM phenotypes

within the TME. CAR-M can also stimulate increased phagocytosis

and promote antigen presentation, resulting in improved cytotoxic T-

cell-mediated anti-tumour effects with limited off-target effects. As

such, the potential of CAR-M should be further explored.
FIGURE 2

Schematic representation of the modes of action of chimeric antigen receptor–macrophages (CAR-M). Instead of using a T-cell as carrier for the
CAR construct, a macrophage is used. Binding of tumour-associated antigen by CAR-M induces phagocytosis, accompanied by the release of
inflammatory cytokines that activate additional immune responses within the tumour microenvironment (TME). Examples of downstream effects
include T-cell-mediated anti-tumour immune responses. Image was created with biorender.com.
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Discussion

Herein, we comprehensively explore the intricate relationship

between the TME and its profound impact on treatment response,

resistance mechanisms, and ultimately patient outcomes, with a

particular focus on macrophages. We highlight the significance of

macrophages in treatment dynamics, and their dual role in either

promoting or inhibiting therapeutic responses. TAMs are highly

plastic and have the ability to adopt distinct functional states,

notably M1-like with pro-inflammatory and anti-tumoral

characteristics, or M2-like with anti-inflammatory and pro-

tumoral features. This polarization dynamic could be essential as

a determinant in treatment outcomes.

We have summarised the current treatment strategies and

stipulated the many challenges associated with choice of drug. The

next objective in immunotherapy is to investigate if, and how, a

patient’s individual immune state would impact the degree of side

effects caused by different immunotherapies. We are constantly

learning more about effective side effect management, but patients

are often still hospitalized for safety reasons. For example, high-dose

steroids are required for prophylaxis, and patients can suffer from

severe complications such as cytokine release syndrome and immune

effector cell-associated neurotoxicity syndrome. While the exact

mechanisms of these immune-mediated toxicities are not clearly

understood, emerging pre-clinical and clinical studies have revealed

the pivotal role of myeloid cells, particularly macrophages, as

contributors to the efficacy of treatments but also as crucial

mediators of toxicity (93).

Immunotherapy takes advantage of the TME to defeat the

malignant cells, as opposed to focusing on the disruption of such

interactions. CAR-T cell therapies and bispecific antibodies have

already paved the way in relapsed/refractory disease in various

haematological malignancies and the next step is testing them as

first-line treatment combinations for high-risk patients. M2-like

macrophages are involved in CAR-T cell therapy response both in

vivo and in vitro, leading to CAR-T cell therapy failure and disease

progression in DLBCL (94), likely having similar activities in MCL.

Targeting macrophages with bispecific antibodies is a therapeutic

possibility, but has currently not been evaluated in a clinical setting

(95). Furthermore, reprogramming of pro-tumoral macrophages to

anti-tumoral macrophages, as well as utilization of CAR-M are

potential novel approaches in MCL therapy (95). The balance

between achieving efficacy and the potential toxicity of macrophage-

targeted therapies will however be challenging, since they exhibit a

high degree of diversity and plasticity and can adopt different

functional states in response to the TME. Modulating macrophage

activity may trigger inflammatory responses, leading to cytokine

release syndrome or other immune-related adverse events, and as

such balancing therapeutic efficacy with the risk of systemic

inflammation is crucial. Similarly, macrophages can play both pro-

tumor and anti-tumor roles, which in combination with a lack of

target specificity can lead to unintended effects on other tissues or

immune cells.
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In summary, the TME plays a large role in determining the

response to both conventional but also next generation therapies

for MCL, where a high presence of CD163+ macrophages have a

negative prognostic impact. It is evident that by combining the

therapies now in clinical utility with strategies directly targeting the

TME, patient outcome could be improved, but additional clinical

evaluation is required.
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