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Background: Cancer-associated fibroblasts (CAFs) are the primary stromal cells

found in tumor microenvironment, and display high plasticity and heterogeneity.

By using single-cell RNA-seq technology, researchers have identified various

subpopulations of CAFs, particularly highlighting a recently identified

subpopulation termed antigen-presenting CAFs (apCAFs), which are

largely unknown.

Methods:We collected datasets from public databases for 9 different solid tumor

types to analyze the role of apCAFs in the tumor microenvironment.

Results: Our data revealed that apCAFs, likely originating mainly from normal

fibroblast, are commonly found in different solid tumor types and generally are

associated with anti-tumor effects. apCAFs may be associated with the activation

of CD4+ effector T cells and potentially promote the survival of CD4+ effector T

cells through the expression of C1Q molecules. Moreover, apCAFs exhibited

highly enrichment of transcription factors RUNX3 and IKZF1, along with

increased glycolytic metabolism.

Conclusions: Taken together, these findings offer novel insights into a deeper

understanding of apCAFs and the potential therapeutic implications for apCAFs

targeted immunotherapy in cancer.
KEYWORDS

antigen-presenting CAFs, single-cell RNA-seq, cancer-associated fibroblasts, tumor
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1 Introduction

The tumor microenvironment (TME) is composed of immune

cells, fibroblasts, endothelial cells, signaling molecules, and the

extracellular matrix, among others (1). Cancer-associated

fibroblasts (CAFs) are the predominant stromal cells found in

TME, exerting a crucial influence on the biological characteristics

of tumor initiation, progression, metastasis, and therapeutic

resistance (2). Thus, CAFs play a critical role in shaping the TME

through their interactions with other TME components, making

them valuable as both prognostic factors and therapeutic targets.

CAFs exhibit significant heterogeneity, with derivation from

normal fibroblasts (NFs), pericytes, smooth muscle cells, epithelial

cells, endothelial cells, adipocytes, or mesenchymal stem cells (3, 4),

followed by transformation by the neoplastic microenvironment. As

a result of the heterogeneity among CAFs, the lack of a universal

characterization of CAFs hinders CAFs-targeted therapy in clinical

settings (5). By employing single-cell transcriptomics analysis, they

can be broadly classified into myofibroblastic CAFs (myCAFs),

inflammatory CAFs (iCAFs), and antigen-presenting CAFs

(apCAFs) (6, 7). Much efforts have been spent on the first two

subpopulations, while apCAFs have gradually received more

attention in recent years.

Previous studies have unveiled that fibroblasts in normal tissue

possess the ability to function as amateur antigen-presenting cells

(APCs) through the processing and presentation of antigens. As

early as in 1980s, one study revealed that dermal fibroblasts can

present the tetanus toxoid antigen to antigen-specific T cells,

leading to an increased cell proliferation response caused by the

antigens (8). Another study provided evidence demonstrating the

efficacy of fibroblasts as APCs in lymphoid organs (9). Moreover,

several studies have shown that synovial fibroblasts in arthritis

express major histocompatibility complex (MHC) class II molecules

and exhibit the capacity to present arthritis propeptides to T cells

(10–13). Interestingly, it has been observed that mouse and human

fibroblasts, when cultured in vitro, have the potential to undergo
Abbreviations: CAFs, Cancer-associated fibroblasts; apCAFs, antigen-presenting

CAFs; myCAFs, myofibroblastic CAFs; iCAFs, inflammatory CAFs; eCAFs,

extracellular matrix CAFs; NFs, normal fibroblasts; TME, the tumor

microenvironment; APCs, antigen-presenting cells ; MHC, major

histocompatibility complex; cDC1, conventional type 1 dendritic cells; cDC2,

conventional type 2 dendritic cells; pDCs, plasmacytoid dendritic cells; PDAC,

pancreatic ductal adenocarcinoma; NSCLC, non-small-cell lung cancer; HNSCC,

Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC,

Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer;

BRCA, Breast Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC,

Renal Cell Carcinoma; scRNA-seq, single cell RNA sequencing; RNA-seq, RNA

sequencing; ST, spatial transcriptome; GEO, the Gene Expression Omnibus

database; GDC, the Genomic Data Commons database; EGA, the European

Genome-Phenome Archive; GSA for Human, the Genome Sequence Archive for

Human; Tregs, regulatory T cells; GSVA, gene set variant analysis; GO: BP, Gene

Ontology Biological Process; UMAP, Uniform Manifold Approximation and

Projection; DEGs, differentially expressed genes; logFC, log fold change; adjPval,

adjusted p-value; TFs, transcription factors; GLUT1, glucose transporter 1;

TAMs, tumor-associated macrophages.
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reprogramming and transform into conventional type 1 dendritic

cells (cDC1) like APCs (14, 15).

