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Single-cell analysis of
bronchoalveolar cells in
inflammatory and fibrotic
post-COVID lung disease
Puja Mehta1†, Blanca Sanz-Magallón Duque de Estrada2*†,
Emma K. Denneny1†, Kane Foster3, Carolin T. Turner2,
Andreas Mayer2, Martina Milighetti2, Manuela Platé1,
Kaylee B. Worlock1, Masahiro Yoshida1, Jeremy S. Brown1,
Marko Z. Nikolić 1, Benjamin M. Chain2, Mahdad Noursadeghi2,
Rachel C. Chambers1‡, Joanna C. Porter1‡

and Gillian S. Tomlinson2*‡

1UCL Respiratory, University College London, London, United Kingdom, 2Division of Infection and
Immunity, University College London, London, United Kingdom, 3UCL Cancer Institute, University
College London, London, United Kingdom
Background: Persistent radiological lung abnormalities are evident in many

survivors of acute coronavirus disease 2019 (COVID-19). Consolidation and

ground glass opacities are interpreted to indicate subacute inflammation

whereas reticulation is thought to reflect fibrosis. We sought to identify

differences at molecular and cellular level, in the local immunopathology of

post-COVID inflammation and fibrosis.

Methods: We compared single-cell transcriptomic profiles and T cell receptor

(TCR) repertoires of bronchoalveolar cells obtained from convalescent

individuals with each radiological pattern, targeting lung segments affected by

the predominant abnormality.

Results: CD4 central memory T cells and CD8 effector memory T cells were

significantly more abundant in those with inflammatory radiology. Clustering of

similar TCRs from multiple donors was a striking feature of both phenotypes,

consistent with tissue localised antigen-specific immune responses. There was

no enrichment for known SARS-CoV-2-reactive TCRs, raising the possibility of T

cell-mediated immunopathology driven by failure in immune self-tolerance.

Conclusions: Post-COVID radiological inflammation and fibrosis show evidence

of shared antigen-specific T cell responses, suggesting a role for therapies

targeting T cells in limiting post-COVID lung damage.
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Introduction

Persistent functional and radiological lung abnormalities are

evident at one year in approximately 20% of people who survive

acute coronavirus disease 2019 (COVID-19) (1). Current

understanding of the immunopathogenic mechanisms responsible

for post-COVID lung disease (PCLD) is very limited (2). Elevated

numbers of airway CD4 and CD8 T cells have been reported (3, 4)

and the post-COVID airway proteome displays evidence of ongoing

epithelial injury that resolves with time (4). It is imperative to address

this knowledge deficit to inform therapeutic interventions that could

expedite resolution of pathology and minimize irreversible tissue

damage, to reduce long term morbidity secondary to PCLD and the

attendant burden on healthcare services.

There has been the impression of two major radiological patterns

in PCLD: consolidation and ground glass opacities, thought to

represent subacute inflammation, and reticulation, widely

interpreted as fibrosis (1, 5). Inflammation predominates during

acute COVID-19, but fibrosis is evident on 32% of computed

tomography (CT) scans during hospitalisation. Follow-up imaging

within the first year suggests radiological sequelae reduce with time,

with less marked improvement in fibrosis (1). We hypothesised that

these distinct radiological changes reflect distinct pathogenic

mechanisms, which may require different treatments. We sought to

evaluate the molecular characteristics of cellular function at the site of

disease in PCLD, by single-cell RNA sequencing (scRNAseq) of

bronchoalveolar cells from convalescent individuals infected during

the first or second waves of the pandemic, with predominant CT

features of inflammation or fibrosis at the time of sampling.

We showed that in comparison to fibrotic PCLD, the

bronchoalveolar environment of inflammatory PCLD was

enriched for CD4 T central memory cells (TCM) and CD8 T

effector memory cells (TEM). Consistent with this finding, a

higher proportion of CD4 TCM clones were expanded in the

inflammatory phenotype. Both inflammatory and fibrotic PCLD

bronchoalveolar T cells exhibited high levels of T cell receptor

(TCR) clustering, indicative of an antigen-specific immune

response, but there was no enrichment for known severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive

sequences. No major differences were evident in any of the cell

type-specific transcriptomic profiles of the two radiological

phenotypes, suggesting that they may represent different

manifestations of the same disease process.
Results

Increased abundance of bronchoalveolar T
cells in inflammatory PCLD

Individuals undergoing bronchoscopy for clinical investigation

of persistent respiratory symptoms and predominant radiological

features of either inflammation or fibrosis following acute COVID-

19, with no previous evidence of interstitial lung disease (ILD) were
Frontiers in Immunology 02
recruited (Figure 1A). Bronchoalveolar lavage (BAL) samples from

lung segments affected by the predominant abnormality were

obtained from five subjects with each radiological pattern

(Figure 1A). Clinical and demographic characteristics are

provided in Table 1; Supplementary Table 1. A higher proportion

of the fibrotic group were male, required invasive ventilation and

received steroid treatment during acute COVID-19. Compared to

the inflammatory group, the fibrotic group were sampled later after

the acute illness, consistent with the possibility that the different

radiological patterns represent different temporal phases of disease.

