
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Athanasia Mouzaki,
University of Patras, Greece

REVIEWED BY

Matteo Augello,
University of Milan, Italy
Emilia Jaskula,
Polish Academy of Sciences, Poland

*CORRESPONDENCE

Hua Zhang

Zhanghua824@163.com

Qinggang Ge

qingganggelin@126.com

Yuxin Leng

lengyx@bjmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 18 January 2024

ACCEPTED 11 March 2024
PUBLISHED 27 March 2024

CITATION

He X, Cui X, Zhao Z, Wu R, Zhang Q, Xue L,
Zhang H, Ge Q and Leng Y (2024)
A generalizable and easy-to-use COVID-19
stratification model for the next pandemic via
immune-phenotyping and machine learning.
Front. Immunol. 15:1372539.
doi: 10.3389/fimmu.2024.1372539

COPYRIGHT

© 2024 He, Cui, Zhao, Wu, Zhang, Xue, Zhang,
Ge and Leng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 27 March 2024

DOI 10.3389/fimmu.2024.1372539
A generalizable and easy-to-use
COVID-19 stratification model
for the next pandemic via
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Lei Xue1, Hua Zhang3*, Qinggang Ge1* and Yuxin Leng1*

1Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China, 2Department of
Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China, 3Department
of Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
Introduction: The coronavirus disease 2019 (COVID-19) pandemic has affected

billions of people worldwide, and the lessons learned need to be concluded to

get better prepared for the next pandemic. Early identification of high-risk

patients is important for appropriate treatment and distribution of medical

resources. A generalizable and easy-to-use COVID-19 severity stratification

model is vital and may provide references for clinicians.

Methods: Three COVID-19 cohorts (one discovery cohort and two validation

cohorts) were included. Longitudinal peripheral blood mononuclear cells were

collected from the discovery cohort (n = 39, mild = 15, critical = 24). The immune

characteristics of COVID-19 and critical COVID-19 were analyzed by comparison

with those of healthy volunteers (n = 16) and patients with mild COVID-19 using

mass cytometry by time of flight (CyTOF). Subsequently, machine learning

models were developed based on immune signatures and the most valuable

laboratory parameters that performed well in distinguishing mild from critical

cases. Finally, single-cell RNA sequencing data from a published study (n = 43)

and electronic health records from a prospective cohort study (n = 840) were

used to verify the role of crucial clinical laboratory and immune signature

parameters in the stratification of COVID-19 severity.

Results: Patients with COVID-19 were determined with disturbed glucose and

tryptophan metabolism in two major innate immune clusters. Critical patients

were further characterized by significant depletion of classical dendritic cells

(cDCs), regulatory T cells (Tregs), and CD4+ central memory T cells (Tcm), along

with increased systemic interleukin-6 (IL-6), interleukin-12 (IL-12), and lactate

dehydrogenase (LDH). The machine learning models based on the level of cDCs

and LDH showed great potential for predicting critical cases. The model

performances in severity stratification were validated in two cohorts (AUC =

0.77 and 0.88, respectively) infected with different strains in different periods. The

reference limits of cDCs and LDH as biomarkers for predicting critical COVID-19

were 1.2% and 270.5 U/L, respectively.
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Conclusion: Overall, we developed and validated a generalizable and easy-to-

use COVID-19 severity stratification model using machine learning algorithms.

The level of cDCs and LDH will assist clinicians in making quick decisions during

future pandemics.
KEYWORDS

COVID-19, mass cytometry by time of flight (CyTOF), classical dendritic cells, lactate
dehydrogenase, severity stratification, machine learning, decision-making
GRAPHICAL ABSTRACT
1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused

by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

has affected a global population exceeding 770 million individuals,

leading to approximately 7.0 million fatalities (1). Although

COVID-19 no longer constitutes a public health emergency of

international concern, the whole world should review the lessons

learned to prepare for the next pandemic (2). Better allocation of

limited health resources, prediction of disease trajectories, and

improvement of patient outcomes are essential during this

pandemic. Therefore, the identification of critical patients is

helpful for clinical management. Patients with critical COVID-19
02
have poor short- and long-term outcomes, including high in-

hospital mortality and more post-acute COVID-19 syndromes

(3). To improve preparedness and resilience to emerging threats,

it is necessary to develop a generalizable COVID-19 severity

stratification model, providing references for guiding the clinical

management of the next pandemic.

Current COVID-19 stratification models are primarily based on

a series of clinical manifestations, including vital signs, medical

history, arterial blood gas results, laboratory tests, and chest

imaging abnormalities (4, 5). In 2020, an easy-to-use COVID-19

severity score model was developed using eight commonly

available parameters, which showed excellent performance in

the identification of high-risk patients (6). However, the
frontiersin.org
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pathophysiology of these markers, which can foretell the prognosis

of COVID-19 remains unclear. COVID-19 is characterized by a

dysfunctional immune response against SARS-CoV-2 (7, 8).

Immune-related biomarkers contribute to the understanding of

disease progression and optimal treatments. Evidence suggests

that severely ill patients show lymphocyte exhaustion (9–11),

expansion of monocytes (12, 13), and cytokine storm (high levels

of interleukin-6 [IL-6], C-reactive protein [CRP], and interferons)

(14). By combining clinical manifestations and immunological

biomarkers, a pathophysiology-based model will provide novel

perspectives for clinical severity stratification.