Within the context of tumor, Elyada E et al. introduced the

novel concept that apCAFs are present in pancreatic ductal

adenocarcinoma (PDAC) (6). Subsequent study unveiled that

apCAFs are actively engaged in promoting the differentiation of

naive CD4+ T cells into regulatory T cells (Tregs) in PDAC (16),

thus exerting immunosuppressive role. However, recent research by

the Kerdidani D et al. revealed the presence of immunostimulatory

apCAFs in non-small-cell lung cancer (NSCLC), which activated

and promoted survival of anti-tumor CD4+ effector T cells (17),

which was highlighted by Dr. Anna Dart, the editor of Nature

Reviews Cancer. Subsequently, Tsoumakidou M introduced the

“2nd hit hypothesis” suggesting that anti-tumor T cells may require

an in situ interaction with apCAFs within the tumor tissue to

effectively unleash their anti-tumor capabilities (18). These findings

highlight the recognition of the apCAFs concept and the

significance of antigen presentation, establishing it as a novel

research area. However, it is largely unknown about the existence

of apCAFs in other solid tumor types, their cellular origin, the

molecular mechanisms governing their formation, and the

intricate molecule machinery involved in antigen processing

and presentation.

In this study, we collected datasets of 9 different solid tumor

types from the Gene Expression Omnibus (GEO) database and the

Genomic Data Commons (GDC) database. By utilizing single-cell

transcriptomics, spatial transcriptomics, and other bioinformatics

analyses, we found that apCAFs were identified in different solid

tumor types. Moreover, apCAFs are associated with anti-tumor

effects across most solid tumor types and enriched in immune

response pathways related to T cells activation, antigen processing

and presentation, as well as response to interferon, and the classical

molecular components of antigen processing and presentation are

highly expressed in apCAFs. apCAFs may mainly come from tissue

resident fibroblasts, the transcription factors RUNX3 and IKZF1

may drive its formation. These findings have the potential to

provide deeper understanding of apCAFs and novel insights into

anti-tumor immunotherapy.
2 Materials and methods

2.1 Single-cell RNA-seq datasets collected
in this study

We gathered single-cell RNA sequencing (scRNA-seq) data

from 210 samples, encompassing the 9 common solid tumor

types. These samples were obtained from previously published

studies. By means of the gganatogram R package (Version 1.1.1)

(19), we created a human anatomy schematic to visualize the tissue

sources of the scRNA-seq data collected from various solid tumor

types. Processing of the raw FASTQ files from the 10× Genomics

platform was conducted using CellRanger (version 6.1.2) (20). To

start, the count function of CellRanger was employed to align and

assess gene expression levels in individual cell, utilizing barcode

recognition and unique molecular identifier (UMI) counting.
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Subsequently, the outputs were transformed into a Seurat object

using the Seurat R package (version 4.2.1) (21–24) for further

analyses. To consolidate the dataset, we utilized the merge

function of Seurat to combine multiple Seurat objects into an

integrated Seurat object. Next, quality control measures were

implemented on the integrated Seurat object. The initial step

involved filtering cells, where we retained cells with a minimum

of 200 detected genes and genes expressed in at least 3 cells. Next,

we excluded cells with unique feature counts exceeding 4000 or

falling below 200, as well as those with mitochondrial counts

surpassing 10%. Following the removal of unwanted cells, data

normalization was performed using the NormalizeData function in

Seurat, and highly variable genes were identified within the

individual cell. These highly variable features were subsequently

employed in downstream analyses. The data was linearly

transformed using the ScaleData function of Seurat, and principal

component analysis was conducted on the scaled data. Considering

that the data originated from different samples, we utilized the

Harmony R package (version 0.1.1) (25) to mitigate batch effects

and ensure reliable downstream analyses. Moreover, we chose 20

principal components (PCs) to serve as the input for the Uniform

Manifold Approximation and Projection (UMAP) algorithm.