Nonetheless, the question remains whether the associated

immunopathological processes were also different, and may

necessitate distinct treatment strategies. Evaluation of the

composition of post-COVID BAL by scRNAseq revealed that

macrophages dominated in all subjects, with smaller T cell, NK T

cell, dendritic cell, epithelial and B cell populations also identified

(Figures 1B–D; Supplementary Figures 1A–D). Each of the cell

types expressed high levels of independently established marker

genes (6–16), validating our annotations (Figure 1D). The notable

difference between the two phenotypes was significantly higher

abundance of CD4 T cells and CD8 T cells in inflammatory PCLD

(Figure 1E). The relative proportions of the other seven cell types

present were not found to differ between the two radiological

phenotypes, providing confidence our analysis was not

confounded by compositional bias, where alterations in the

proportion of one cell type lead to many other cell types being

falsely identified as differentially abundant.

To explore differences in cell type-specific transcriptional

profiles between the two radiological phenotypes, we first

aggregated gene expression count data for each cell type for each

donor to form “pseudobulks”. We leveraged the ability of

pseudobulk statistical approaches to account for variability of

biological replicates, allowing detection of genuine differential

gene expression whilst minimizing false discoveries (17). Very few

cell type-specific differentially expressed genes were identified

(Supplementary Table 2), which precluded further bioinformatic

analysis and suggested the transcriptomes of inflammatory and

fibrotic PCLD were similar for all cell types.

Detection of transcriptomic differences between the two groups

using pseudobulk statistical analysis may have been limited by small

sample size. Therefore, we repeated the comparison of

inflammatory and fibrotic PCLD at the level of individual cells.

Single-cell statistical analysis identified thousands of cell type-

specific differentially expressed genes in each radiological

phenotype. However, single-cell differential gene expression

analysis has a propensity for false positive results (17). To

mitigate against this, we sought to assess whether differentially

expressed gene lists represented differentially enriched biological

pathways in the two study groups. This was not evident at the

level of biological processes or upstream regulator analysis

(Supplementary Figures 2, 3), which suggested enrichment of

overlapping processes and pathways despite apparent differential

gene expression. Hence, our single-cell analysis also supports the

outcome of the pseudobulk analysis.
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CD4 central memory and CD8 effector
memory are the predominant T cell
subsets in PCLD

Given that greater abundance of T cells in inflammatory cases

was the only robust difference between the two PCLD radiological

phenotypes, we re-clustered these populations alone to undertake a

more detailed analysis. This revealed CD4 TCM and CD8 TEM as

the two predominant T cell subsets in the PCLD bronchoalveolar

environment, and a smaller population of regulatory T cells (Treg).

A small mixed T cell cluster, which expressed high levels of

interferon-stimulated genes and an NK cell cluster were also
Frontiers in Immunology 03
present in all samples. A minor population of gamma delta T

cells was identified in one individual with inflammatory PCLD

(Figures 2A–C). There was no difference in the relative proportions

of any T cell subset between the two PCLD phenotypes (Figure 2D).

Analysis of T cell subset pseudobulks revealed no genes as

differentially expressed in either group (Supplementary Table 2),

consistent with our earlier observation of few differences between

the transcriptional programmes of the two PCLD phenotypes at the

level of broad cell types defined using the full dataset. In single-cell

differential expression analysis of T cells, genes expressed at a

significantly higher level in CD4 TCM and CD8 TEM in

inflammatory PCLD exhibited weak enrichment for immune
B C

D E

A

FIGURE 1

Higher abundance of bronchoalveolar T cells in inflammatory post-COVID-19 lung disease (PCLD). (A) Representative computed tomography (CT)
images for each radiological phenotype. (B) Uniform manifold approximation and projection (UMAP) embedding of 55,776 bronchoalveolar single-
cell transcriptomes obtained from five individuals with radiological features of pulmonary inflammation (33,553 cells) and five individuals with
radiological features of pulmonary fibrosis (22,223 cells) following COVID-19, split by PCLD phenotype, colour coded by cell type. Cell type
annotation was achieved by assignment of Azimuth human lung reference gene signatures using the SCINA R package and in the case of dendritic
cells and B cells, expression of literature-based markers. Prolif, proliferating cells, identified by their high module score for a gene signature
representing the cellular proliferation response. (C) Cellular composition of each BAL sample defined by single-cell RNA sequencing (scRNAseq).
Colour indicates cell type and bar height represents proportion. (D) Dot plot visualization of the expression of independently established marker
genes for each cell type; “Mac”, macrophage. Dot size represents the percentage of cells expressing the gene in each cell type, colour shows the z-
scores of average log-normalized expression for each cell type compared to the entire data set. (E) Comparison of the proportions of each cell type
in inflammatory and fibrotic PCLD. Horizontal lines indicate median, box limits the interquartile range and whiskers the 5th to 95th

percentiles, *FDR<0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1372658
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mehta et al. 10.3389/fimmu.2024.1372658
response signalling pathways (Supplementary Figure 4A). Robust

enrichment of cellular pathways involved in anti-viral responses

was evident for genes expressed at a significantly higher level in

CD4 TCM and CD8 TEM in fibrotic PCLD (Supplementary

Figure 4B), but this was not supported by enrichment for type I

interferon signalling in upstream regulator analysis (Supplementary

Figure 5B). Interestingly, interleukin (IL)2 and IL15 were the most

statistically significant upstream regulators of CD4 TCM and CD8

TEM differentially expressed genes in inflammatory PCLD but not

fibrotic PCLD, consistent with the notion of cytokine driven

proliferation leading to increased abundance of T cells in the

former phenotype (Supplementary Figures 5A–C).
Frontiers in Immunology 04
Alveolar macrophage and monocyte
subsets in PCLD are consistent with
healthy airspace myeloid populations