Overall, we aimed to establish a generalizable COVID-19

severity stratification model using machine-learning methods. We

aimed to elucidate the key immune signatures of patients with

critical COVID-19 using mass cytometry by time of flight (CyTOF).

By combining immune signatures and clinical parameters, the

machine learning model is expected to improve our

understanding of critical COVID-19 and provide references for

quick decision-making during future pandemics.
2 Materials and methods

2.1 Study design

To prepare for the next COVID-19 pandemic, we established a

clinical severity stratification model using machine learning with

immune signatures. Three COVID-19 cohorts (one discovery

cohort and two validation cohorts) and 16 age- and sex-matched

healthy volunteers (negative for SARS-CoV-2 and virus-specific

Immunoglobulin M [IgM] and Immunoglobulin G [IgG], as

indicated by the reverse transcription-polymerase chain reaction

[RT-PCR] test) were included in this study. According to the

clinical severity classification criteria (Supplementary Table S1),

which was modified from World Health Organization guidelines

(2), patients in the discovery cohort were classified into mild and

critical cases. We screened potential variables by longitudinally

comparing the levels of anti-SARS-CoV-2 antibodies, inflammatory

cytokines, plasma complement components, and cellular immune

signatures between critical and mild cases. A self-designed 42-

parameter panel, including nine energy metabolism enzymes, was

applied to phenotypic immune signatures using CyTOF technology.

The most clinically relevant immune signatures and plasma

parameters were introduced into machine learning.
2.2 Patient cohorts

2.2.1 Discovery cohort and sample collection
Patients who met the following inclusion criteria and were

admitted to our surgical intensive care unit (ICU) between

December 2021 and December 2022 were enrolled in the discovery

cohort (n = 39, with 59 samples). Inclusion criteria were adults aged

>18 years, first diagnosed with SARS-CoV-2 genome positivity using

RT-PCR test in the previous 96 h, and sufficient remaining blood

after regular laboratory tests on the first day post-admission.
Frontiers in Immunology 03
The exclusion criteria were as follows: age < 18 years; pregnancy;

breastfeeding; existence of any pre-existing and transmissible

diseases, such as human immunodeficiency virus, tuberculosis, and

syphilis; mental illnesses; or taking psychotropic drugs. Basic

information included comorbidities, in-hospital mortality, Murry

lung injury score, and length of mechanical ventilation (Table 1).

Longitudinal (on days 1, 3, and 7 post-admission) blood

samples were collected for analysis. Briefly, 2 mL peripheral blood

samples were collected and delivered immediately to the lab at 4°C

to gain the plasma and peripheral blood mononuclear cells

(PBMCs). To avoid omitting potentially important information,

both the absolute cell counts and relative cell proportion to PBMCs

at all sampling points were analyzed in the present study.

2.2.2 Validation cohort 1
To verify the key role of the most important immune subset

(here, cDCs (C07)) in clinical severity stratification, we adopted

public open data from Stephenson et al. (15). Briefly, single-cell data

from mild (n = 26) and critical (n = 17) cases recruited from

Addenbrooke’s Hospital, Royal Papworth Hospital, and University

College London (UCL) Hospital were downloaded from https://

covid19cellatlas.org/. The proportion of classical dendritic cells

(cDCs) to PBMCs was filtered using the R package Seruat (4.0).

According to the authors’ description, all patients were SARS-CoV-

2 antigen-positive without active hematological malignancy or

cancer, known immunodeficiency, sepsis from any cause, or

blood transfusion within 4 weeks.

2.2.3 Validation cohort 2
To verify the role of the most important systemic parameter

(here, lactate dehydrogenase (LDH)) in clinical severity

stratification, all the patients with complete clinical data admitted

to other ICUs in our institution (Peking University Third Hospital)

between December 2021 and December 2022 were retrospected (n

= 840). Inclusion and exclusion criteria were the same with the

discovery cohort.
2.3 Clinical laboratory data collection

Indices of interest, including the levels of inflammatory

cytokines, complement components in plasma, and anti-SARS-

CoV-2 antibodies, were extracted from electronic medical records

(Table 2). Specifically, they were the systemic LDH, lactate,

complement component 3 (C3), complement component 4 (C4),

50% hemolytic unit of complement (CH50), IgG, immunoglobulin

A (IgA), IgM, immunoglobulin E (IgE), interleukin-1 (IL-1),

interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), IL-

6, interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-10 (IL-10),

interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-17 (IL-

17), interferon-a (IFN-a), interferon-g (IFN-g), tumor necrosis

factor-a (TNF-a), granulocyte colony-stimulating factor,

granulocyte macrophage colony-stimulating factor, vascular

endothelial growth factor, macrophage inflammatory protein-1-a
(MIP1-a), and monocyte chemotactic protein-1. All data were

collected and verified by two experienced doctors.
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2.4 Mass cytometry

PBMCs were isolated from peripheral blood using Ficoll density

gradient centrifugation. To sort cell precipitates, they were

combined with 5 mL of fluorescence-activated cell sorting (FACS)

buffer (1×phosphate buffered saline supplemented with 0.5% bovine

serum albumin) and centrifuged at 400×g for 5 min at 4°C. The

supernatant was discarded and the cell precipitates were

resuspended in FACS buffer. To examine the samples, the

viability rate must be greater than 85%, and the number of cells

must not be less than 3×106.