Importantly, employing the clustree R package (version 0.5.0)

(26), we conducted unsupervised hierarchical clustering to attain

an appropriate resolution. Subsequently, we used the FindClusters

function in Seurat to classify the cells into distinct cell types,

referencing classical markers described in published articles. In

addition, we employed the FindAllMarkers function of Seurat to

identify differentially expressed genes specific to each cell type.

Lastly, we further reclustered CAFs population, myeloid cells

population, and T cell population at individually optimized

resolutions, followed by annotation using classical cell type

markers to identify each subpopulation. Additionally, we utilized

the apCAFs gene signature along with the CD4+ effector T cells

gene signature as gene sets for each type of solid tumor. We

computed the apCAFs gene signature scores and CD4+ effector T

cells gene signature scores for each cell in the scRNA-seq data of

each solid tumor type, employing the AddModuleScore algorithm

within the Seurat R package.
2.2 Bulk RNA-seq datasets collected in
this study

By using the TCGAbiolinks R package (Version 2.26.0) (27, 28),

bulk RNA sequencing (RNA-seq) data containing TCGA-HNSC,

TCGA-OV, TCGA-CESC, TCGA-COAD, TCGA-READ, TCGA-

BRCA, TCGA-SKCM, and TCGA-KIRC datasets from the GDC

database were collected. The TCGAbiolinks function GDCquery

was employed to retrieve information concerning various tumors

from the GDC database. Subsequently, the GDCdownload function

of TCGAbiolinks was utilized to download the retrieved results.

Moreover, the GDCprepare function of TCGAbiolinks was used to

read and organize the downloaded data into an R object. Finally, the

TCGAanalyze_Preprocessing function of TCGAbiolinks was

applied to preprocess the data and obtain gene expression data.
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Furthermore, we acquired Nasopharyngeal Carcinoma RNA-seq

data GSE102349 from the GEO database.
2.3 Obtaining gene signatures of apCAFs
for various solid tumor types and human
CD4+ effector T cells

In order to obtain the gene signatures of apCAFs for various

solid tumor types, we employed the FindMarkers function in Seurat

to detect the differentially expressed genes (DEGs) between apCAFs

and other CAFs. For significant DEGs selection, we applied filters of

log fold change (logFC) > 0.5 and adjusted p-value (adjPval) < 0.05.

From these DEGs, we extracted the top 40 genes exhibiting the

highest logFC to serve as candidate genes for the apCAFs gene

signature. Furthermore, we acquired the gene signature for human

CD4+ effector T cells from a previously published article (17).
2.4 Deconvolution of Cell Types
with CIBERSORTx

CIBERSORTx is employed as a tool for estimating cell type

proportions through deconvolution, utilizing bulk gene expression

data to infer the distribution of different cell types within a mixed

sample (29). The process began with the retrieval of bulk RNA-seq

data from the GDC database using the TCGAbiolinks R package.

Subsequently, the bulk RNA-seq data matrices (Mixture) underwent

normalization to TPM (Transcripts Per Kilobase Million) and were

converted to tab-delimited text format to facilitate further analysis. A

reference gene expression matrix (Signature Matrix) was then

constructed from single-cell gene expression data obtained using

the FindAllMarkers function of Seurat for the same solid tumor type.

This Signature Matrix comprises gene expression profiles of

annotated cell types that we intended to identify in the bulk RNA-

seq data. The Signature Matrix was also converted to tab-delimited

text format for subsequent analysis. Both the Mixture and Signature

Matrix were uploaded to the CIBERSORTx website (https://

cibersortx.stanford.edu/), where deconvolution was carried out

utilizing the “Impute Cell Fractions” module. For bulk RNA-seq

data, it was advisable to disable quantile normalization, while all

other CIBERSORTx parameters remained at their default settings.

After the execution, we retrieved the output to be used in the analysis

for the next steps.
2.5 Survival analysis

Previously, the CIBERSORTx algorithm was used to calculate

the estimated abundance of apCAFs in bulk RNA-seq data from

various solid tumor types obtained from the GDC database and the

GEO database. Subsequently, this estimated abundance was merged

with the corresponding clinical information to perform a Kaplan-

Meier survival analysis using the survival R package (Version 3.4.0).