Macrophages are the most abundant cell types in healthy airspaces

(18) and were also found to be the most abundant cell type in PCLD

BAL samples in the present study. Macrophage subpopulations have

been implicated in the pathogenesis of fibrosis associated with severe

COVID-19 and idiopathic pulmonary fibrosis (19, 20). We therefore

re-clustered macrophages alone to further our understanding of

macrophage subpopulations in PCLD. Two populations with similar

expression of macrophage markers and comparable transcriptomic

profiles, likely representative of the transcriptional spectrum of resident

healthy alveolar macrophages (AM) (18) were combined for

subsequent analysis (Figures 3A, B; Supplementary Figures 6A, B).

We identified three further small specialized AM subsets previously

detected in healthy individuals (18), characterized by high levels of

proinflammatory molecule expression, “Inflam AM”, metal-binding

metallothioneins, “MT-AM”, or interferon-stimulated genes “IFN stim

AM”. Proliferating macrophages were delineated by high expression of

a gene module representing the cellular proliferation response (21)

(Figures 3A–D).

Monocyte-like cells are present in healthy airspaces, and

suggested by trajectory inference and increasing expression of

macrophage marker genes over pseudotime to differentiate into

AM, implying constant trafficking of monocytes into the lung (18).

Consistent with this, we identified CD14, FCN1 expressing classical

monocytes (FCN1-Mono) (18, 22) characterized by high levels of

CCR2, the receptor for monocyte chemoattractant protein, suggestive

of recent recruitment from the peripheral blood (23) (Figures 3C, D).

A second LGMN and SPP1 expressing subset (LGMN-Mono),

recently identified as a rare population defined by expression of

cell-matrix interaction genes in healthy airspaces (18), was also

present (Figures 3C, D). In contrast to acute severe COVID-19

where proinflammatory monocytes and profibrotic SPP1, LGMN

expressing macrophages have been reported to be abundant (19, 24),

monocytes represented a minor constituent of PCLD BAL. Neither

subset expressed high levels of inflammatory mediators (Figures 3C,

D) and very few cells expressed a gene signature characteristic of

profibrotic macrophages recently identified in idiopathic pulmonary

fibrosis (15), (Figure 3E; Supplementary Figure 7A).

No differences in the relative proportions of any of the myeloid

populations were evident between the two PCLD phenotypes

(Figure 3F). Very few gene expression differences were detected

between the two phenotypes by pseudobulk analysis of macrophage

ormonocyte subsets (Supplementary Table 2). Similar to the analysis of

the full dataset stratified by broad cell type, re-clustering macrophages

to identify more discrete sub-populations did not reveal transcriptomic

differences between inflammatory and fibrotic PCLD.

Single-cell differential gene expression analysis revealed weak

enrichment for immune response and cellular metabolism

pathways in both groups (Supplementary Figures 7B, C). Minor

enrichment for TGFb-mediated signalling was evident for genes

expressed at higher levels in AM, Inflam-AM and FCN1-Mono in

inflammatory PCLD (Supplementary Figure 7B). Proinflammatory
TABLE 1 Clinical and demographic information summary.

Inflammatory
N=5

Fibrotic
N=5

Age

Median (IQR) 62 (21.5) 59 (8.5)

Sex

Male 2 (40%) 4 (80%)

Female 3 (60%) 1 (20%)

Ethnicity

White 3 (60%) 3 (60%)

Asian 2 (40%) 2 (40%)

Body mass index (kg/m2)

Median (IQR) 31.8 (15.6) 27.3 (6.1)

Smoking Status

Never 4 (80%) 2 (40%)

Former 1 (20%) 3 (60%)

COVID-19 wave

1 2 (40%) 2 (40%)

2 3 (60%) 3 (60%)

Respiratory Support

I&V† 2* (40%) 4 (80%)

CPAP‡ 1 (20%) 0

HFNO§ 1 (20%) 1 (20%)

nil 1 (20%) 0

Treatment for COVID-19

Steroid 3 (60%) 5 (100%)

Tocilizumab 1 (20%) 1 (20%)

Anti-viral 0 0

BAL

Days post-acute COVID
(median (IQR))

116 (50) 316 (50.5)
*One patient also received ECMO (extracorporeal membrane oxygenation); †I&V Intubation
and ventilation; ‡CPAP Continuous Positive Airways Pressure; §HFNO High Flow
Nasal Oxygen.
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cytokines, T cell activation factors, SPP1 and TGFb were identified

as statistically enriched upstream regulators of differentially

expressed genes in both monocyte populations in inflammatory

PCLD (Supplementary Figures 8A, B, D, E). However, as for

analysis at the level of broad cell types and refined T cell subsets,

there was considerable overlap between molecules predicted to

drive gene expression differences in each PCLD phenotype

(Supplementary Figures 8C, F), suggesting that between group

differential gene expression in this analysis did not represent

differential biology between radiological patterns of disease.
Highly related TCRs indicate antigen-
specific immune responses in PCLD

To further evaluate T cell responses in PCLD we undertook single-

cell TCR sequencing (scTCRseq) and compared the TCR repertoire in

each radiological phenotype. We successfully obtained scTCRseq data

for five fibrotic and three inflammatory cases. Increased T cell

abundance in inflammatory PCLD may reflect increased numbers of

unique T cell clones or increased expansion of individual clones.