To ensure homogeneous staining, approximately 2×106–3×106

PBMCs were used for each patient. PBMCs were stained with

cisplatin (Fluidigm) (0.1 uL, 2 min, room temperature) for live/

dead, washed with cell staining buffer (CSB) (Fluidigm), and spun

down (300×g, 5 min, room temperature). PBMCs were then

incubated with human TruStain FcX (BioLegend) for 10 min at

room temperature. After incubation, PBMCs were stained with 50

uL surface receptor staining mix (30 min, room temperature) and

washed twice with CSB (300×g, 5 min, room temperature). Next,

the PBMCs were incubated with FixL buffer (Fluidigm) for 15 min

at room temperature and washed twice with Perm-S buffer

(Fluidigm) (800×g, 5 min, room temperature). PBMCs were

stained with 50 uL intracellular mix (30 min, room temperature)

and washed twice with CSB (800×g, 5 min, room temperature).

PBMCs were fixed in 1 mL 1.6% paraformaldehyde. Samples were

fixed and permeabilized by incubating 1 mL Fix and Perm buffer
Frontiers in Immunology 04
(Fluidigm) with 1 uL nucleic acid Ir-Intercalator (Fluidigm)

overnight at 4°C. Metal-conjugated antibodies and other reagents

are listed in Supplementary Table S2.
2.5 CyTOF data acquisition

Before acquisition, PBMCs were washed twice with CSB and

resuspended at a concentration of 1.1×106 cells/mL in the Cell

Acquisition Solution (Fluidigm) containing 10% EQ Four Element

Calibration Beads (Fluidigm). PBMCs were acquired using a Helios

CyTOF Mass Cytometer (Fluidigm) equipped with a SuperSampler

fluidics system (Victorian Airships), and data were collected as

previously described. fcs files.
2.6 CyTOF data analysis

After acquisition, data were concatenated using the fcs

concatenation tool from Cytobank and manually gated to retain

live, singlet, and valid immune cells. CytoNorm was used in two

steps according to the instructions provided in the R library

CytoNorm to normalize the data (16). For the downstream

analysis, the fcs files were loaded into R. The signal intensities for

each channel were arcsinh-transformed with a cofactor of 5

(x_transf = asinh(x/5)). To visualize high-dimensional data, t-

distributed stochastic neighbor embedding analysis (t-SNE) (17)

and flow self-organizing map (FlowSOM) (18) algorithms were

performed on all samples. Approximately 10,000 cell events in each

sample were pooled and included in the t-SNE analysis, with a

perplexity of 30 and theta of 0.5. The R t-SNE package for the

Barnes Hut implementation of the t-SNE was used in this study. To

study the developmental trajectory of natural killer (NK) cells and

classical monocytes, dynamic immunometabolic states and cell

transitions were analyzed using the Monocle algorithm (19). Data

are displayed using the ggplot2 R package.
2.7 Machine learning strategies

Since the target variable (clinical severity) for model training

was labelled data, provided by clinical experts. The supervised

learning methods are more appropriate than unsupervised-, semi-

supervised-, and reinforcement learning methods. By comparing

the advantages of different supervised methods (20–30)

(Supplementary Table S3), we finally employed AdaBoost, Back

Propagation, Gradient Boosting Decision Tree, Random Forest, and

Support Vector Machine algorithms to construct classifiers for

discriminating patients with critical COVID-19 from mild ones.

The important immune and systemic features (cDCs and LDH)

were introduced to the model as inputs. Five-fold cross-validation

(with four folds for training and one-fold for validation) and

external validation were performed. For five-fold cross-validation,

all the training data were randomly split into five parts. Each part

was considered as the training part and the others were used for

validation. Here, we performed the five-fold cross-validation five
TABLE 1 Clinical characteristics of COVID-19 discovery cohort.

Features Mild
(n = 15)

Critical
(n = 24)

P-
value

Age (yr.) 72.000
(63.00-76.00)

72.500
(69.00-77.75)

0.2020

Sex, male 12 (80.00%) 19 (79.17%) >0.9999

Mortality 0% (0/15) 37.5% (9/24) 0.0069

Murry lung injury score 1.500 (0.00-4.00) 2.875 (2.37-3.29) 0.0110

Length of
mechanical ventilation

0.000 (0.00-0.00) 1.000 (0.00-9.00) 0.0129

Length of ICU stay 6.000 (5.00-6.00) 10.000
(7.000-23.50)

0.0058

Comorbidities

Circulatory diseases 11 (73.33%) 20 (83.33%) 0.6857

Endocrine diseases 7 (46.67%) 12 (50.00%) >0.9999

Digestive diseases 5 (33.33%) 8 (33.33%) >0.9999

Urological diseases 2 (13.33%) 5 (20.83%) 0.6857

Respiratory diseases 4 (26.67%) 5 (20.83%) 0.7110

Others 3 (20.00%) 5 (20.83%) >0.9999
The statistical analyses were performed using Prism v.9.0 (GraphPad Software). For
comparison between two groups, the gender, mortality, and comorbidities were evaluated
using chi-square test and other clinical characteristics were evaluated by the Unpaired two-
tailed Student’s t-test and data without a normal distribution were evaluated by the Mann-
Whitey U-test. Data are presented as median with interquartile range.
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TABLE 2 Laboratory characteristics of COVID-19 discovery cohort.

