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In vitro immunity: an overview
of immunocompetent
organ-on-chip models
Andrew I. Morrison 1,2 , Mirthe J. Sjoerds 1 ,
Leander A. Vonk 1 , Susan Gibbs 1,2,3

and Jasper J. Koning 1,2*

1Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam,
Amsterdam, Netherlands, 2Amsterdam Institute for Infection and Immunity, Inflammatory Diseases,
Amsterdam, Netherlands, 3Department of Oral Cell Biology, Academic Centre for Dentistry
Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
Impressive advances have been made to replicate human physiology in vitro over

the last few years due to the growth of the organ-on-chip (OoC) field in both

industrial and academic settings. OoCs are a type of microphysiological system

(MPS) that imitates functional and dynamic aspects of native human organ biology

on a microfluidic device. Organoids and organotypic models, ranging in their

complexity from simple single-cell to complex multi-cell type constructs, are

being incorporated into OoC microfluidic devices to better mimic human

physiology. OoC technology has now progressed to the stage at which it has

received official recognition by the Food and Drug Administration (FDA) for use as

an alternative to standard procedures in drug development, such as animal studies

and traditional in vitro assays. However, an area that is still lagging behind is the

incorporation of the immune system, which is a critical element required to

investigate human health and disease. In this review, we summarise the progress

made to integrate human immunology into various OoC systems, specifically

focusing on models related to organ barriers and lymphoid organs. These models

utilise microfluidic devices that are either commercially available or custom-

made. This review explores the difference between the use of innate and adaptive

immune cells and their role for modelling organ-specific diseases in OoCs.

Immunocompetent multi-OoC models are also highlighted and the extent to

which they recapitulate systemic physiology is discussed. Together, the aim of this

review is to describe the current state of immune-OoCs, the limitations and the

future perspectives needed to improve the field.
KEYWORDS

human immunology, organ-on-chip (OoC), organotypic models, microfluidics, immune
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Abbreviations: 3D, Three-dimensional; BBB, Blood-brain barrier; DC, Dendritic cell; EC, Endothelial cell;
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cell; LPS, Lipopolysaccharide; MPS, Microphysiological systems; OoC, Organ-on-chip; NK, Natural Killer;

PBMC, Peripheral blood mononuclear cells; PDMS, Polydimethylsiloxane; RhS, Reconstructed human skin;

TCR, T cell receptor; TNFa, Tumour necrosis factor alpha.
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1 Introduction

Disease is a major burden on society; economically, socially,

physically and psychologically. Worldwide, over 7.6 million people

die annually from transferable diseases, like influenza and COVID-

19, and over 40 million people from non-transferable diseases, such

as cancer and cardiovascular diseases (1). Over the past decades,

progress at healthcare organisations and pharmaceutical industries

has advanced to such a level that many diseases can be prevented,

controlled or even cured. Significant improvements have been

made, with key driving factors including vaccination programs,

innovative research on disease pathophysiology, discovery of new

drug targets and advancements in toxicity screenings (2, 3).

Given the complexity of human physiology and ethical

considerations, many human diseases have been investigated

using animal models or in vitro cultures of human cells (4).

Animal studies have traditionally been the gold standard in the

drug development process preceding clinical trials. While they have

been recognised as a necessity for evaluating drug metabolism,

toxicity and efficacy, they do have several drawbacks. These include

poor translatability to humans, low reproducibility rates, high costs

and a time-consuming nature (5). Together, this results in around

90% of drug trials that are pre-screened in animals failing in

humans due to differences with drug efficacy and toxicity effects

(6). In addition to in vivo models, conventional in vitro assays have

been widely used for predictive drug testing. These make use of

human cells derived from either fresh human tissues/organs, or

immortalised cell lines cultured under static conditions (7).

However, such cultures generally lack the intricate three-

dimensional (3D) multicellular organisation of a human organ,

including vascularisation, which is complex to recreate in a static

model. As such, this has led to the birth of MPS; a more realistic

human physiological microenvironment represented in an in

vitro setting.
1.1 Microphysiological systems and
organ-on-chip platforms

MPS is a hypernym for in vitro models capable of replicating

features of human physiology on a micro-scale that is biologically

suitable for their intended function (8). OoCs are a type of MPS

platform in a microfluidic device that can control and allow the

imitation of native tissue/organ functions such as dynamic,

organisational and physiological responses. An OoC microfluidic

device can act as a small scale bioreactor to maintain fresh human

biopsies or reconstructed organotypic tissues/organoids for

extended periods of time (9). These microfluidic devices can

enable additional mechanical parameters like flow rate, stretch

and pressure, which are traditionally lacking in static two-

dimensional (2D) and 3D cultures (10). Such parameters allow

constant supply of oxygen and nutrients to the organ models, as

well as removal of toxic metabolites, while also facilitating cell

migration and multi-organ crosstalk. The design of the microfluidic

device varies based on the requirements for culturing single or

multiple organ types within the device and the biological questions
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that need addressing (11, 12). Examples of such microfluidic

OoC platforms can be seen in Figure 1. Typically, microfluidic

devices are made from cell culture-compatible materials, namely

polydimethylsiloxane (PDMS), and feature micro-channels for

media flow and culture compartments that can be filled with cells,

ECM-like gels, organotypic models or biopsies (13). OoCs have

been made in academic bioengineering laboratories and are also

commercially available from industrial companies. Both sectors

have generated promising results in terms of modelling true

human representative organ functions-on-chip. This includes

toxicity screens performed during drug development and disease

mechanisms that can be further understood to a deeper level than

what is currently possible in animal models (14). The more accurate

portrayal of human physiology in vitro has led to official

acknowledgement by the United States (US) FDA, who has

authorised the “use of certain alternatives to animal testing” that

includes OoC models to investigate the safety and effectiveness of a

drug (15, 16).
1.2 The necessity to incorporate the
immune system

Although encouraging advancements have been made in OoC

innovation, the inclusion of the immune system is still significantly

lacking and is crucial for these models to reflect more optimally

human physiology and disease (17–20). The human immune

system has a major underlying role in the pathophysiology of

almost every disease, whether that be cancer (21), metabolic

disease (22), infection (23) or autoimmunity (24). The process by

which the human body reacts to external or internal threat is called

inflammation, and this can be an acute reaction, where unwanted

pathogens, wound debris or toxins are swiftly removed, or chronic

where the response persists for weeks or even years (25).

Inflammation in itself is an umbrella term for a cascade of events

that result in the recruitment and activation of immune cells via

release of pro- or anti-inflammatory mediators, such as lipids,

cytokines and enzymes (26). The landscape of these inflammatory

mediators varies throughout different organs, resulting in organ-

specific immune responses.