Expanded clonotypes identified by being present with a frequency of

greater than one, were evident within the three major T cell subsets in

both inflammatory and fibrotic PCLD (Figure 4A). A greater

proportion of CD4 TCM clones were expanded in the inflammatory

phenotype, consistent with our observation of the higher abundance of

this subset in this group. However, the proportion of expanded CD8

TEM and Treg clones was similar in both phenotypes (Figure 4B).

As T cell clonal expansion was evident in both PCLD phenotypes,

we next sought to identify related TCRs for each group based on the

similarity of their antigen specificity-determining complementarity
Frontiers in Immunology 05
determining region (CDR)3 amino acid sequences, on the premise

that clusters of related TCRs recognize similar epitopes (details of the

analysis are provided in the methods). We hypothesized that the

inflammatory cases would exhibit more clustering than the fibrotic

cases, given the trend towards a greater proportion of expanded CD4

TCM clones and increased abundance of both CD4 TCM and CD8

TEM in the inflammatory group. However, high levels of clustering were

evident in both inflammatory and fibrotic PCLD. In benchmarking, this

level of clustering was similar to that observed for expanded peripheral

blood TCR clones detected following non-severe SARS-CoV-2 infection,

and exceeded that in non-expanded TCRs from non-infected

individuals from the same cohort (21, 25) (Figures 4C, D). In both

radiological groups of PCLD the vast majority of clusters contained

TCRs from multiple donors (Figure 4E) but there was minimal sharing

of identical CDR3 sequences between different individuals

(Supplementary Table 3). As a further comparison of inflammatory

and fibrotic PCLD T cell repertoires we clustered CDR3 amino acid

sequences from both groups together. Strikingly, most clusters contained

TCRs from both inflammatory and fibrotic samples and multiple

donors, suggesting the presence of T cell clones that recognize similar

antigens across both phenotypes. A few small clusters composed

uniquely of either inflammatory or fibrotic PCLD TCRs were evident,

indicative of subtle differences between the two repertoires (Figure 4F).

The high level of relatedness between TCRs in PCLD is

suggestive of antigen-specific immune responses. We therefore

sought to determine whether these repertoires were enriched for

T cells specific for SARS-CoV-2 by comparison to other common

viruses. Of the SARS-CoV-2-reactive TCRs identified in the VDJdb

database, six were present in TCR data from inflammatory PCLD

and eight in fibrotic PCLD. None were identified in equivalent sized

healthy peripheral blood repertoires. However, fewer SARS-CoV-2-
B

C

DA

FIGURE 2

Post-COVID-19 bronchoalveolar T cells are dominated by CD4 central memory and CD8 effector memory subsets. (A) UMAP embedding of 9196
transcriptomes of T cells identified in Figure 1B, coloured by cell type. T cell subset annotation was based on assignment of Azimuth human PBMC reference
marker gene signatures and additional published CD4 T cell signatures by the SCINA R package. (B) Relative proportions of each T cell subset in each
subject, colours represent cell type. (C) Feature plots demonstrating the expression of marker genes for the three principal T cell subsets and NK cells,
coloured by scaled, log-normalized counts, projected on to the T cell UMAP. (D) Comparison of the proportions of T cell subsets found in all individuals in
inflammatory and fibrotic post-COVID-19 lung disease (PCLD). Horizontal lines indicate median, box limits the interquartile range and whiskers the 5th to
95th percentiles.
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specific-TCRs were detected than Epstein-Barr virus (EBV)-specific

or cytomegalovirus (CMV)-specific sequences, indicating no

enrichment for SARS-CoV-2-specific T cells at the site of disease.

There was no enrichment for SARS-CoV-2-reactive or EBV-

reactive TCRs in inflammatory compared to fibrotic PCLD.

However, CMV-specific TCRs were significantly enriched in the

fibrotic group (Figure 4G). TCRs found in clusters composed

uniquely of either PCLD phenotype were not enriched for known

virus reactive-sequences (Supplementary Table 4).
Discussion

We report the first comparative molecular analysis of cells sampled

by bronchoalveolar lavage from patients displaying either
Frontiers in Immunology 06
predominantly inflammatory or fibrotic pulmonary radiological