Mild_Total
(n = 24)

Critical_Total
(n = 35)

P# Mild_D1
(n = 15)

Critical_D1
(n = 15)

P* Mild_D7
(n = 9)

Critical
_D7

(n = 11)

P$

LDH (U/L) 239.40 ± 54.43 397.30 ± 219.20 0.0004 259.10
± 46.84

487.40 ± 315.50 0.0032 190.00
± 41.34

304.10 ± 104.70 0.0424

Lactate
(mmol/L)

2.18 ± 0.39 2.79 ± 1.39 0.6961 2.18 ± 0.39 2.60 ± 1.56 0.8818 NA 2.63 ± 1.46 NA

C3 (g/L) 0.91 ± 0.19 0.88 ± 0.20 0.5294 0.94 ± 0.22 0.95 ± 0.15 0.8007 0.88 ± 0.16 0.78 ± 0.19 0.2319

C4 (g/L) 0.23 ± 0.11 0.22 ± 0.08 0.7375 0.24 ± 0.13 0.25 ± 0.08 0.2273 0.21 ± 0.06 0.17 ± 0.07 0.2627

CH50 (U/ml) 51.43 ± 12.89 45.37 ± 14.51 0.2027 50.57 ± 15.18 50.07 ± 11.55 0.3615 53.14 ± 6.99 39.30 ± 17.33 0.0999

IgG (g/L) 10.96 ± 2.65 12.51 ± 3.31 0.0820 11.31 ± 2.97 13.62 ± 3.97 0.1003 10.41 ± 2.10 10.71 ± 1.96 0.7556

IgA (g/L) 2.38 ± 1.03 2.72 ± 1.35 0.3269 2.65 ± 1.13 2.89 ± 1.41 0.6227 1.91 ± 0.66 2.17 ± 1.35 0.6322

IgM (g/L) 1.00 ± 0.53 0.99 ± 0.38 0.9375 1.00 ± 0.51 0.94 ± 0.38 0.7212 0.99 ± 0.59 1.01 ± 0.36 0.9549

IgE (g/L) 102.70 ± 145.50 168.60 ± 265.70 0.1419 116.40
± 160.90

249.20 ± 366.40 0.2700 78.69
± 120.00

85.16 ± 107.70 0.6334

IL-1 (pg/ml) 8.29 ± 9.31 8.30 ± 11.14 0.4043 7.66 ± 9.09 6.30 ± 7.58 0.4053 9.34 ± 10.12 13.52 ± 10.36 0.4470

IL-2 (pg/ml) 3.62 ± 1.75 3.18 ± 2.05 0.1525 3.53 ± 1.82 3.14 ± 1.75 0.5551 3.76 ± 1.71 3.84 ± 2.56 0.9409

IL-4 (pg/ml) 2.51 ± 1.05 2.65 ± 1.64 0.4385 2.66 ± 1.28 2.55 ± 1.66 0.3892 2.25 ± 0.45 3.11 ± 1.81 0.1848

IL-5 (pg/ml) 2.69 ± 1.52 2.71 ± 1.90 0.4104 2.06 ± 0.71 2.71 ± 1.92 0.8407 3.60 ± 1.93 3.03 ± 1.64 0.4938

IL-6 (pg/ml) 17.22 ± 13.49 116.50 ± 200.10 0.0257 18.00 ± 13.82 98.20 ± 109.90 0.2017 15.94 ± 13.63 70.36 ± 84.13 0.7103

IL-8 (pg/ml) 45.54 ± 67.81 115.10 ± 261.60 0.5127 45.66 ± 74.20 50.19 ± 119.40 0.6743 45.32 ± 59.86 248.10 ± 419.10 0.3702

IL-9 (pg/ml) 1.07 ± 0.37 1.211 ± 0.52 0.4920 1.19 ± 0.27 1.10 ± 0.40 0.6794 0.92 ± 0.46 2.34 ± 3.08 0.4762

IL-10 (pg/ml) 3.80 ± 1.80 3.58 ± 2.21 0.4242 3.86 ± 1.71 4.08 ± 2.85 0.7688 3.72 ± 2.04 2.69 ± 0.98 0.1703

IL-12 (pg/ml) 3.04 ± 1.93 2.20 ± 0.55 0.0189 3.11 ± 1.85 2.05 ± 0.63 0.0052 2.94 ± 2.16 2.25 ± 0.45 0.7197

IL-13 (pg/ml) 0.61 ± 0.48 0.68 ± 0.33 0.1265 0.72 ± 0.62 0.67 ± 0.19 0.1696 0.46 ± 0.09 0.59 ± 0.26 0.3879

IL-17 (pg/ml) 7.16 ± 5.06 11.25 ± 20.90 0.6749 7.33 ± 5.24 5.22 ± 3.19 0.1941 6.86 ± 5.05 8.79 ± 7.53 0.5336

IFN-a (pg/ml) 3.98 ± 2.45 3.34 ± 1.95 0.3066 3.88 ± 2.27 2.99 ± 1.48 0.2389 4.20 ± 2.84 4.33 ± 2.45 0.9193

IFN-g (pg/ml) 5.70 ± 5.74 6.17 ± 5.77 0.9153 4.70 ± 3.02 6.42 ± 6.20 0.7340 7.33 ± 8.57 6.50 ± 5.24 0.7618