Finally, we utilized the survminer R package (Version 0.4.9) to

visualize the resulting survival curve.
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2.6 Cell type mapping with NNLS in semla

The semla R package (version 1.0.0) (30) serves as a valuable tool

for examining and visualizing spatial transcriptome (ST) data,

supporting the Seurat object. The semla is an updated alternative to

the classic spatial transcriptomics analysis software, STUtility,

developed by The Spatial Research Lab. In addition, the tibble R

package (version 3.2.1) was used to construct the infoTable, which

contains path information for files such as “filtered_feature

_bc_matrix.h5”, “tissue_hires_image.png”, “tissue_positions_

list.csv”, and “scalefactors_json.json”. Upon reading the specified

ST file from the infoTable, the ST Seurat object was formulated

through the application of semla’s ReadVisiumData function.

Additionally, we imported scRNA-seq data (the SC Seurat object)

from the same solid tumor type, which had previously undergone

clustering and annotation. Both the ST Seurat object and SC Seurat

object were normalized using the NormalizeData function from

semla. To directly infer cell type proportions from the expression

profiles of the ST Seurat object, the RunNNLS function of semla,

based on Non-Negative Least Squares (NNLS), was applied, utilizing

the SC Seurat object as a reference. Finally, for visualization purposes,

the semla’s MapFeatures and MapMultipleFeatures functions were

employed. Moreover, in preparation for the subsequent correlation

analysis, we utilized the FetchData function of semla to obtain the cell

type proportions for each spot in the tissue slice.
2.7 Spatial transcriptomics analysis
via Seurat

After loading the matrix files of the ST for each slice, a Seurat

object was constructed using the Seurat function CreateSeuratObject.

Next, the Seurat function Read10X_Image was used to read the files

“ t i ssue_lowres_image.png” , “ t i ssue_hires_image.png” ,

“tissue_positions_list.csv”, and “scalefactors_json.json”, generating

a VisiumV1 object. Then, the VisiumV1 object was integrated into

the Seurat object, forming a ST Seurat object for each slice. The

created ST Seurat object was ready for subsequent analysis. To begin

with, the Seurat function SCTransform was applied to normalize the

ST Seurat object. Then, the gene signatures of CD4+ effector T cells

and apCAFs of different solid tumor types were read. Next, the

Seurat function AddModuleScore was used to calculate gene

signature scores for CD4+ effector T cells and apCAFs in each

spot on the tissue slice. Subsequently, the Seurat function

SpatialFeaturePlot was employed to visualize the distribution of

the CD4+ effector T cells gene signature and the apCAFs gene

signatures of various cancer types in the tissue slice. Lastly, for the

purpose of subsequent correlation analysis, gene signature scores for

the CD4+ effector T cells and the apCAFs of different solid tumor

types were obtained for each spot within the tissue slice.
2.8 GSVA

Employing the GSVA R package (version 1.46.0) (31), we

evaluated the molecular phenotypes of individual cell using the raw
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count matrix of scRNA-seq data. Specifically, we obtained GSVA

gene set enrichment scores for HALLMARK and GO: BP gene sets

from the msigdbr R package (Version 7.5.1) for individual cell of

apCAFs and NFs. Subsequently, we employed the limma R package

(Version 3.54.2) (32) to compare pathway variances between apCAFs

and NFs. The resulting t-values were visualized as a bar plot using the

ggplot2 R package (Version 3.4.2). Furthermore, using the scaled data

matrix of scRNA-seq data, we obtained GSVA gene set enrichment

scores for HALLMARK gene sets from the msigdbr R package for

individual cell of various fibroblasts subpopulations in certain solid

tumor types. Subsequently, we utilized the ggboxplot function

provided by the ggpubr R package (Version 0.6.0) to visualize the

differences in GSVA enrichment scores of glycolysis pathway for each

fibroblasts subpopulation. Moreover, using the apCAFs gene

signature and CD4+ effector T cells gene signature as gene sets, we

applied GSVA to calculate gene signature enrichment scores for each

sample of the bulk RNA-seq data from various solid tumor types in

the GDC database and the GEO database.
2.9 Correlation analysis

The CIBERSORTx algorithm was previously employed to

estimate the abundances of distinct cell types in bulk RNA-seq

data from various solid tumor types obtained from the GDC

database and the GEO database. Furthermore, the GSVA

algorithm was previously used to compute apCAFs gene signature

and CD4+ effector T cells gene signature enrichment scores for each

sample of the bulk RNA-seq data from different solid tumor types in

the GDC database and the GEO database. In addition, the

FetchData function of semla was previously utilized to calculate

the cell type proportions for each spot in the tissue slice. Moreover,

gene signature scores for the CD4+ effector T cells and the apCAFs

of different solid tumor types were previously obtained for each spot

within the tissue slice using the Seurat function AddModuleScore.