sequelae following COVID-19. The bronchoalveolar environment of

inflammatory PCLD was characterised by significantly increased

abundance of CD4 central memory and CD8 effector memory T

cells compared to fibrotic PCLD. Clustering of similar TCRs from

different donors, far exceeding that observed in healthy peripheral

blood, was evident in both radiological phenotypes, suggestive of an

antigen-specific immune response localised to the lung. The

transcriptomes of post-COVID radiological inflammation and

fibrosis were highly similar for all bronchoalveolar cell types,

dominated by cellular processes involved in inflammatory and

immune responses. We found no robust evidence of enhanced

activity of tissue damage or wound repair pathways in those with

fibrotic radiological changes. Although many cell type-specific

differentially expressed genes were identified between the two
B

C

D E

A F

FIGURE 3

Bronchoalveolar macrophage and monocyte subsets in post-COVID-19 lung disease (PCLD). (A) UMAP embedding of 38,010 macrophage
transcriptomes identified in Figure 1B, coloured by cell type. Myeloid populations were annotated by assignment of Azimuth human lung reference
marker genes and additional signatures derived from published literature using the SCINA R package and by visualising expression of canonical
marker genes for some subsets. (B) Relative proportions of each myeloid subset within each individual, colours represent cell type. (C) Expression of
marker genes for PCLD macrophage and monocyte populations, coloured by scaled, log-normalised counts, projected on to the myeloid cell UMAP.
(D) Dot plot visualization of the expression of selected marker genes for each macrophage and monocyte subset. Dot size represents the
percentage of cells expressing the gene in each myeloid subset, colour shows the z-scores of average log-normalized expression for each subset
compared to the entire data set. (E) Expression of a profibrotic macrophage gene signature derived from idiopathic pulmonary fibrosis, calculated on
a single-cell level, coloured by module score and projected on to the macrophage UMAP. (F) Comparison of the proportions of bronchoalveolar
myeloid populations in inflammatory and fibrotic PCLD. Horizontal lines indicate median, box limits the interquartile range and whiskers the 5th to
95th percentiles.
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B

C

D

E F

G

A

FIGURE 4

Highly similar T cell receptors (TCRs) characterize both inflammatory and fibrotic post-COVID lung disease (PCLD). (A) T cell clonal expansion is
visualized on the T cell UMAP split by radiological PCLD phenotype. TCR sequences detected at a frequency of greater than one are coloured light
blue and contour lines provide a 2D representation of TCR density overlaid in red for inflammatory PCLD and blue for fibrotic PCLD. (B) Comparison
of the proportion of expanded TCR sequences, defined as those detected at a frequency greater than one in the three largest T cell subsets
identified in Figure 2A in the two PCLD phenotypes. (C) Percentage of complementarity determining region (CDR)3 alpha and beta chain amino acid
sequences clustering and number of clusters generated over a range of thresholds above which two TCRs are considered similar, for inflammatory
and fibrotic PCLD bronchoalveolar lavage (BAL) samples, negative control PBMC samples not expected to cluster highly and positive control PBMC
samples known to cluster highly, analysed separately. (D) Representative network diagrams of TCR b chain clusters present in each group described
in (C). Nodes represent TCRs, related TCRs are connected by an edge and colours represent the groups. (E) Network diagrams of related TCR b
chains in each PCLD phenotype in which nodes are coloured by donor. (F) Network diagrams visualizing TCR b chain clusters identified by
combined analysis of the two PCLD phenotypes. Nodes are coloured by donor (right) or radiological phenotype and membership of clusters
composed of one or both PCLD groups (left), circular nodes represent inflammatory PCLD and square nodes fibrotic PCLD. (G) Number of TCR
sequences (a and b genes combined) annotated for SARS-CoV-2, cytomegalovirus (CMV), and Epstein-Barr virus (EBV) in VDJdb either detected or
not detected in TCR sequences from individuals with each PCLD phenotype and negative controls, giving the odds ratio ±95% confidence interval
(Fisher’s exact test) for enrichment of antigen-specific TCR sequences in each instance.
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radiological phenotypes by single-cell methods, there were no

systematic differences in enriched biological pathways or their

upstream regulators among these differentially expressed genes. For

example, the finding of numerous differentially expressed genes

associated with interferon-inducible anti-viral functions from the

single-cell analysis was not supported by statistically significant

enrichment of type I interferon signalling in upstream regulator

analysis. Furthermore, almost no differences in gene expression

between the fibrotic and the inflammatory groups were detected if

gene expression within cell types was aggregated by donor before

differential analysis (17). Our data lead us to propose that the two

radiological phenotypes represent distinct manifestations of a similar

pathological process.

T cell infiltration has been a consistent finding in recent studies

which have examined the post-COVID-19 airspaces; almost exclusively

within 3–6 months of the acute insult, when radiological inflammation

is more common than fibrosis (3, 4, 26, 27). The cellular proportions of

our fibrotic PCLD samples, harvested at 9–12 months after acute

illness, were akin to those reported in BAL samples from healthy

individuals, with macrophages comprising greater than 80% and

lymphocytes less than 15% of cells (18, 28). This is in keeping with

the reported repopulation of the airspaces by AM in the later stages of

COVID-19 acute respiratory distress syndrome (ARDS) (19). Minimal

data currently available for longitudinal samples obtained at

approximately one year post-infection also suggest a trajectory of

gradual normalization of molecular abnormalities and airspace

cellular composition (4). Nonetheless there is considerable interest in

therapeutic intervention to expedite resolution of subacute

inflammation, to prevent progression to fibrosis with concomitant

irreversible tissue damage in susceptible individuals. Our findings

suggest therapies which target T cells, rather than anti-fibrotic agents

could be beneficial in PCLD, particularly in those with radiological

inflammation. In support of this premise, one small uncontrolled

clinical study demonstrated improvement in clinical symptoms,

physiological parameters and radiological abnormalities, following

three weeks of corticosteroid treatment instituted approximately

three months post-COVID-19 (29).

The bronchoalveolar TCR repertoire from both PCLD phenotypes

exhibited high levels of relatedness, suggestive of antigen-specific

immune responses. In addition, the high proportion of clusters

containing TCRs from multiple donors suggests immune responses

against similar antigens, despite almost no sharing of identical TCR

sequences between different individuals. Aberrant immune responses

to persistent reservoirs of virus have been posited as drivers of post-

acute sequelae of SARS-CoV-2 infection (30–32). However, even

including all detected TCRs, to offset the inherent sparsity of single-

cell data, there was no enrichment for known SARS-CoV-2-specific T

cell clones compared to TCRs specific for other common viruses.