TNF-a (pg/ml) 3.97 ± 2.76 2.90 ± 2.11 0.1284 3.79 ± 2.67 3.18 ± 2.27 0.5299 4.28 ± 3.06 3.13 ± 2.24 0.3704

GCSF (pg/ml) 1.20 ± 0.33 5.12 ± 16.51 0.0963 1.32 ± 0.38 1.39 ± 0.39 0.7181 1.03 ± 0.12 1.68 ± 0.95 0.2825

GM-CSF
(pg/ml)

7.94 ± 18.52 22.34 ± 41.72 0.1319 1.96 ± 0.10 3.03 ± 1.81 0.5478 2.24 ± 1.10 11.33 ± 26.64 0.4336

VEGF (pg/ml) 160.10 ± 62.70 285.60 ± 213.50 0.0813 181.10
± 58.60

254.20 ± 151.30 0.2811 128.70
± 62.22

284.70 ± 232.40 0.1483

MIP1-a
(pg/ml)

28.17 ± 21.49 16.46 ± 13.31 0.1621 31.65 ± 26.92 13.18 ± 10.80 0.0705 22.93 ± 10.81 17.06 ± 15.16 0.2601

MCP1 (pg/ml) 123.60 ± 140.60 309.30 ± 806.10 0.8844 165.60
± 172.80

198.20 ± 211.50 0.9813 60.55 ± 27.26 77.52 ± 71.16 0.9399
F
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All statistical analyses were performed using Prism v.9.0 (GraphPad Software). For comparison between two groups, normally distributed data were evaluated by the unpaired two-tailed
Student’s t-test and data without a normal distribution were evaluated by the Mann-Whitey U-test. Data were presented as mean ± SEM. P#, comparison between Mild_Total and Critical_Total;
P*, comparison between Mild_D1 and Critical D1; P$, comparison between Mild_D7 and Critical_D7.
LDH, lactate dehydrogenase; C3, Complement component 3; C4, Complement component 4; CH50, 50% hemolytic unit of complement; IgG, Immunoglobulin G; IgA, Immunoglobulin A; IgM,
Immunoglobulin M; IgE, Immunoglobulin E; IL-1, Interleukin-1; IL-2, Interleukin-2; Interleukin-4 (IL-4), IL-5, Interleukin-5; IL-6, Interleukin-6; IL-8, Interleukin-8; IL-9, Interleukin-9; IL-10,
Interleukin-10; IL-12, Interleukin-12; IL-13, Interleukin-13; IL-17, Interleukin-17; INF-a, Interferon-a; IFN-g, Interferon-g; TNF-a, Tumor Necrosis Factor-a; GCSF, Granulocyte colony
stimulating factor; GM-CSF, Granulocyte macrophage colony stimulating factor; VEGF, Vascular Endothelial Growth Factor; MIP1-a, Macrophage Inflammatory Protein-1-a; MCP1, Monocyte
Chemotactic Protein-1.
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times and the averaged values of AUC were adopted. For the

external validation, Back Propagation algorithm was performed.
2.8 Statistical analysis

Statistical analyses were performed using the R software (v.4.0.4).

The normality of patient data was tested using the Shapiro–Wilk

normality test. Statistically significant differences between phenotypes

were calculated using two-sided multiple Student’s t-tests for

variables with a normal distribution and Wilcoxon rank-sum tests

for other variables. Spearman’s correlation analysis was performed on

significantly different clusters, cytokines, and clinical indicators to

assess their correlations using the R package stats (4.1.0). Receiver

operating characteristic (ROC) analysis was performed with the R

package pROC (1.16.2), and a heatmap was generated with the R

package ggplot2 (4.0.5).
3 Results

3.1 Basic information and systemic
inflammatory responses of the
discovery cohort

A total of 39 individuals diagnosed with COVID-19 (15 mild

and 24 critical cases) admitted to our ICU were included in cohort 1

as the discovery cohort to determine potential predictive

parameters. As shown in Table 1, the basic information of the

critical and mild cases was comparable. The Murry lung injury

score, length of mechanical ventilation, and length of ICU stay were

significantly high in critical cases (Table 1). Longitudinal

comparisons of inflammatory cytokines, antibodies, and

complement components revealed that systemic IL-6, IL-12, and

LDH levels were important in distinguishing mild cases from

critical cases. The variation trends in these parameters were

consistent across all sampling points (Table 2).
3.2 Cellular immunometabolic
characteristic of patients with COVID-19
differed from healthy volunteers

To acquire a full landscape of the immune signatures of PBMCs

and identify the potentially important clusters for the stratification

of COVID-19, we performed CyTOF analysis with a 42-parameter

panel (consisting of 33 surface markers and 9 intracellular

metabolic markers) (Supplementary information, Figure S1). The

obtained data were subjected to a FlowSOM clustering algorithm

and t-distributed stochastic neighbour embedding (t-SNE) analysis,

which enabled the identification of distinct clusters representing

different immune cell types. According to the dimensional

reduction results of the marker expression level, 34 clusters were

obtained (Figure 1A). Then, to provide reference for other similar

studies, which may apply different panels, we further classified these

34 clusters into “eleven major immune cell populations” (CD4+ T,
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CD8+ T, gdT, DPT, DNT, pDC, cDC, NK, NKT, B, and Monocytes),

which were often studied (Supplementary information, Table S4;

Figure S2).