Immune cells develop within primary lymphoid organs and can

then migrate through complicated blood and lymphatic vascular

networks to secondary lymphoid organs and tissues. Lymphoid

organs systemically co-operate with innate and adaptive immune

cells, who can be migratory or tissue-resident (27). Innate immunity

is the first line of defence and includes cells such as dendritic cells

(DC), macrophages, monocytes, neutrophils and mast cells from

myeloid origin, and nature killer (NK) cells. These innate cells sense

danger via pattern recognition receptors (PRRs) (28) and offer a

quick immune response upon pathogenic challenge, such as

phagocytosis and secretion of inflammatory cytokines. In

contrast, T and B cells are the main subsets in adaptive

immunity, which exhibit memory capabilities and are specific in

their immune response. T cells become activated after the T cell

receptor (TCR) recognises its cognate antigen in the lymph nodes

via presentation by DCs using human leukocyte antigen class II
frontiersin.org
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(HLA) molecules. These molecules are composed of different

subtypes, termed HLA-DR, -DP, -DQ. T cell activation also

depends on co-stimulatory molecules, such as CD27 from T cells

bound to CD80/CD86 on antigen presenting cells (APCs). Once T

cells are activated, they can either stimulate other lymphocytes to

respond to potential threat or directly eliminate the target through

the release of cytotoxic proteins, like granzymes. B cells also become

activated after stimulation from T-helper cells or via antigen

recognition directly, and can produce antibodies to neutralise the

pathogen and/or facilitate opsonisation; a specific type of

directed phagocytosis.

Until now, innate immunity has been predominantly simulated

in OoC platforms. Unlike adaptive immune cells, innate immune

cells do not rely on HLA molecules for their activation. Complexity

greatly increases when adaptive immune cells are to be used due to

their associated HLA-molecules, which may result in immune cell

activation when other HLA-mismatched cell types are also present

in the platform. This undesirable effect, mirrors the phenomenon

known as graft versus host disease (GVHD) which leads to organ

rejection by the adaptive immune system (29). In order to avoid

cytotoxicity initiated by HLA-mismatch in OoC when investigating

adaptive immune responses, all cell types should be derived from

the same individual or at least be HLA-matched, introducing a

major limitation of cell sourcing for current models. While efforts

have been made by researchers to integrate immune cells into OoCs

(30), development of human immunocompetent-organ models is

needed to help us further understand how immune cells interact
Frontiers in Immunology 03
with organs during health and disease. This is particularly

important for understanding how drugs can influence these

interactions (e.g. localised immunotherapies for treating

autoimmune disorders or cancer).

Therefore, the aim of this review is to provide a comprehensive

overview describing the extent in which the human immune system,

specifically innate and adaptive immune cells, has been

incorporated into both single- (Table 1) and multi-OoC (Table 2)

models, and to discuss their current limitations and future

perspectives. The focus is mainly on the body barriers (lung, skin,

intestine and liver) and lymphoid organs.
2 Organ barriers

Tissue barriers (e.g. lung, skin and intestine) play a vital role in

maintaining systemic homeostasis by protecting internal organs

from direct environmental assault, such as pathogens. In this way,

the tissue barriers preserve organ functions and provide a robust

defence against immunological challenges. Additionally, although

the human liver is not directly connected and exposed to the

external environment, it is an immune-rich tissue that acts as a

checkpoint for the clearance of foreign intestine-derived antigens

before they can enter the systemic blood stream (105). Therefore,

characteristics of single organ barriers-on-chip with an immune

component, including the liver, are summarised in Table 1 and are

further described in the following text below.
B

C

A

FIGURE 1

Workflow for generating an immunocompetent OoC. The human organ of interest (1) is modelled by using cells derived from either primary tissues
or organs, cell lines or iPSCs (2) to make a 3D organotypic model that can be incorporated or built directly into an OoC microfluidic device (3).
Dependent on organ anatomy and chip layout, single-OoCs are possible with various commercial chips companies, e.g. (A) Mimetas have a high-
throughput 3-lane channel OrganoPlate® with 64-chips per plate, and (B) Emulate have a design that features a single chip with two channels
separated by a porous membrane. (C) multi-OoCs are achievable through connection of multiple single-OoCs or within one microfluidic device, e.g.
the setup of the TissUse HUMIMIC Chip2 where two (shown) or up to four compartments can house organotypic models or media reservoirs.
Compartments can be connected by a channel, forming a continuous circuit with up to two separate circuits per chip. Chip images are courtesy of
MIMETAS US Inc., Emulate Inc., and TissUse GmbH. Created with BioRender.com.
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TABLE 1 Overview of immunocompetent single-organ-on-chip models.

Organ Simulated
feature(s)

Cell types Microfluidic device
and readouts

Lung Inflammation
(31–34)

IC: (P) PBMCs (31, 32, 35), macrophages (36, 37), neutrophils (33, 38, 39), T cells
(40, 41)

SC: (P) alveolar epithelial cells (32, 34–38, 40–42), microvascular ECs (31, 34, 36,
37, 39–42), lung fibroblasts (33), HUVECs (31, 33), airway epithelial cells (33, 39)

MD: commercial OoC (Emulate) (32, 34,
36–43) and in-house (31, 33, 35),
unidirectional open systems

R: IC migration and adhesion, cytokine
secretion, gene and protein expression,
barrier permeability, metabolomics
and proteomics

Cell crosstalk
(37, 38, 40–42)

SARS-CoV-2
(35–37, 39, 43)

Skin Barrier
function (44)

IC: (P) PBMCs (45), macrophages (46), T cells (47), neutrophils (47)

(CL) U937-monocytes (44), HL-60 cells (48)

SC: (P) keratinocytes (44, 49), fibroblasts (46, 48, 49), HUVECs (46), ECs (45)
(CL) HaCaT cells (46–48)

MD: in-house (44–49), dynamic open/
closed systems

R: barrier function (microscopy, electrical
resistance and fluorescent tracers),
inflammation (cytokine secretion), viability,
cell-cell interactions, IC phenotype
and migration

Wound
healing (46)

Inflammation
(47–49)

Adipose (45)

Intestine Host immune-
microbiome
interactions
(50–53)

IC: (P) PBMCs (52), monocyte/macrophages (54, 55), moDCs (56), neutrophils (57)

(CL) THP-1 cells (57–59), MUTZ-3-DC precursors (58), U937 cells

SC: (P) HUVECs (54, 59), microvascular ECs (41, 52), organoids/iPSC (43, 55, 56,
59, 60)

(CL) epithelial cells (Caco-2), HT-29-MTX-12 cells (58),

MD: in-house (53, 54, 56, 59) and
commercial OoC (Emulate (43, 50, 51),
ChipShop (52), and Mimetas (55, 57, 58,
60)), unidirectional/bidirectional/dynamic
open/closed systems

R: barrier function (permeability), cell
viability, bacterial activity, gene and protein
expression, cytokine
secretion, transcriptomics

Barrier
function (57)

IC
migration (56)

Inflammation
(41, 54, 55,
58–60)

Liver Inflammation
(61–66)

IC: (P) PBMC-isolated macrophages (61), Kupffer cells
SC: (P) Hepatocytes, HUVECs (61)