Lastly, the data obtained above has been used for correlation

analysis, respectively. Employing the ggscatter function provided

by the ggpubr R package, individual scatter plots were generated for

selected two cell types. We utilized the Spearman’s rank correlation

coefficient to analyze the correlation between these two cell types.
2.10 Similarity analysis

In order to assess the transcriptomic similarity between apCAFs

and their potential source cell types, we employed the cor function

from the stats R package (Version 4.2.2), including the top 5000

variably expressed genes. The resulting data was visualized using the

corrplot R package (Version 0.92).
2.11 Trajectory analysis

For exploring the developmental origins of apCAFs, Monocle R

package (version 2.22.0) (33–35) was employed to analyze the cellular

subtype expression signatures. The Seurat objects representing the cell
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subtypes were converted into Monocle CellDataSet using the

newCellDataSet function. To ensure data quality, the detectGenes

function was utilized to filter out cells with low-quality expression

profiles. For the identification of signature genes, differential gene

expression analysis was conducted using the differentialGeneTest

function. Monocle then inferred the differentiation trajectory of

apCAFs using default parameters after dimension reduction and cell

ordering. For visualization purposes, we utilized the plot_cell_trajectory

function and plot_genes_in_pseudotime function fromMonocle, along

with the ggsci R package (Version 3.0.0). Moreover, to visualize the

distribution pattern of various cell subtypes along the assumed time

axis, we employed the ggridges R package (Version 0.5.4).
2.12 Single-cell regulatory network
inference and clustering using pySCENIC

We performed the transcription factors analysis in distinct

fibroblasts subpopulations using the pySCENIC python package

(version 0.12.1) (36), following the recommended workflow and

utilizing raw counts as input. Initially, we inferred the gene co-

expression network using the GRNBoost2 algorithm. Subsequently,

we predicted enriched motifs associated with gene co-expression

modules by leveraging pre-calculated databases from cisTargetDB

and the ctx function in pySCENIC. To assess the activity scores of

inferred regulons at the single-cell level, we employed the AUCell

function of pySCENIC. The resulting output from pySCENIC

(loom file) was then subjected to analysis using the SCopeLoomR

R package (Version 0.13.0). From the provided loom file, we

obtained the AUCell matrix by utilizing the get_regulons_AUC

function of SCopeLoomR and subsequently extracted the AUC

matrix using the getAUC function from AUCell R packages

(Version 1.20.2). To determine the regulon specificity scores for

each cell type, we employed the calcRSS function from the SCENIC

R package (Version 1.3.1). Lastly, we selected the three most specific

regulons for each cell type and visualized their Z-scores of AUC

scores using the pheatmap R package (Version 1.0.12).
2.13 Single-cell metabolic analysis

scMetabolism is an R package (Version 0.2.1) (37) specifically

designed to assess metabolic activity at the single-cell level, and it

comes pre-loaded with 85 KEGG pathways and 82 Reactome

entries. We employed scMetabolism to evaluate the metabolic

activity of each cell within distinct fibroblasts subpopulations

across all metabolic pathways. For optimal visualization, we

utilized the DotPlot.metabolism function from scMetabolism to

depict the differences in selected metabolic-associated pathways.
2.14 Single-cell metabolic flux
estimation analysis

We extracted the raw count matrix from the Seurat object

containing the different fibroblasts subpopulations. Then, we
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refined this raw count matrix by selecting genes using

scFEA.human.genes. The refined raw count matrix was saved in

CSV format and uploaded to the FLUXestimator website (http://

scflux.org/) for scFEA analysis (38, 39). Using scRNA-seq data, the

scFEA analysis utilized a graph neural network model to compute

cell-specific metabolic flux, referencing the module gene file and a

stoichiometry matrix that delineates the links between compounds

and modules. After the scFEA analysis, we obtained predicted

metabolic flux results for each cell of each fibroblasts

subpopulation. Finally, we utilized the ggboxplot function from

the ggpubr R package to visualize the differences in predicted

metabo l i c flux for each fibrob las t s subpopu la t ion ’ s

metabolic module.
2.15 Statistics

All analyses were performed using R version 4.2.2. Wilcoxon

rank sum test was applied to identify statistical differences between

the two continuous variable groups, considering a p-value < 0.05 as

statistical significance. During the differential gene expression

analysis sections conducted with the Seurat R package, the

differential pathway expression analysis with the limma R

package, the Kaplan-Meier survival analysis using the survival R

package, and the transcriptomic similarity analysis performed using

the stats R package, p-values were computed using the standard

methods inherent to each specific R package. The Wilcoxon signed

rank test was performed using the ggpubr R package to compare the

differences in signature scores of cell type determined by

CIBERSORTx algorithm, as well as the CD4+ effector T cells and

apCAFs gene signature scores determined by GSVA R package.