We found that the composition of PBMCs in patients with

COVID-19 varied significantly from that in healthy volunteers. The

total counts of PBMCs (in per millilitre of peripheral blood) and the

counts of the main immune cell types, such as T, B, and NK cells, of

patients with COVID-19 decreased significantly. However, the

number of monocytes increased (Supplementary information,

Figure S2). Comparison of the percentages of all defined 34 clusters

further confirmed that, fifteen immune cell subsets were significantly

differed between COVID-19 patients and healthy volunteers

(Figures 1B, C). Most of these subsets were acquired immune cell

subsets and were significantly decreased in COVID-19. In addition,

variations in two major innate immune cell subsets (NK cells (C03)

and classical monocytes (C12), with the average percentages more

than 5% in healthy volunteers) were also found (Figures 1B, C). As

the host innate immunity is the first line of defense, we further

investigated these two subsets’metabolic status. As shown in Figure 2,

the metabolic markers participating in the process of glucose (such as

CS, GLS, PFKFB3, and PDk1_pS241) and tryptophan metabolism

(IDO1 and KAT1) were significantly altered in both NK cells (C03)

and classical monocytes (C12). The developmental trajectories

further demonstrated that under COVID-19, NK cells gradually

transformed from C01 to C03, namely, from a relative metabolic

steady state to a disturbed state with decreased oxidative

phosphorylation but boosted glycolysis and tryptophan catabolism

(Figures 2A–C). For classical monocytes, C12 gradually transformed

to C09, namely, to tryptophan exhaustion (Figures 2D–F).
3.3 Distinct cellular immune signatures of
critical COVID-19 were identified
compared with mild cases

As described in the Methods section, to identify the important

clusters distinguishing critical cases from mild cases, we compared the

cell counts and percentages of each cluster within PBMCs at all

sampling points. In total, five candidate clusters were found, and the

differences in cDCs (C07), Tregs (C20), CD4+ Tcm (C24), pDCs (C05),

and DPT (C29) were shared by the results from all sampling points and

the first day samples (Figure 3A). As the percentages of pDCs and DPT

were below 0.5%, they were not considered in subsequent analyses.

Next, we investigated whether these clusters were associated with

clinical parameters and prognosis. The results demonstrated that the

counts of cDCs, Tregs, and CD4+ Tcm were significantly decreased in

the critical cases and patients who ultimately died (Figures 3B, C).

Their levels were positively or negatively correlated with systemic

parameters, lung injuries, and the length of mechanical ventilation

(Figures 3D–F, and Supplementary information, Table S5). Within

each severity group, the longitudinal analysis showed that the counts of

these three clusters were not significantly different among different

sampling points (Supplementary information, Figure S3). These

findings indicated that altered cDCs, Tregs, and CD4+ Tcm were

stable/sensitive predictive biomarkers because their level wouldn’t be

significantly influenced by sampling timing and/or transient condition
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relief. Specifically, cDCs was the most important cluster, negatively

correlated with LDH and positively correlated with IL-2, IL-12, TNF-a,
and MIP1-a (Figure 3E). Receiver operating characteristic analysis

further revealed that the single variable cDCs was effective in predicting

critical COVID-19 (Figure 3G). And the level of LDH was the most

important systemic parameter because of its strong negative correlation

with cDCs, Tregs, and CD4+ Tcm (Figure 3E).
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3.4 Development and validation of clinical
severity stratification models based on the
immune signatures and plasma parameters
of patients with critical COVID-19

Considering the potential of machine learning for disease

severity stratification, we developed clinical severity stratification
B

C

A

FIGURE 1

CyTOF analysis of peripheral immune cell subsets in patients with COVID-19 and healthy volunteers. (A) Heatmap showing normalized expression of
42 markers for 34 identified clusters. Relative frequency of each cluster is displayed as the right bar. (B) T-SNE maps displaying the relative
distribution of 34 identified clusters across the groups. Immune cells were pooled from 30,000 cellular events in each sample. (C) Boxplots showing
the frequencies of differed cell clusters between patients with COVID-19 and healthy volunteers. The center, box and whiskers of the boxplot
represent the median, IQR and 1.5 × IQR, respectively. The t-test was used for normally distributed data and the Mann–Whitney U-test was used for
non-normally distributed data.
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FIGURE 2

Cellular immunometabolic characteristics of COVID-19-specific immune subsets. (A) Monocle 2 trajectory analysis of NK cells. The monocle plot
displays NK cells color-coded by different NK cell clusters. The arrow indicates the pseudotime trajectory of NK cells from a healthy state to COVID-
19 infection. C01 was localized at the beginning of the pseudotime trajectory, whereas C03 was at the end of the trajectory. (B) Boxplots showing
the density of the cellular metabolic markers (CS, GLS, IDO, KAT1, and PFKFB3) of C01 and C03. (C) Monocle 2 trajectory analysis of cellular
metabolic markers of NK cells. Each dot represents one cell and colors represent the expression levels of indicated markers. (D) Monocle 2
trajectory analysis of classical monocytes. The monocle plot displays classical monocytes color-coded by different classical monocytes clusters. The
arrow indicates the pseudotime trajectory of classical monocytes from healthy state to COVID-19 infection. (E) Boxplots showing the density of the
cellular metabolic markers (CS, GLS, IDO, KAT1, and PFKFB3) of the C12 and C09. (F) Monocle 2 trajectory analysis of cellular metabolic markers of
classical monocytes. Each dot represents one cell, and colors represent the expression levels of indicated markers. The center, box and whiskers of
the boxplot represent the median, IQR and 1.5 × IQR, respectively. The t-test was used for normally distributed data and the Mann–Whitney U-test
was used for non-normally distributed data.
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models based on important key clusters (cDCs, Tregs, and CD4+