(CL) stellate cells LX-2 (61, 63), HepaRG (66)

MD: in-house (64), commercial OoC
(CNbio (65, 66), Emulate (63), Mimetas
(62), ChipShop (61)), unidirectional/
bidirectional/dynamic open/closed systems
R: IC migration, cell-cell interactions, gene
and protein expression, cytokine secretion,
metabolomics, cell viability

IC
infiltration (61)

Bone Marrow Haematopoiesis
and niche
formation
(67–69)

IC: (P) HSPCs, BMNCs (70), CD34+ progenitors (70, 71)
(CL) SUP-B15 (72)

SC: (P) BMSCs, MSCs, HUVECs (71), osteoblasts (71)

MD: in-house (67, 68, 71, 72) and
commercial (TissUse (69) and Emulate
(70)) OoC, dynamic/unidirectional closed/
open systems

R: cell survival and phenotype, cell-cell/
matrix interactions, gene and protein
expression, cytokine secretion,
oxygen consumption

Bone marrow
and cancer cell
interactions
(71, 72)

Shwachman–
Diamond
syndrome (70)

Lymph Node IC interaction
and trafficking
(73–75)

IC: (P) PBMCs (73, 76–78), DCs (75), moDCs (77), T cells (75),

(CL) MUTZ-3 cells (73), THP-1 cells (79, 80), Jurkat cells (74, 79)

SC: (CL) fibroblasts (75)

MD: in-house (73–76, 79, 80) and
commercial (Emulate (78), TissUse (77))
OoC, unidirectional/dynamic open/closed
systems

R: DC maturation and migration, T cell
activation, cell adhesion, antigen-specific
antibody secretion, cytokine production
and permeability

Cellular
organisation
(78, 79)

Antigen-
antibody

(Continued)
F
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2.1 Lung

The first OoC model to be established, which represented a

more complex human micro-physiology, compared to what could

be achieved in static models, was a model of the lung (10). The

airways are prone to infection and inflammation and therefore have

numerous mechanisms for protection such as; mucus surfactant for

trapping foreign particles, epithelial cell barriers and resident

immune cell populations, where the most prevalent are the

alveolar macrophages (106).

The lung-on-chip mirrors human physiology by replicating

essential tissue characteristics, including dynamic airway

movements, surfactant release, the alveolar-capillary interface,

airway inflammation and incorporation of blood vessels (42).

Such chip models contain an air-liquid interface (ALI) and are

generally constructed in two-channel microfluidic devices. These

channels can house primary lung alveolar epithelial cells and

pulmonary microvascular endothelial cells (ECs) on either side to

simulate an epithelial barrier, separated by a porous membrane. A

standard configuration of a lung-on-chip is illustrated in Figure 1,

which shows a design associated with the Emulate lung-on-

chip system.

Incorporation of immune cells into existing lung-on-chips has

been used mainly for disease models, namely that of the lung’s

response to SARS-CoV-2 from the COVID-19 global pandemic, but

also inflammatory diseases like asthma (38). The most common

approach to introduce immunity involves the use of peripheral

blood mononuclear cells (PBMCs) obtained from buffy coats, which

consist predominantly of T cells and different proportions of B cells,

NK cells, monocytes and DCs. PBMCs can be administered into

the vascular endothelial lined channels of the chip, simulating the

circulation of immune cells from blood. In the context of a lung-on-
Frontiers in Immunology 05
chip exposure to SARS-CoV-2, PBMC-derived macrophages were

found to contribute towards a SARS-CoV-2 induced interferon b
(IFNb) inflammatory response. The use of an inhibitor targeting the

type 1 IFN intracellular pathway demonstrated the capability to

alleviate the inflammation-on-chip, bringing the IFNb levels down

to those observed in an uninfected chip (36). Additionally,

macrophages were recorded to have the ability to phagocytose

SARS-CoV-2 damaged ECs (35). Furthermore, a severe immune

overreaction, known as a cytokine storm, was modelled when

SARS-CoV-2 infected patient samples were tested on a lung-on-

chip, where the high cytokine levels were suppressed after

monoclonal antibody treatment (37). In addition, clinically

relevant SARS-CoV-2 treatments demonstrated drug efficacy by

reducing viral load and inflammation on a lung-on-chip when

PBMCs were present, indicating a benefit for the use of immune

cells (43).

While most disease-related inflammatory lung-on-chip models

focus on SARS-CoV-2, other viral infections have also been studied.

PBMCs in a lung-on-chip model of rare acute respiratory distress

syndrome (ARDS) displayed extravasation from one chip channel

to another that was dependent on the presence of an endothelial

barrier, ECM density/stiffness, and the flow profile (31).

Bidirectional flow delayed the extravasation of immune cells

compared to unidirectional flow, highlighting the importance of

organ-specific dynamic flow conditions. Another study focusing on

influenza virus-induced endothelial inflammation found that the

number of PBMCs adhering to the lung-on-chip’s endothelium was

100 times higher compared to uninfected chips (32), demonstrating

their capability to react to pathogenic challenges.

In addition to PBMCs, single immune cell populations have also

been brought into lung-on-chips. For instance, neutrophils, a major

component of the lung’s innate immune system (42), have
TABLE 1 Continued

Organ Simulated
feature(s)

Cell types Microfluidic device
and readouts

responses
(76, 77)

Cancer
metastasis (80)

Spleen Blood filtration
(81, 82)

IC: (CL) THP-1 cells (83)
Other: RBCs

MD: in-house (81–83)
R: cell viability, morphology, metabolomics,
mechanical parameters, microscopy

Sickle-cell
disease (83)

Vasculature Blood and
lymph vessel-IC
interaction
(84, 85)

IC: (P) PBMCs (86), T cells (84, 85, 87–89), neutrophils (90–92), moDCs (93),
(CL) THP-1 cells (87)

SC: (P) HUVECs (84, 87, 89, 90),
(CL) HMEC-1 ECs (85)

Cancer cells: (CL) melanoma A375 cells (85), breast cancer cells (87)

MD: in-house (86–89, 91–93) and
commercial [Mimetas (84, 85, 90)] OoC,
dynamic/bidirectional open systems

R: DC maturation and migration, T cell
activation, Cell adhesion, antigen-specific
antibody secretion, cytokine production
and permeability

IC migration
and infiltration
(88–90, 93)

Cancer
metastasis (87,
91, 92, 94–97)
P, primary; CL, cell line; IC, immune cell; SC, stromal cells; MD, microfluidic device; R, readout.
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displayed migratory chemotactic properties across the EC barrier to

epithelial cells upon Influenza A exposure in lung-on-chips (39), as

well as in fibrotic lung-chips (33). Next to this, T cells are the

predominant adaptive immune cell present in the airways and

consist of mainly tissue resident memory T cells. When applied

to lung-on-chips in a pool of PBMCs, activated T cells also had a

migratory capacity towards epithelial cells upon inflammation using

different viruses (39). Since T cells have a prominent role in

recognising infected cells or cancer cells, effort has been made to

increase their killing capability via multiple mechanisms, including

the generation of bi-specific antibodies (40). The safety efficacy of a

bi-specific antibody coupling CD3+ T cells to tumour antigens has

been evaluated using an alveolus-on-chip, highlighting the practical

use of such a model in the toxicology field (41). T cells also have a
Frontiers in Immunology 06
pathophysiological role in asthma, and while T cells have not yet

been used in asthma-on-chip, interleukin (IL)-13 was used to

represent a T-helper cell type 2 suited microenvironment in a

microfluidic device that replicated clinical data in terms of

mucociliary clearance and increased mucus secretion (34).