Additionally, it was used to assess the enrichment scores of the

glycolysis pathway determined by the GSVA R package, the CD4+

effector T cells and apCAFs gene signature scores determined using

Seurat’s AddModuleScore function, and the metabolic fluxes

estimated by the scFEA algorithm.
3 Results

3.1 Identification of antigen-presenting
CAFs in various solid tumor types

To examine if apCAFs were present in the microenvironment of

solid tumors, we collected scRNA-seq data from 9 common solid

tumors types containing Head and Neck Squamous Cell Carcinoma

(HNSCC), Ovarian Cancer (OV), Nasopharyngeal Carcinoma

(NPC), Cervical Cancer (CC), Colorectal Cancer (CRC), Breast

Cancer (BRCA), Acral Melanoma (AM), Cutaneous Melanoma

(CM), and Renal Cell Carcinoma (RCC) (Figure 1A), with 210

samples in 9 studies (Figure 1B). In addition, we obtained ST data

from 4 solid tumor types, namely HNSCC, OV, BRCA, and CRC

(Supplementary Table 1). To exclude the possibility of technology-

driven bias, we ensured that all scRNA-seq data were consistently

generated using the 10× Genomics platform. We employed the

Seurat R package and Harmony R package to perform quality
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control and batch effects removal for each solid tumor type. The

cells we retained have unique feature counts below 4000 and above

200, and their mitochondrial counts were maintained below 10%.

Quality checks of detected nFeature_RNA, nCount_RNA,

percent.mt and batch effects were performed in each solid tumor

type (Supplementary Figures 1A-I; 2A-I).

After performing quality control and rectifying batch effects, we

undertook unsupervised hierarchical clustering of the overall single-

cell transcriptomic profiles encompassing various solid tumor types,

with the aim of selecting an appropriate resolution (Supplementary

Figures 3A-I). We then selected a resolution of 0.3 for HNSCC, 0.2

for OV, 0.2 in NPC, 0.3 for CC, 0.1 for CRC, 0.1 for BRCA, 0.1 for

AM, 0.2 for CM, and 0.1 for RCC. Similarly, we conducted

unsupervised hierarchical clustering on the comprehensive single-

cell transcriptomic profiles of CAFs derived from different solid

tumor types, aiming to choose an optimal resolution

(Supplementary Figures 4A-I). Following are individual

resolution: 0.1 for HNSCC CAFs, 0.2 for OV CAFs, 0.1 for NPC

CAFs, 1 for CC CAFs, 0.2 for CRC CAFs, 0.2 for BRCA CAFs, 0.1

for AM CAFs, 0.4 for CM CAFs, and 0.3 for RCC CAFs.
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After selecting an appropriate resolution, we employed the

Seurat R package to perform principal component analysis and

graph-based clustering methods to classify individual cell into

different clusters. We captured the transcriptomes of 9 major cell

types according to the expression of canonical gene markers and

then used the UMAP algorithm to reduce the dimensionality and

visualize the cell distribution in HNSCC (Figure 1C). These cells

included T cells (CD3D+, CD3E+), B cells (MS4A1+, CD19+,

CD79A+), plasma cells (CD79A+, JCHAIN+, IGHG1+),

plasmacytoid dendritic cells (pDCs) (LILRA4+, TCL1A+), mast

cells (KIT+, TPSAB1+), myeloid cells (LYZ+, AIF1+), fibroblasts

(COL1A1+, COL3A1+), endothelial cells (PECAM1+, VWF+) and

epithelial cells (EPCAM+, KRT19+) (Figure 1D; Supplementary

Table 2). Given the functional heterogeneity of CAFs in solid

tumors, we reclassified CAFs population into different

subpopulations using a graph-based clustering approach. 4 types

of CAFs subpopulation were annotated in HNSCC with classic

markers described in previous studies (40–43) as shown in the

UMAP plot. (Figure 1E). These CAFs were termed apCAFs,

myCAFs, extracellular matrix CAFs (eCAFs) and iCAFs, which
B
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FIGURE 1