Hence, based on the current compendium of SARS-CoV-2-reactive

TCRs (33), which may not be comprehensive, there was no evidence

for viral persistence at the site of disease in our cohort. Amore plausible

hypothesis, given reports of cross-reactivity between SARS-CoV-2 and

human antigens (34, 35), is that the PCLD TCR repertoire is directed

against as yet unknown respiratory autoantigens. Identifying the

antigenic targets of the PCLD T cell repertoire may present

opportunities for more specific therapeutic interventions.
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Pro-fibrotic macrophages have been implicated in the pathogenesis

of severe COVID-19 ARDS, which has been associated with rapid

onset pulmonary fibrosis, which improves over time (19). Minimal

interstitial fibrosis and the presence of pro-fibrotic macrophages have

also been reported in transbronchial lung biopsies from a subset of

individuals sampled at least 12 weeks after mild COVID-19 (27).

However, there was no difference between the frequency at which mild

fibrotic features were detected in the PCLD group and pre-pandemic

autopsy samples from individuals who had died of non-respiratory

causes (27). In our study, which encompassed a broad range of severity

of acute disease, including several individuals with COVID-19 ARDS,

the phenotype of myeloid cells in both radiological groups was

consistent with the spectrum of macrophages and monocytes found

in healthy airspaces (18); with no convincing evidence for exaggerated

activity of pro-fibrogenic pathways. The heterogeneity of disease

phenotype and longer time interval after acute illness at which our

cohort were sampled may account for this discrepancy. Of note, CMV-

specific T cell clones were enriched in individuals with fibrotic PCLD,

consistent with the repeated association of CMV with pulmonary

fibrosis (36). However, this observation is of uncertain significance,

given the lack of existing evidence for a direct role for CMV in causing

human pulmonary fibrosis (36).

Our study has some limitations. We acknowledge a small sample

size, heterogeneous patient cohort, and lack of specimens for histological

correlation and orthogonal validation of our single-cell data. We were

unable to evaluate the potential contribution of epithelial cells to driving

the fibrotic phenotype, as lung parenchymal biopsies are not available for

these individuals and as expected for good quality BAL samples, few

epithelial cells were present. Our findings provide early mechanistic

insights, are hypothesis-generating and will require further validation in

larger cohorts. Those with fibrotic radiological appearances were

sampled later after acute disease than those with radiological

inflammation. Ideally, we would have more closely matched the

interval after acute COVID-19 at which both groups were sampled.

However, the introduction of dexamethasone treatment early in the

second wave of the pandemic was coincident with reduced numbers of

individuals with persistent respiratory symptoms and radiological

abnormalities. Consequently, we extended the interval after acute

illness within which individuals were eligible for sampling. Since our

aim was to evaluate whether single-cell profiling of the bronchoalveolar

environment of individuals with inflammatory and fibrotic radiological

patterns of PCLD at the time of sampling would reveal different

immunopathogenic mechanisms for these phenotypes, irrespective of

the interval after acute COVID-19 at which samples were obtained, we

believe our approach remains valid. It also provided invaluable

opportunities to assess respiratory tract samples from the later stages

of PCLD which have received minimal attention to date. This was a

cross-sectional evaluation of bronchoalveolar immune cells, which did

not allow assessment of the temporal evolution of the immune response

in PCLD within individuals. Future studies encompassing longitudinal

monitoring of the bronchoalveolar environment might provide

important insights into the molecular mechanisms driving resolution

and whether this trajectory is a universal phenomenon for both

inflammation and fibrosis following COVID-19. Augmented

neutrophil-associated immune signatures have been described in

plasma and nasal samples in individuals with post-COVID pulmonary
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sequelae, however, neutrophils were not detected in our samples,

possibly due to the Chromium 10x Genomics sample processing

conditions used at the time of our analysis (37). Finally, due to

technical limitations because of the low numbers of T cells present in

BAL samples, we were unable to obtain TCR data for two inflammatory

cases. Nonetheless, our data provide strong support for the notion that

the TCR repertoire of PCLD reflects antigen-directed immune responses.