In summary, immunocompetent lung-on-chips have rapidly

evolved, heightened by the COVID-19 pandemic, and have started

to characterise the role of immune cells in viral and bacterial

infections and their effect on epithelial and ECs. There is still a

need for further representation of the innate and adaptive immune

system in these chips, particularly for more inflammatory diseases

such as respiratory allergies to elucidate the role of allergen-related

immune cel ls i .e . , mast cel ls , and for understanding

drug mechanisms.
2.2 Skin

The skin is another protective barrier against external

pathogens, chemicals and physical stimuli. It consists of two main

layers; the epidermis and the dermis. The epidermis is composed of

highly specialised keratinocytes, melanocytes and immune cells,

such as Langerhans cells (LCs). The dermis is a fibroblast-populated

ECM compartment containing the vasculature and immune cells

such as dermal DCs, T cells and macrophages (107). These skin

immune cells exist in either resident or migratory populations,

where upon tissue damage the APCs (LCs and DCs) become

activated and migrate towards the skin-draining lymph nodes

through the lymphatic vasculature.

A major characteristic of in vitro human organotypic skin

models is their exposure to the air from the epidermis side,

known as the ALI, which promotes spontaneous epidermal

differentiation and stratification. Nutrients are supplied via

culture medium in contact with the basal layer of the epidermis

in reconstructed human epidermal (RhE) models or via the dermis

side in full-thickness reconstructed human skin (RhS) models. RhS

are typically bi-layered structures with keratinocytes seeded on top

of a fibroblast-populated collagen-based 3D matrix (108). This

design offers several advantages over ex vivo skin biopsies, e.g.

prolonged culture duration with defined cell types present and can

be readily used for safety/risk assessment, wound healing, drug

delivery and allergen induced inflammation/disease. However,

immunocompetent skin-on-chip models are still in their infancy

and relatively simple in terms of their cellular setup.

One of the first reported immunocompetent skin-on-chip

models was developed using epidermal keratinocytes, cultured

together with the U937 monocyte-like cell line under dynamic

flow. The model showed improved keratinocyte tight junction

formation and general long term cell survival (44). Such

immunocompetent skin-on-chips have evolved further by the

addition of dermal fibroblasts with PBMC-derived T cells (47) or

human umbilical vein endothelial cells (HUVECs) with

macrophages (46) to simulate a vascular channel. These immune

cell additions facilitate the study of tissue infiltration, cytokine

production and dynamic cell-cell interactions that more closely

resemble normal native skin processes. In addition, vascularised
TABLE 2 Overview of all immunocompetent multi-organ-on-
chip models.

Organ Simulated
feature(s)

Cell types Microfluidic
device
and readouts

Gut/
Skin (98)

Gut
inflammation
and lipid
uptake on skin

IC: (P) macrophages
SC: (P) dermal
fibroblasts,
keratinocytes
(CL) Caco-2 cells

MD: in-house
R: cell viability,
metabolite
production, cytokine/
chemokine secretion,
permeability
and
immunofluorescence

Liver/
Gut
(99, 100)

Inflammation
mediated
modulation of
drug
disposition.

IC: (P) Kupffer cells,
DCs, T cells (100)
SC: (P) hepatocytes
(CL) Caco-2 cells and
HT29-MTX (99)

MD: in-house
R: cytokine/
chemokine secretion
and gene expression

Skin/
Gingiva
(101)

Nickel
induced
inflammation

IC: (CL) LCs
SC: (P)
keratinocytes,
fibroblasts

MD: commercial
HUMIMIC multi-
OoC (TissUse),
dynamic system

Lung/
BBB
(102)

Lung cancer
metastasis to
the brain

IC: (CL) THP-1
monocytes
SC: (CL) lung cancer
cells, fibroblast, ECs,
epithelial cells,
astrocytes, ECs

MD: in-house
R: barrier integrity
and permeability,
immunofluorescence
and cytokine/
chemokine secretion
and gene expression

Lung/
Liver/
Heart
(103)

Drug
toxicity
screening

IC: (P) Kupffer cells
SC: (P) hepatic stellate
cells, hepatocytes,
iPSC-derived
cardiomyocytes,
cardiac fibroblasts,
ECs, stromal
mesenchymal cells,
bronchial
epithelial cells

MD: in-house
R: barrier function
(microscopy,
electrical resistance
and fluorescent
tracers),
inflammation
(cytokine secretion),
viability,
metabolite secretion

Gut/
Liver/
Kidney/
Bone
Marrow
(104)

First pass
metabolism,
PK
and toxicity.

IC: (P) CD34+
progenitor cells

MD: in-house
R: viability and cell
tracking
by
immunofluorescence
P, primary; CL, cell line; IC, immune cell; SC, stromal cell; MD, microfluidic device;
R, readout.
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skin-on-chip models have demonstrated neutrophil migration from

endothelium to dermis upon ultraviolet (UV) radiation exposure

(48), further show-casing the ability to recapitulate dermatology-

based phenomenon. Increased complexity of skin-on-chip has been

described to include neopapillae into the dermis hydrogel, which

are precursors of the hair follicle (109), but this has yet to include

immune cells.

The pathophysiology of numerous skin related-diseases show

immune cell involvement. For example, the addition of an

adipocyte layer to RhS model has displayed an essential role in

stabilising the metabolic properties of the skin (110), and as such,

obesity has been mimicked with immune cell incorporation into a

white adipose tissue (WAT)-on-chip (45). Adipocytes and ECs were

isolated from skin biopsies and co-cultured in a chip with the same

patient derived PBMCs, namely CD14+ monocytes and T cells. The

addition of these immune cells to the model could recapitulate

endocrine and immunomodulatory WAT functions. For more

inflammatory and allergy-associated skin diseases-on-chip,

incorporation of immune cells has yet to be achieved. However,

potential does exist to address these disease mechanisms. For

example, atopic dermatitis (AD) was modelled on chip using the

disease-relevant cytokines IL-4 and IL-13. This resulted in tissue

dehydration, keratin exfoliation and suppression of barrier-related

genes (49).