Identification of apCAFs in various solid tumor types. (A) All solid tumor types included in this study. (B) Bar plot showing the number of samples
collected for each solid tumor type. (C, G) UMAP plots showing the major cell types in HNSCC (C) and OV (G). (D, H) Dot plots showing expression
levels of selected cell marker genes of the major cell types in HNSCC (D) and OV (H). (E, I) UMAP plots showing 4 major subpopulations of CAFs in
HNSCC (E) and OV (I). (F, J) Dot plots showing expression levels of selected cell marker genes for the major subpopulations of CAFs in HNSCC
(F) and OV (J). Dot size indicates fraction of expressing cells, colored based on normalized expression levels (D, F, H, J). HNSCC, Head and Neck
Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC, Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer; BRCA, Breast
Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC, Renal Cell Carcinoma; apCAFs, antigen-presenting CAFs; myCAFs, myofibroblastic
CAFs; eCAFs, extracellular matrix CAFs; iCAFs, inflammatory CAFs, pDCs, plasmacytoid dendritic cells.
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were characterized by specific high expression of MHC class II

molecules, ACTA2/RGS5 myofibroblastic molecules, MMP14/

LOXL2 extracellular matrix molecules, and inflammatory

molecules, respectively (Figure 1F; Supplementary Table 3).

Likewise, similar analysis procedure was performed in OV and 7

major cell types consisting of T cells (CD3D+, CD3E+), B cells

(MS4A1+, CD19+, CD79A+), plasma cells (CD79A+, JCHAIN+,

IGHG1+), mast cells (KIT+, TPSAB1+), myeloid cells (LYZ+,

AIF1+), fibroblasts (COL1A1+, COL3A1+), and epithelial cells

(EPCAM+, KRT19+) were annotated and shown as the UMAP

plot and dot plot (Figures 1G, H; Supplementary Table 2). Similarly,

by utilizing classic markers, we found 4 distinct CAFs

subpopulat ions within OV (Figure 1I) . These CAFs

subpopulations, including apCAFs, myCAFs, eCAFs, and iCAFs,

exhibited specific high expression of MHC class II molecules,

ACTA2/RGS5 myofibroblastic molecules, MMP14/POSTN

extracellular matrix molecules, and inflammatory molecules,

respectively (Figure 1J; Supplementary Table 3). In addition, by

employing the same approach and strategy, we could also identify

similar major cell types in other 7 types of solid tumor containing

NPC, CC, CRC, BRCA, AM, CM, and RCC (Supplementary

Figures 5A, C, E, G, I, K, M; Supplementary Table 2). In addition,

we could also distinguish similar CAFs subpopulations within the

CAFs population of these 7 types of solid tumor (Supplementary

Figures 5B, D, F, H, J, L, N; Supplementary Table 3). In these 9 types

of solid tumor, the number of cells identified for each CAFs

subpopulation in each solid tumor type was documented in

Supplementary Table 4. Compared with other CAFs

subpopulations, apCAFs identified in the 9 solid tumor types

display notable upregulation of diverse MHC class II molecules,

such as CD74, HLA-DRA, and HLA-DRB1, resembling the apCAFs

described by Elyada E et al. in PDAC (6) and Kerdidani D et al. in

NSCLC (17). Moreover, by employing the graph-based clustering

approach, we successfully segregated the cells within the T cells

population and myeloid cells population of each solid tumor type

into separate T cells subpopulations and myeloid cells

subpopulations, respectively, using the classic markers specified in

published articles (44–46) (Supplementary Figures 6A-R). Taken

together, the main tumor, immune and stromal cell types,

subpopulations of each main cell type, and especially apCAFs

exist in these 9 tumors, indicating apCAFs’ potential important

role by communicating with other different cell types.
3.2 apCAFs are associated with anti-
tumor effects

Next, we wanted to know the relationship between apCAFs and

tumor cells, since apCAFs were previously shown to have a pro-

tumor function in PDAC (16) and an anti-tumor function in

NSCLC (17). We obtained bulk RNA-seq cohorts including

TCGA-HNSC (Head-Neck Squamous Cell Carcinoma), TCGA-

OV (Ovarian Carcinoma), TCGA-CESC (Cervical Squamous Cell

Carcinoma and Endocervical Adenocarcinoma), TCGA-COAD

(Co l o n Ad eno c a r c i n oma ) , TCGA -READ (R e c t um

Adenocarcinoma), TCGA-BRCA (Breast Invasive Carcinoma),
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TCGA-SKCM (Skin Cutaneous Melanoma), and TCGA-KIRC