Tcm) and systemic parameters (LDH, IL-6, IL-12). As we expected,

machine learning models with six parameters as inputs showed

good effects in predicting clinical severity (Figure 4A). Among these

parameters, cDCs and LDH were the most important immune
Frontiers in Immunology 09
signature and systemic signature, respectively (Figure 4B). The

model using cDCs and LDH as individual input also performed

well, with an average AUC of approximately 0.8 in the discovery

cohort (Figures 4C, D). The validation of machine learning models

with single input (with Back Propagation algorithm) further
B

C

D E

F G

A

FIGURE 3

Immune and clinical characteristics of patients with critical COVID-19. (A) The candidate clusters distinguishing patients with critical COVID-19 from
mild ones. (B, C) Boxplots depicting the cell counts of significantly differed clusters between patients with mild and critical COVID-19 (B), and
between survived and dead patients (C). (D) Heatmap showing Spearman’s correlations between the counts of critical COVID-19 key immune
clusters and clinical laboratory parameters in all samples. Colors represent Spearman’s correlation coefficient. (E, F) Scatterplots showing
correlations between the counts of critical COVID-19 key immune clusters and critical clinical laboratory parameters (E), Murray scores, and length
of mechanical ventilation days (F). (G) ROC analysis predicting COVID-19 severity using the counts of critical COVID-19-specific clusters and the
level of LDH. The center, box and whiskers of the boxplot represent the median, IQR and 1.5 × IQR, respectively. The t-test was used for normally
distributed data and the Mann–Whitney U-test was used for non-normally distributed data.
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demonstrated that the clinical severity stratification model based on

single cDCs had an AUC of 0.77 (Figure 4E). And the model based

on systemic LDH had an AUC of 0.88 (Figure 4F). Notably, patients

in validation cohort 1 were recruited in 2020 and infected with a

different strain compared with the patients in the discovery cohort.

These results indicate that our models, based on single biomarker

(cDCs or LDH), performed well in COVID-19 severity

stratification, with good robustness and generalization.
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3.5 Reference limits of cDCs and LDH as
biomarkers for predicting critical
COVID-19

To provide detail reference for clinicians in quick decision-

making for the next pandemic, we analyzed the effect of cDCs and

LDH in severity prediction in validation cohorts and tried to find

out the optimal reference limits. In validation cohort 1 (adopted
B

C D

E F

A

G H

FIGURE 4

The predictive effects of cDCs and LDH on COVID-19 severity stratification. (A) Performances of COVID-19 severity stratification models based on
the six candidate indicators (C07, C20, C24, LDH, IL-6, and IL-12) using five different machine learning algorithms in the discovery cohort. (B) The
bar charts showing the contributions of six indicators in Ada, RF, and GBDT, as well as the averaged contributions of the six indicators across the
three models. (C, D) Performances of COVID-19 severity stratification models based on the counts of cDCs (C07) (C) and the level of LDH (D) using
five different machine learning algorithms in the discovery cohort. Each dot represents an AUC value of 5-fold cross-validation, and the bar shows
the averaged AUC values from 5 runs. (E, F) Performances of COVID-19 severity stratification models based on the cDCs (C07) in validation cohort 1
(E), and LDH in validation cohort 2 (F) by Back Propagation algorithm. (G, H) ROC analysis of cDCs (G) and LDH (H) for the COVID-19 stratification in
the validation cohorts.
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from Stephenson et al.’s published work (15)), the proportion of

cDCs decreased in critically ill participants across the three UK

centers (Supplementary information, Figures S4A–C). The

percentage of cDCs showed good effects in predicting clinical

severity (AUC = 0.74, Figure 4G). The optimal cutoff point was

1.2%, and the sensitivity was 0.93 (95% CI 0.70-0.99). In the

validation cohort 2 (adopted from Peking University Third

Hospital), similar with the findings in the discovery cohort,

significant increase of LDH (Supplementary information, Figure

S4D) and its predictive effect was found (AUC = 0.89, Figure 4H).

The cutoff point was 270.5 U/L and the sensitivity was 0.92 (95% CI

0.86-0.95). Accordingly, the reference limits of cDCs and LDH for

critical COVID-19 were less than 1.2% and more than 270.5 U/L.
4 Discussion

Since the beginning of the SARS-CoV-2 pandemic, numerous

researchers have provided important perspectives on the underlying

mechanisms of COVID-19 and have developed severity stratification

models (31). To provide novel insights and better preparations for the

next pandemic, we developed a severity stratification model with good

generalizability based on the pathophysiology of COVID-19. Through

integrative analysis of immune signatures and clinical manifestations in

critical participants, we found that cDCs and systemic LDH levels were

the most important factors that determined severity stratification

(Figure3G). The key roles of the two indicators were validated using

two cohorts. Notably, the machine learning models based on the level

of cDCs and LDH showed great potential for predicting critical cases in

cohorts infected with different strains (Figures 4E, F). The reference

limits of cDCs and LDH as biomarkers for predicting critical COVID-

19 were 1.2% and 270.5 U/L, respectively (Figures 4G, H).