In summary, skin-on-chip models have been comprehensively

characterised and demonstrate robust properties in comparison to

native human skin, albeit still lacking key features such as adipocyte

layers, glands, nerves and growth of hair follicles. However, their

immune-compatibility is still in its initial phases, primarily relying

on the use of innate immune cells.
2.3 Intestine (Gut)

Like the skin and airways, the intestine (gut) is a barrier organ

that is constantly in contact with external stimuli, harbouring a

microbe dense microenvironment to fine tune a balance between

tissue homeostasis and pathogenic infection. Hence, this is why the

gut houses an extensive population of resident immune cells in the

body. These immune cells can be found in an area of connective

tissue called the lamina propria that house a plethora of e.g.

macrophages, T cells and DCs (111, 112). The intestinal

architecture contains villi, which are small projections of

epithelium extending into the lumen to increase the surface area

for nutrient uptake. The majority of gut-on-chips have overlapping

attributes with lung-on-chips, such as inclusion of vacuum

chambers to replicate peristaltic movement and chip-channels

separated with a semi-porous membranes or ECM-rich hydrogel

to enable culture of human intestine (or colon) epithelial cells and

ECs (Figure 1).

Immune cells of myeloid origin have generally been used in

multiple gut-on-chip models. Similar to skin-on-chip models, the

first immunocompetent gut-on-chip model introduced the

monocyte cell line U937, perfused through a two-channel chip

containing the epithelial cell line CaCo-2. After lipopolysaccharide
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(LPS) or tumour necrosis factor alpha (TNFa) exposure to trigger

inflammation, the epithelium increased barrier permeability and

induced immune activation (44). To date, gut-on-chip models

have become more complex by the addition of HUVECs for the

endothelial compartment, and gut commensal microbiome

components such as probiotic bacterial strains as detailed below.

Gut-on-chip co-cultures with microbial species have included either

complete PBMCs or PBMC-isolated macrophages/DCs perfused

through endothelial channels to study several different parameters,

such as microbe-dependent tissue inflammation, damage and cell

differentiation (50–52). Such addition of immune cells in these

experiments have displayed protective properties of the

endothelium, as the ECs were normally subjected to inflammation-

associated tissue damage from the microbial species when immune

cells were not present.

The major chronic inflammatory disease associated with the gut

is inflammatory bowel disease (IBD), encompassing conditions like

ulcerative colitis and Crohn’s disease. This condition poses significant

challenges for individuals, which is why gut-on-chip models are an

appealing choice for IBD disease modelling and testing drug efficacy.

When epithelial barriers are damaged, it leads to leaky gut, allowing

pathogens to enter the bloodstream. In the context of gut-on-chips,

IBD has been recapitulated through combinations of inflammatory

cytokines, E. coli or LPS, and has involved the use of monocyte-

derived DCs, macrophages, and PBMCs (53, 54, 56). More

specifically, after cytokine exposure, pro-inflammatory M1

macrophage differentiation occurred via crosstalk with epithelial

cells (55) and the monocyte cell lines THP-1 and MUTZ-3 were

able to provoke synergistic inflammation through increase in IL-8

secretion in a chip (58). The theme of gut inflammation has extended

to the use of neutrophils in an LPS-induced gut-on-chip, which

mimics epithelial damage by neutrophil invasion and inflammatory

crosstalk between resident and circulating immune cells (57).

Interestingly, there has been limited incorporation of adaptive

immune cells in gut-on-chip models. One study has explored the

safety and efficacy of T cell bi-specific antibodies targeting tumour

antigens, which was conducted in parallel with an alveolus-on-chip

model, as previously mentioned (40, 41). Nonetheless, for an

incapacitating disease like IBD, the addition of immune cells,

such as macrophages, and inflammatory mediators to the

intestine-on-chips recapitulates a physiologically-relevant disease

setting. This is particularly relevant since IBD patients have a higher

abundance of macrophages and inflamed epithelium compared to

healthy individuals (113, 114). Notably, models of the human

intestine have a well distinguished organoid profile, whether

derived from patient samples or induced pluripotent stem cell

(iPSCs). Such organoids are now being cultured in gut-on-chip

models that have an immune-like environment, such as iPSC-

derived gut-like tubules that secrete IL-6 and IL-8 under an

inflammatory stimulus (60). Likewise, a vascularised colon

organoid demonstrated monocyte adherence to ECs, which then

transmigrated towards the epithelium to undergo macrophage

differentiation (59).

To summarise these immune gut-on-chip studies, it becomes

apparent that they have predominantly featured innate immune

cells over adaptive immune cells. This is reasonable given their
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prominent involvement in gut-related diseases to a certain extent.

However, it is worth noting that the gut contains a substantial

population of T cells, which play a foundational role in other gut

disorders, like Crohn’s and celiac disease. Our intestine is influential

to general health, so it would be pivotal to include adaptive

immunity into future gut-on-chip models.
2.4 Liver

As stated in the introduction to the organ barriers, the liver is

included in this review. The liver directly receives intestine

draining-blood from the portal vein and thereby can act as a

barrier to systemic infection. Since it is crucial for filtering blood

and metabolising drugs and toxins which have bypassed the lymph

node and spleen, this makes it an ideal organ for on-chip

immunotoxicity testing. The liver is an immune privileged organ,

with specialised resident macrophages known as Kupffer cells (115).

Liver-on-chip models normally use primary human hepatocytes,

but the inclusion of immune cells at the single-OoC level are still

lacking and are in a relative infant state. Such liver-on-chips can be

used to study hepatocyte differentiation and culture stability e.g. LPS-

induced inflammation with PBMC-derived macrophages resulted in

macrophage polarisation to a M2 phenotype and demonstrated their

adhesive properties and infiltration into hepatic cell channels on the

chip (61). Inclusion of Kupffer cells allow for a more physiological

immunemodel, where their use has been validated in a liver-chip as a

hepatotoxic screening platform based on metabolic readouts (62, 63).

These Kupffer cells have also been administered to study liver-related

diseases on chip, such as advanced stages of non-alcoholic fatty liver

disease (NAFLD), where exposure to an overload of long-chain free

fatty acids induced pro-inflammatory biomarkers that could then be

attenuated with drug application, indicating a proof-of-concept for

hepatotoxicity testing of drugs (64). Likewise, in a liver-on-chip

model of hepatitis, the Kupffer cells responded to LPS and hepatitis

B virus (HBV) infection by secreting pro-inflammatory molecules

associated with the disease (65). Additionally, glucocorticoids were

assessed on liver-on-chips containing Kupffer cells to evaluate their

anti-inflammatory properties (66).