Our observations that inflammatory PCLD is characterised by

airway T cell infiltration and that antigen-specific T cell responses are

evident in both radiological phenotypes, highlight opportunities for

early intervention with therapies targeting T cells. Understanding the

timing and duration of intervention, stratification of those at high risk

of irreversible tissue damage and the potential use of more targeted T

cell immunomodulators all merit further investigation.
Material and methods

Ethics statement

The study was approved by the North London Research Ethics

Committee (13/LO/0900). Written informed consent was obtained

from all participants. Subject identifiers were not known to anyone

outside the research group.
Study design and eligibility

Immune cells from the site of disease were obtained from adults

(≥18 years) undergoing bronchoscopy for clinical investigation of

persistent respiratory symptoms and CT abnormalities consistent

with pulmonary inflammation (n=5) or fibrosis (n=5) at least 12

weeks after acute COVID-19, confirmed by a positive SARS-CoV-2

antibody or polymerase chain reaction (PCR) test. PCLDwas defined in

this cohort based on the following criteria: 1) new, persistent respiratory

symptoms following SARS-CoV-2 infection at least 12 weeks

previously, 2) post-COVID-19 residual lung abnormalities with more

than 10% lung involvement on CT and 3) breathlessness in keeping

with the CT changes and not explained by other causes. Thoracic CT

scans were classified as predominantly inflammatory or fibrotic by

consensus opinion of the ILD multi-disciplinary team, which included

thoracic radiologists with ILD expertise. Radiological inflammation was

defined as consolidation or ground glass opacities without reticulation

or parenchymal distortion and fibrosis defined as reticulation or

traction bronchiectasis. Individuals with evidence of ILD prior

to COVID-19, those with coincident malignancy, human

immunodeficiency virus infection, bacterial, viral or fungal respiratory

tract infection, taking immunomodulatory therapy, or unable to give

informed consent were excluded.
Isolation of bronchoalveolar cells

Flexible fibreoptic bronchoscopy was used to obtain BAL samples

by instillation of 180–240 ml of warmed normal saline into a lung

segment affected by the predominant radiological abnormality.
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Aspirated BAL fluid was cooled to 4°C and filtered through a cell

strainer to remove particulate debris before centrifugation. After

removal of the supernatant, cells were resuspended in PBS. Cell

count and viability were determined by Trypan blue staining and

erythrocytes removed where indicated, using ammonium-chloride-

potassium red cell lysis buffer. Cells were resuspended at 2 x106 per

ml for immediate downstream processing.
scRNAseq and scTCRseq library
preparation and sequencing

20,000 cells per sample were loaded on to the Chromium controller

(10x Genomics) to generate single-cell gel beads in emulsion (GEMs).

Single-cell partitioning, reverse transcription, cDNA amplification and

library construction were performed using the Chromium Single-cell 5’

Reagent kits v1.1 and v2 (10x Genomics) according to the

manufacturer’s instructions. T cell receptor (TCR) V(D)J segments

were enriched from amplified cDNA using Chromium Single-Cell V

(D)J Enrichment kits v1.1 and v2 (10x Genomics) per the

manufacturer’s protocol. Libraries were quality checked and

quantified using the High Sensitivity DNA kit and 4200 TapeStation

(Agilent). Sequencing was performed in paired end mode with SP100,

P2 and P3 flow cells (100 cycles) using NovaSeq 6000 and NextSeq

2000 systems (Illumina).
scRNAseq data analysis

Cell ranger
Raw sequencing files were demultiplexed using BCL Convert v3.7.5

(Illumina) or Cell Ranger version 6.1.1 using the “mkfastq” script.

Transcript alignment and quantitation against the GRCh38 human

genome assembly was performed using Cell Ranger “multi” for samples

with gene expression and T cell VDJ data or Cell Ranger “count” for

samples with gene expression data only.

Quality control
Initial processing of Cell Ranger output data was performed using

Seurat v4.1.0 in R 4.1.1 (38). Cell Ranger output files were loaded using

the “Read10x” function. Low quality cells with less than 200 or more

than 6000 unique features or more than 10%mitochondrial genes were

removed; 57,712 cells were retained for downstream analysis.

Normalization, feature selection and integration
For each sample data were normalized and highly variable genes

selected before integration to remove donor-specific batch effects, using

the following Seurat functions implemented with default parameters;

NormalizeData (normalization.method = “LogNormalize),

FindVariableFeatures (selection.method = “vst”, nfeatures = 2000),

IntegrateData (anchorset = immune.anchors).

Dimensional reduction, clustering and annotation
Data were then scaled using the Seurat ScaleData function and

dimensional reduction achieved by principal component analysis (PCA)

of the most variable genes using RunPCA. The first 25 principal
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1372658
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mehta et al. 10.3389/fimmu.2024.1372658
components (PCs) were used to generate the Uniform Manifold

Approximation and Projection (UMAP) for two-dimensional

visualization of the cells (RunUMAP) and for nearest neighbour graph

construction (FindNeighbours) and Louvain clustering (FindClusters)

using a resolution of 0.8. This clustering resolution was selected on the

basis that it successfully partitioned single-cell transcriptomes into the

broad cell types expected to be present in BAL. Automatic cell type

annotation of clusters was performed with the Semi-supervised Category

Identification andAssignment (SCINA) R package using gene signatures

from the Azimuth human lung v1 reference (https://azimuth.

hubmapconsortium.org/references/#Human-Lungv1) (39, 40).

Additional manual annotation of dendritic cells and B cells was

performed using literature-based markers (6–8). A population with

low numbers of genes, which could not be annotated by automatic or

manual methods and likely represents empty droplets containing

ambient RNA, was removed after clustering. To validate our clustering

and annotation strategy, we visualized the expression of canonical or

published marker genes for each cell type using a dot plot (6–16).

T cell and macrophage re-clustering
For separate analyses of T cells only and macrophages only, cells in

the relevant clusters were subsetted and normalisation, variable feature

selection, integration, data scaling, PCA, UMAP generation and

Louvain clustering repeated. The first 25 PCs were used for data

integration and clustering for both macrophages and T cells. The

k.weight parameter was reduced to 70 for the T cell integration step in

order to take account of the low number of cells in sample 12.