According to the current World Health Organization criteria,

critical and severe COVID-19 are identified by a bundle of clinical

features, including chest imaging characteristics, arterial blood gas

parameters, and other clinical symptoms and signs (2). A progressive

decrease in peripheral blood lymphocytes, an increase in IL-6, CRP,

procalcitonin, and D-dimer are considered biomarkers for COVID-

19 severity based on guidelines (32). In the present study, we detected

that LDH showed great potential in the early identification of patients

with critical COVID-19 (33–36). Although LDH is considered a

nonspecific biomarker of inflammation, its elevation is associated

with poor outcomes, possibly reflecting the severity of lung damage

(37, 38). Furthermore, a large meta-analysis suggested that increased

LDH levels following infection correlated with the post-acute

respiratory sequelae of COVID-19, showing great potential in

predicting long-term COVID-19 (39).

Certain profound immunity alterations took place during

COVID-19 infection, and the depletion and dysfunction of

lymphocytes were described as the most classical signatures of

critical COVID-19 in most articles. Although we also observed

decreased Tregs and CD4+ central memory T cells in critical cases,

the counts of cDCs contributed the most to predict clinical severity.

Several studies have demonstrated the reduction and dysfunction of

cDCs in critical COVID-19 (40, 41), our study was supported by

these results and further emphasized its key role in severity
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stratification models. As highly efficient antigen-presenting cells,

DC are the key link between innate and adaptive immunity. Several

ongoing clinical trials have been assessing the safety and efficiency

of DC-based vaccines against SARS-CoV-2 (42, 43). DCs can

activate T cell responses and save adjacent cells by secreting type

I interferons (44). However, some limitations of DC-based vaccines,

such as toxicity, allergenicity, and the possibility of DCs phenotype

alterations, have not been resolved (42). Therefore, further studies

on DCs as treatable traits are required.

Researches have demonstrated that comorbidities have an impact

on the severity of COVID-19 in patients (45). SARS-CoV-2 is more

likely to affect older men with comorbidities (46), and the presence of

comorbidity is more common in patients with severe COVID-19 (45)

than mild patients. Patients with diabetes, cardiovascular diseases,

and respiratory diseases, are more likely to present more severe

symptoms and complications (33, 47). However, our patients with

COVID-19 were all from specialty ICU, who tended to be with a poor

underlying functional status and with more comorbidities (Table 1).

Accordingly, our conclusions may not be as applicable to those

without comorbidities or with a healthy status. This is a limitation

of our study, and future studies are encouraged to address this issue.

In summary, we established a severity stratification model for

COVID-19 based on integrative analysis of immune signatures and

clinical laboratory parameters. This machine-learning model

was validated in two cohorts infected with different strains,

demonstrating its generalizability and robustness. We hope that

our analysis will be beneficial for the early identification of high-risk

patients with COVID-19 and provide some references for the

next pandemic.
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PBMCs Peripheral blood mononuclear cells

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

cDCs classical dendritic cells

AUC area under curve

CyTOF Mass cytometry by time of flight

RT-PCR Reverse transcription-polymerase chain reaction

UCL University College London

PUTH Peking University Third Hospital

FACS Fluorescence-activated cell sorting

PBS Phosphate buffered saline

CSB Cell Staining Buffer

PCA Principal component analysis

ROC Receiver operating characteristic

ICU Intensive Care Unit

FlowSOM Flow self-organizing map

t-SNE t-distributed stochastic neighbor embedding analysis

NK cells Natural killer cells

DCs Dendritic cells

Tregs regulatory T cells

CS Citrate Synthase

GLS Glutaminase

IDO1 Indoleamine 2,3-dioxygenase 1

KAT1 Kynurenine aminotransferase 1

PFKFB3 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3

Ada AdaBoost

BP Back Propagation

GBDT Gradient Boosting Decision Tree

RF Random Forest

SVM Support Vector Machine

WHO World Health Organization

CRP C-reactive protein

LDH lactate dehydrogenase

C3 Complement component 3

C4 Complement component 4

CH50 50% hemolytic unit of complement

IgG Immunoglobulin G

IgA Immunoglobulin A

IgM Immunoglobulin M

IgE Immunoglobulin E
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IL-1 Interleukin-1

IL-2 Interleukin-2

IL-4 Interleukin-4

IL-5 Interleukin-5

IL-6 Interleukin-6

IL-8 Interleukin-8

IL-9 Interleukin-9

IL-10 Interleukin-10

IL-12 Interleukin-12

IL-13 Interleukin-13

IL-17 Interleukin-17

INF-a Interferon-a

IFN-g Interferon-g

TNF-a Tumor Necrosis Factor-a

GCSF Granulocyte colony stimulating factor

GM-CSF Granulocyte macrophage colony stimulating factor

VEGF Vascular Endothelial Growth Factor

MIP1-a Macrophage Inflammatory Protein-1-a

MCP1 Monocyte Chemotactic Protein-1

Tcm central memory T cell

EMR electronic medical records

PCT Procalcitonin.
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