Henceforth, it is clear that so far only innate immunity is

partially represented in liver-on-chip models with the use of

Kupffer cells. Integration of other innate immune cells to

represent liver functioning is still required for future studies.
3 Lymphoid vasculature and organs

Lymphoid organs are a crucial component of the human

immune system and distributed throughout the body to regulate

and support immune responses. These specialised organs are

integral in the production, maturation and activation of various

immune cells. This all begins in the primary lymphoid organs and

proceeds to the secondary lymphoid organs, which are strategically

located to drain interstitial fluid from tissue. These secondary

lymphoid organs play a fundamental role in immune surveillance,

tissue specific immunity and memory responses.
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The trafficking of immune cells between organs and tissues

takes place in blood and lymphatic vessels, which serve as a key

structural element for systemic immunology e.g. to guide immune

cells from the tissue into secondary lymphoid organs and to direct

them to the sites of inflammation. Since it is evident that vessel-on-

chip has almost unlimited potential for its integration into the OoC

field amongst numerous scientific disciplines (116, 117), this review

focusses only on literature which includes vessel-on-chip to study

immune cell migration. As such, features of lymphoid organs- and

immunocompetent vasculature-on-chip are summarised together

in Table 1 and discussed in detail below.
3.1 Primary lymphoid organs

In comparison to other organ models, lymphoid organ-on-chip

models are distinctive for their abundance of immune cells since

they play a primary role in regulating our immune system. The bone

marrow and thymus are essential constituents of our immune

system. Innate immune cells arise in the bone marrow and

mature in tissue. Adaptive immune cells stem from the bone

marrow, functionally mature in the thymus and differentiate in

the lymph nodes. In this review, we focus on bone marrow-on-chip

models for immune cells, as immunocompetent thymus-on-chips

are yet to be developed.

The bone marrow is a complex organ that consists of several

unique niches with differing microenvironments of ECM structures

to perform several functions, namely erythropoiesis, myelopoiesis

and lymphopoiesis. The first bone marrow-on-chip model was

created by implanting a PDMS device into the bone marrow of

mice, loaded with bone marrow-stimulating growth factors. The

device was then explanted after 8 weeks of growth and maintained

for up to seven days ex vivo. The model, albeit using mice in this

study, was shown to accurately mimic physiological niches in the

bone marrow and was later used in drug toxicity tests (67). Progress

without using animal material for bone marrow niches are now

widely modelled on chip. Numerous studies have recreated the

endosteal niche, located at the surface of the bone for hematopoietic

stem and progenitor cell (HSPC) differentiation, on chip to

highlight the importance of mesenchymal stromal cell adhesion

and cytokine secretion for CD34+ HSPCs maintenance and

haematopoiesis (68, 70, 71). Currently, one bone marrow-on-chip

study has demonstrated the formation of macrophage colonies from

HSPCs (69) and, to date, the generation of further immune cell

subsets are yet to be recapitulated.

One of the most studied diseases on bone marrow-chips is bone

marrow cancer. As the bone marrow is closely situated to the blood

supply, cancers that develop in the bone marrow can be prone to

metastasis. This proximity provides a route for cancer cells to enter

the bloodstream, facilitating their travel to distant organs and the

subsequent formation of secondary tumours. This is particularly

perilous, as the spread of cancer cells can impact the normal

functioning of various organs. Cancer cells have been included in

bone marrow-on-chips to study tumour migration, indicating

preferential metastasis to different niches (71). Moreover, anti-

leukaemia drugs have been screened in bone marrow-on-chips.
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Here, the 3D microenvironment was deemed to protect the cancer

cells from drug-induced apoptosis compared to 2D cultures (72),

highlighting the advantages of chip models for the study of drug

efficacy. In addition to bone marrow cancer-on-chip, the genetic

disease Shwachman–Diamond syndrome (SDS) was emulated on

chip, where mechanisms of the disease pathophysiology were

revealed to indicate association with neutrophil maturation

impairment (70).

The modelling of bone marrow-on-chip is a complex task since

the bone marrow features an intricate organisation of different

compartments, each with their own functions. Future

improvements could be made by demonstrating haematopoiesis

for multiple immune cell subsets and/or the inclusion of lymphoid

progenitors. Further development of these models is crucial in our

understanding of the bone marrow microenvironment.
3.2 Secondary lymphoid organs

Secondary lymphoid organs are strategically located throughout

the body and are inter-connected by a network of lymphatic vessels

that transport lymph-fluid drained from the peripheral tissues.

These organs include lymph nodes, tonsils, spleen and peyer’s

patches. Their key feature is a complex multicellular environment

that is organised into special niches by lymph node stromal cells

(LNSCs), and this is where the adaptive immune response is

orchestrated (118). Due to the involvement of secondary

lymphoid organs in the pathophysiology of inflammatory diseases

and tumour metastasis, recreating an organotypic lymph node

environment that encompasses every biological process

is challenging.

While there is a lot of complexity to immunological processes

within lymph nodes, the majority of models have used PBMC-

derived moDCs, T cells and B cells to investigate immune cell

clustering. This research has included dynamic perfusion with

adaptive immune readouts such as plasma cell differentiation,

antigen-specific antibody formation and cytokine productions

(76–78). Furthermore, imitation of immune cell chemotaxis

across lymph nodes has extended to include DC maturation and

migration in the direction of flow to T cell compartments (73, 79).

DC migration could be standardised using the commercially

available drug hydroxychloroquine, which induced reactive

oxygen species in T cells on the chip (74). Cell-cell interactions

have also been explored by investigating adhesion molecules in a

subcapsular sinus model (80), although the extent of this cellular

characterisation remains somewhat limited.

The spleen is another secondary lymphoid organ which, unlike

the lymph node, filters blood. Initial efforts have been made to

recapitulate core spleen-functions, such as blood filtration, from

perfusion of ex-vivo spleen tissue (81) and spleen-on-chip devices

using red blood cells (RBCs) (82). Intriguingly, macrophages were

used in a spleen-on-chip model of sickle cell disease that revealed

differences in their phagocytic capabilities between sickled red RBCs

and non-sickled RBCs, under hypoxia (83). In spite of the fact that

robust spleen features have been well-characterised with immune

cells-on-chip, the technical developments to advance spleen-on-
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chip models are still at an early stage. For example, further studies to

recreate immune cell behaviour with spleen-on-chip are required to

more accurately portray splenic tissue biology, as well as using such

models to better investigate infectious diseases, like visceral

leishmaniasis (119).

The challenges of modelling secondary lymphoid organs, the

lymph node in particular, lies in their complexity. A vital feature

across all lymph node-on-chip models to date is their lack of

stromal cells, in contrast to other tissue/organ models-on-chip,

which all contained a stromal component, as detailed above.