Resolution 0.4 was used for re-clustering T cells and resolution 0.7

for re-clustering macrophages. T cell subsets were annotated using

SCINA with Azimuth human PBMC reference marker genes https://

azimuth.hubmapconsortium.org/references/#Human-PBMC and

additional published CD4 T cell signatures (39, 41). Macrophages

were annotated using SCINA with Azimuth human lung v1 reference

marker genes and additional signatures that characterise monocyte and

macrophage subsets found in healthy adults or individuals with acute

severe COVID-19 derived from published literature (18, 19, 39, 40).

Calculation of gene module scores
The Seurat function AddModuleScore was used to calculate

enrichment of a cyclin D1 (CCND1) regulated module representing

the cellular proliferation response (21) and a profibrotic macrophage

gene module derived from idiopathic pulmonary fibrosis (15). Module

scores represent the average expression of gene signatures of interest

with subtraction of the average expression of control gene sets randomly

selected from each expression bin which contains a module gene.

Differential gene expression and differential cell
type abundance analysis

For comparison of gene expression in individual cells (single-cell

method) the scran R package findMarkers function was implemented

using the following settings: test.type = “wilcox”, direction = ‘‘up’’,

pval.type = “all”, lfc = 0. For identification of cell type (cluster) marker

genes, sample was included as a blocking factor. Genes with an adjusted

p-value <0.05 were considered significantly differentially expressed. For

comparison of gene expression at cell type level (pseudobulkmethod) the
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scuttle R package aggregateAcrossCells function was used to aggregate

counts for each cell type within each sample to create “pseudobulks”

before statistical analysis was performed. Differentially expressed genes

were identified using the scran pseudoBulkDGE function, implementing

the edgeR negative binomial generalized linear model with quasi-

likelihood F test (GLM-QLF) (42). Genes with an adjusted p-value

<0.05 were considered significant. Differences in cell type abundance

between inflammatory and fibrotic PCLD were identified using the

edgeR GLM-QLF test implemented by scran. Cell types with an adjusted

p-value <0.05 were considered differentially abundant.

Pathway enrichment analysis
The biological pathways represented by differentially expressed

genes were identified by Reactome pathway enrichment analysis using

XGR as previously described (43, 44). For visualization, 15 pathway

groups were identified by hierarchical clustering of Jaccard indices to

quantify similarity between the gene compositions of each pathway.

For each group the pathway term with the largest number of annotated

genes was then selected as representative of the enriched biology.

Upstream regulator analysis
Ingenuity Pathway Analysis (Qiagen) was used to identify

upstream transcriptional regulation of differentially expressed

genes. This analysis was restricted to molecules annotated with

the following functions: cytokine, growth factor, transmembrane

receptor, kinase and transcriptional regulator, representing the

canonical components of pathways which execute transcriptional

reprogramming in immune and tissue repair responses. Enriched

molecules with an adjusted p-value <0.05 were considered

statistically significant. Area-proportional Venn diagrams

visualizing the overlap between molecules predicted to regulate

cell type-specific differentially expressed genes in inflammatory

PCLD and fibrotic PCLD were generated using BioVenn (45).

TCR quantitation and CDR3 clustering
TCR sequences were assembled by the Cell Ranger multi pipeline

(v6.1.1). For single-cell TCR analysis, TCR clonotype abundance

information was imported directly from Cell Ranger

“filtered_contig_annotations” output files, where clonotype identity

was determined as cells with identical V(D)J and CDR3 sequences.

Clonotypes were assigned to single cells using index barcodes. TCRs

found more than once were defined as expanded. Density plots were

calculated using the UMAP coordinates of every expanded cell with a

detectable TCR using geom_density_2d from the ggplot2 package.

For clustering analysis of each PCLD phenotype individually, all

detected alpha and beta chain sequences in the inflammatory samples

were included, to take account of the sparsity of single-cell data.

Including larger numbers of TCR sequences leads to more clustering

(46); fibrotic PCLD and control group TCR sequences were therefore

subsampled to match the number of sequences in the inflammatory

PCLD group, which contained the smallest repertoire. We included

expanded peripheral blood TCRs from individuals with non-severe

SARS-CoV-2 infection as a positive control dataset known to exhibit

high levels of clustering and non-expanded TCRs randomly selected

from uninfected individuals from this same cohort, as a negative
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control dataset, not expected to cluster highly (21, 25). For the

combined analysis of both PCLD phenotypes all detected CDR3

sequences were included. TCR clustering was performed as

previously described (47). Briefly, CDR3 amino acid sequences were

deconstructed into overlapping series of contiguous triplets. Pairwise

similarity between two CDR3s was calculated as the normalized string

(triplet) kernel using the Kernlab R package (48). The resulting TCR

similarity matrix was converted into a network diagram in which

CDR3s with a pairwise similarity above a designated threshold were

connected by an edge using the iGraph R package (49). We visualized

thresholds at which PCLD TCRs exhibited the largest increase in the

percentage of TCRs clustering compared to negative control TCR data

for clustering of PCLD groups individually. For combined clustering of

inflammatory and fibrotic PCLD we visualized thresholds at which the

largest clusters composed uniquely of one phenotype were present.

Virus specific TCR enrichment analysis
TCRs annotated for SARS-CoV-2, CMV and EBV were

obtained from the VDJdb database (33) (https://vdjdb.cdr3.net/),

accessed on 1st November 2021. The number of annotated

sequences for each virus in VDJdb either matching or not

matching TCRs detected in inflammatory and fibrotic PCLD or

the negative controls was used to calculate the odds ratio (Fisher’s

exact test) for enrichment of virus-specific TCRs in each group.
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