Currently, there is one chip model has included fibroblast

reticular cells (FRCs) from a cell line source (75), which

showcased DC and T cell migration towards this FRC

compartment. There is clearly an unmet need for incorporation

of these FRCs, given their role in not only shaping immune

responses within the lymph node (120), but also their importance

for immune cell survival and functioning in a 3D environment

(121). Considering the abundance of lymph nodes in the human

body and their central role in continuous filtration of interstitial

fluid containing toxins, metabolites, and immune cells from large

organ barriers (such as skin), lymph nodes are an ideal candidate for

incorporation into multi-OoCs. Combined with other organ

models, this can allow the recreation of a systemic immune

response in vitro, as depicted in the schematic of Figure 2.
3.3 Vasculature

Blood and lymphatic vessels play an important role in

immunological processes by trafficking immune cells between

organs, tissue and the lymphatic system. Blood vessels allow for the

transport and circulation of a plethora of lymphocytes from primary

lymphoid organs into secondary lymphoid organs via high

endothelial venules, as well as multiple other organs and tissue

types. Lymphatic vessels drain interstitial fluid, which contains

waste metabolites, pathogens and activated APCs, from all tissue to

secondary lymphoid organs through afferent lymphatic vessels, for

filtration and to initiate adaptive immunity. Once primed in

secondary lymphoid organs, immune cells leave through efferent

lymphatic vessels, and re-join the peripheral circulation. Therefore,

without vasculature, it is not possible for a systemic immune response

to occur. Vascularisation of organ models within microfluidic devices

has become somewhat of a hot topic in the OoC field. This includes

the integration of ECs under a single organotypic model and/or the

seeding of ECs in vessel-like compartments entering or leaving the

organ model. These models can provide insight into significant

parameters such as blood and lymphatic vessel permeability of

endothelial walls, shear stress, vessel formation and inflammatory

responses, such as cytokine production. In addition, immune cell

migration and cancer metastasis can also be modelled. Typically, the

configurations of vessels-on-chip involves a primary microfluidic

channel that can be populated with ECs, allowing immune cells to be

administered through this channel. ECs can form lumen-like

structures, which are often surrounded by a matrix containing

stimulants or even tumour cells.
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As such, vascular inflammation-on-chip with immune cell

migration revealed that cytokine-stimulated PBMCs could change

EC barrier properties, such as affecting EC morphology and

upregulation of certain adhesion molecules (84). Similarly, T cells

were characterised on their response to chemotactic gradients and

shown to interact with ECs through transmigration into ECM

hydrogels (85–87). The versatility of T cells was explored in other

vascularised OoCs to highlight their functionality against tumour

cells (88, 89).

Another immune cell type regularly integrated into vessels-on-

chip is the neutrophil. It has been shown that ECM components can

dictate their migration capacities (90). Neutrophils were shown to

exacerbate tumour cell metastasis in an ovarian cancer-on-chip

device, indicating their unique role in cancer progression, which

may have been overlooked in standard static cultures (91). A similar

result was also observed with LPS-stimulated neutrophils that

disrupted EC barriers and enhanced tumour cell extravasation

(92). Likewise, APC characteristics could be recapitulated with

vessels-on-chip, where DCs exhibited their antigen capturing and

presenting ability along a chemotactic gradient (93) and

macrophages exhibited phagocytic capacities (94). M1

macrophages were also seen significantly inhibited tumour-

induced angiogenesis on chip (95). These cellular functions even

extended to NK cells, which underwent trans-endothelial migration

and killed tumour cells on chip (96). Further NK cell killing

properties were also displayed through trans-endothelial

migration into breast cancer spheroids-on-chip (97).

In summary, there are numerous prospects to explore immune

cell migration through vessels-on-chip. While it is already at a
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promising stage, this could be better accomplished by defining the

use of blood ECs (BECs) or lymphatic ECs (LECs) for showing

specific immune processes. As such, vessels-on-chip possesses

unlimited potential for integration into pre-existing organ models

and multi-OoC devices, aiming to truthfully replicate a systemic

immune response in vitro (Figure 2).
4 Multi-organ-on-chip

The systemic physiological nature of the human immune

response ensures a coordinated, total-body defence against a

variety of health threats, like infections, cancer and toxic

substances. This is why multi-OoCs have been developed. The

arrangement of multi-OoCs can either be one microfluidic device

that contains multiple interconnected organ models via channels

and chambers, or multiple separate single-OoC microfluidic devices

that are externally connected through tubing. The goal of such an

integrated system, even without immune cells, offers a beneficial

predictive value for drug safety and toxicity testing at a more

systemic physiological level (123). From an immunology

perspective in vitro, the potential of multi-OoCs are ideal for

replicating dynamic immune cell migration between human

organs to initiate tissue-specific immune responses. A

comprehensive summary of all multi-OoC attributes with

immune cells is displayed in Table 2, visualised in Figures 2, 3,

and elaborated upon below.

At a two-organ immunocompetent multi-OoC level, crosstalk

between the gut and liver during LPS-induced inflammation was
B

CA

FIGURE 2

Schematic illustration of a potential organ-draining lymph node-on-chip. Exemplar use of a TissUse multi-OoC device to demonstrate immune cell
migration between an organotypic skin or intestine model (A) through lymphatic vasculature (B) to an organotypic lymph node model (C). This is
representative of a standard immune response, where skin Langerhans cells and skin/intestine dendritic cells can become activated in the epidermis
or dermis/lamina propria, respectively, due to either allergen/bacterial exposure, injury or disease. APC migrate into the lymphatic vessels for their
journey to the lymph node for antigen presentation to the adaptive immune cells. Such a response can be possible using multi-OoCs, as well as
other types of organ-crosstalk models. Chip image is courtesy of TissUse GmbH. Image of intestine model is credited to and adapted from (122).
Created with BioRender.com.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1373186
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Morrison et al. 10.3389/fimmu.2024.1373186
recreated by administering DCs to the gut compartment and

Kupffer cells to the liver model. Here, the upregulation of

immune pathway genes and pro-inflammatory cytokines was

detected when the immune cells were present in each organ

compartment (99). In a separate gut-liver axis study, the addition

of circulating T cells enhanced IBD-like conditions on the multi-

OoC, enhancing its practical use for a disease-based model (100). In

another study, the skin was separately combined in two multi-OoCs

devices, such as connection to gingiva (101) and the gut (98). The

skin-gingiva organotypic model on chip mimicked a clinical case

study where topical allergen exposure to the gingiva resulted in

activation of a skin immune response, as illustrated by LCmigration

in the skin model thus representing a systemic inflammatory

response. The gut-skin multi-OoC assessed the downstream effect

of fatty acid absorption by the gut model on skin inflammation,

where macrophages increased nitric oxide uptake, associated with a

pro-inflammatory response. Next to this, a lung-blood brain barrier

(BBB) multi-OoC was developed containing monocytes to study the

epigenetics of non-small cell lung cancer. The outcome was a

consistent data profile between mice and patient studies,

indicating an accurate proof-of-principle set up that does not

require animal models (102).

A singular immunocompetent three-organ multi-OoCs has

been developed, where lung-liver-heart organs were connected
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through external tubing linking microreactors. Using liver Kupffer

cells, cardiotoxicity was to be mediated by pro-inflammatory

cytokine secretion after inducing toxicity to the lung model with

bleomycin, a chemotherapy antibiotic (103).

Four-organ multi-OoCs have demonstrated crosstalk among

organs in both lung-brain-bone-liver and gut-liver-kidney-bone

marrow multi-OoCs. The lung-brain-bone-liver multi-OoC

showcased immune involvement, where monocytes seeded in the

lung tissue differentiated to M2 macrophages after tumour cell

introduction. This provoked transmigration of cancer cells into

other tissues and inflicted damage on the astrocytes (brain tissue),

osteocytes (bone tissue) and hepatocyte (liver tissue) organ

compartments (124). The gut-liver-kidney-bone marrow multi-

OoC used CD34+ progenitor immune cells to represent the bone

marrow and study metabolomics with pharmacodynamic and

pharmacokinetic parameters. However, such readouts were not

immunology-related (104).

In summary, immunocompetent multi-OoCs are still in their

initial stages of development, predominantly featuring innate over

adaptive immune cells. Multi-OoCs represent the ultimate frontier

in replicating systemic immunological processes in an in vitro

environment. It is evident that progress is being made in the

immunotoxicity field, but the path ahead is long and numerous

challenges still need to be overcome.
FIGURE 3

Schematic overview of a human-on-chip design from all possible immunocompetent multi-OoCs. Immune cells (innate and adaptive) are colour-
coded to show the combinations to which they are currently used in various biological processes and applications. Connecting and expanding such
multi-OoCs would create the ability to recapitulate human physiology in an in vitro setting, albeit on a more simplified level. Image is courtesy of
TissUse GmbH. Created with BioRender.com.
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5 Conclusion and perspectives

OoCs are crucial for advances in studying immunity in vitro.

However, scientists are challenged by the most optimal chip design,

fabrication and implementation to address biological questions.

Human immunology is complicated on a physiological level and

this review has aimed to summarise the extent of which the immune

system has been recapitulated into OoC models.

In general, the innate branch of the immune system has most

frequently been included into single- and multi-OoC compared to

adaptive immune cells. From a logical perspective, these innate cells

are the first line of defence against external pathogens, disease and

inflammation, and therefore offer an unspecific and diligent

response that may be easier to model. Such immune cells are

readily available through PBMC-isolation from blood donors or

as cell lines, allowing practical universal benefits and a somewhat

unlimited source of cells. However, as we learn more about tissue

microenvironments, the importance of tissue-specific immune cells

becomes apparent and must be considered. This for example

includes the liver Kupffer cells or skin LCs, which each exhibit

specific environmental profiles that dictate their tissue functioning.

While adaptive immune cells have been employed sparingly in

non-lymphoid OoCs, these cells present a genuine assessment of

functional specificity due to their long-lasting and memory-like

properties representing the adaptive immune response. Once

successfully integrated and thoroughly evaluated, this

development will mark a significant step towards systemic

immunology in vitro, further complementing areas such as

disease modelling, drug testing and personalised medicine. As

OoCs become more and more advanced and complicated, this

will allow the opportunity to use tissue-specific cells that can either

be obtained from biopsies or more appealingly; iPSCs. The strength

of using iPSC-derived immune cells above primary cells or cell lines

will be that they will enable donor-matched autologous cell types to

be integrated into OoCs, thus bypassing the allogenic responses in a

donor HLA-mismatch, a vital hurdle for immune modelling.

However, the current limitations with iPSCs include the

incomplete maturation status of the differentiated cells, unknown

ability to skew towards tissue specificity and, especially in the

immunology field, their unknown ability to generate diverse

repertoires of T and B cells. The origin of these cell types can

naturally raise complex questions concerning whether an

individual’s sex, age or lifestyle choice might influence their

functionality in an OoC, especially considering how our immune

system alters over time under the influence of epigenetic

factors (125).

As mentioned above, OoCs still lack the inclusion of all organ-

specific cells. This is where the organoid field can act as a promising

tool for creating models of the immune system for organ-on-chip.

Such examples include kidney organoid-on-chip (126) and BBB-

on-chip (127), which both feature T cells that demonstrate tumour

eradication and adhesion, extravasation, and migration under

inflammatory conditions. Additionally, a primary NK cell model

has illustrated dynamic extravasation into a physically separated

tumour cell niche on a microfluidic device (128), indicating that

immune cell migration can be recapitulated without using an actual
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organ model on the chip. For immune organs, human tonsil

organoids have been established to show early promise for

mode l l ing vacc ine e fficacy (129) and a lymphoma

microenvironment (130). However, these tonsil models do not

feature or acknowledge stromal cells, which are integral for

lymphoid organ functioning as alluded to earlier. In future

studies, we anticipate a greater shift towards making these

organoid models into more immunology based-on-chip.

The gold standard consideration is to what extent one must

delicately balance the complexity and simplicity of the biological

and technical OoC design. For example, a liver-on-chip was able to

detect close to 90% of drug-induced liver toxicity in patients, a result

that went completely under the radar in an animal model (131)

(132). While this liver-on-chip did not include immune cells, it is

just one initial example of the potential promise that

immunocompetent OoCs will have in superiority over animal

experiments. Likewise, the very first lung-on-chip, developed by

Emulate, mimicked lung pathology to a level that was never

observed before in an in vitro setting (42). Not to mention, the

technical design of such microfluidic devices must be considered for

adding an immune element. The 3D environment of tissue models,

whether that be built around biological or synthetic scaffolds, need

to mimic the correct ECM of the native organ (133), and should be

bio-compatible and spatially suitable for bringing into a

microfluidic compartment (134). Care must also be taken in

regards to the properties of such biomaterials on immune cell

sensitivity. For example, hydrogel components like fibrinogen can

modulate immune cell behaviour in either a suppressive or

supportive manner (135, 136). Other factors such as the

mechanical stimuli within the microfluidic device, such as shear

stress, flow rate etc., and the type of experimental readouts, such as

in-line or end-point sampling, must all be acknowledged when

studying human immology.

How far this work can progress into human immunology-on-

chip, rather than multi-OoCs, is somewhat of a paradoxical

outstanding question that only time will tell if it will be a tangible

possibility or whether it is even needed. The recent approval by the

US FDA for OoCs to be used in pre-clinical testing (15) has

complemented the progress of this field which works towards

efficient standardisation and safe robust use of such chips, as well

as incorporating the immune system. This has already seen a benefit

from a drug repurposing perspective, as a human lung-on-chip

accelerated the discovery of a novel class of RNA-based

therapeutics, where a pathological role of receptor found on lung

alveolar cells was identified in viral infections (32). Such an avenue

is also highly appealing for big pharma, as it has been reported that

OoCs could reduce up to 26% of the costs for each drug that is

approved (137), therefore applicable companies with the

appropriate resources can invest to scale up OoC research, and in

turn save finances, accelerate drug development and deliver the

promise of personalised medicine in the near future (138, 139).

In conclusion, improvements of immunocompetent single-OoC

and multi-OoC models are critical for their utilisation in both the

fundamental research and drug development field. The closer these

models come to accurately represent physiological systemic

processes, the more widely available and applicable they will
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become. In this way, they will play a pivotal role in the need to study

human diseases in more physiologically relevant models.
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