(Kidney Renal Clear Cell Carcinoma) from the GDC database

and GSE102349-NPC Nasopharyngeal Carcinoma RNA-seq

cohort from the GEO database. By utilizing scRNA-seq data of

the same solid tumor type with pre-annotated cell types as a

reference dataset to make Signature Matrix (Supplementary

Table 5), we applied the CIBERSORTx algorithm to perform

deconvolution analysis on the bulk RNA-seq data of the same

solid tumor type. As a result, we obtained signature scores for each

sample in the bulk RNA-seq data, which represented the cells

annotated by scRNA-seq (Supplementary Table 6). Utilizing

clinical data obtained from the TCGA-HNSC cohort, we showed

that higher signature scores of apCAFs were linked to improved

prognosis outcome in HNSCC (Figure 2A). Moreover, we observed

a robust inverse relationship between apCAFs signature scores and

tumor cells signature scores in the TCGA-HNSC cohort, indicating

a potential association of apCAFs with anti-tumor effects in

HNSCC (Figure 2C). Similar analysis was performed in OV and

we demonstrated that higher signature scores of apCAFs were

linked to improved survival outcome and a noteworthy inverse

relationship between apCAFs signature scores and tumor cells

signature scores in the TCGA-OV cohort (Figures 2B, D). To

generalize our findings, GSE102349-NPC, TCGA-CESC, TCGA-

COAD, TCGA-READ, TCGA-BRCA, TCGA-SKCM, and TCGA-

KIRC cohorts were used and we consistently showed that elevated

signature scores of apCAFs were associated with improved survival

outcome in most cancer types other than BRCA (Supplementary

Figures 7A-G). Moreover, we consistently observed a strong

negative correlation between apCAFs signature scores and tumor

cells signature scores across the majority of solid tumor types,

excluding RCC (Supplementary Figures 7H-N). Taken together,

apCAFs are associated with anti-tumor effects in the majority of

solid tumor types.

Considering the published report demonstrating the anti-tumor

effects of apCAFs in NSCLC through direct activation of CD4+

effector T cells (17), we next examined the relationship between

apCAFs and CD4+ effector T cells across various types of solid

tumor. Seurat’s FindMarkers function was employed to identify the

DEGs between apCAFs and other CAFs. We applied filters of logFC

> 0.5 and adjPval < 0.05 to select significant DEGs. From these, we

extracted the top 40 genes with the highest logFC as candidate genes

for the apCAFs gene signature. Additionally, we obtained the gene

signature for human CD4+ effector T cells from previously

published articles (17) (Supplementary Table 7). For each solid

tumor type, we used the apCAFs gene signature along with the CD4

+ effector T cells gene signature as gene sets. Subsequently, we

employed the GSVA R package to calculate the apCAFs gene

signature scores and CD4+ effector T cells gene signature scores

for each sample in the bulk RNA-seq data (Supplementary Table 8).

We demonstrated a robust positive correlation between apCAFs

gene signature scores and CD4+ effector T cells gene signature

scores in the TCGA-HNSC (Figure 2E) and TCGA-OV (Figure 2F).

Similarly, in 7 other cohorts like GSE102349-NPC, TCGA-CESC,

TCGA-COAD, TCGA-READ, TCGA-BRCA, TCGA-SKCM, and

TCGA-KIRC, we consistently showed a robust positive relationship

between apCAFs gene signature scores and CD4+ effector T cells
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gene signature scores (Supplementary Figures 7O-U). Likewise, for

every type of solid tumor, we employed the apCAFs gene signature

in conjunction with the CD4+ effector T cells gene signature as gene

sets. We calculated the apCAFs gene signature scores and CD4+

effector T cells gene signature scores for each cell within the scRNA-

seq data of each solid tumor type, utilizing the AddModuleScore
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algorithm within the Seurat software. In both HNSCC (Figure 2G)

and OV (Figure 2H), we have demonstrated a strong positive

correlation between apCAFs gene signature scores and CD4+

effector T cells gene signature scores. Similarly, across 5 other

scRNA-seq data cohorts including NPC, BRCA, AM, CM, and

RCC, we consistently observed a robust positive association
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FIGURE 2

apCAFs are associated with anti-tumor effects. (A, B) Kaplan-Meier plots showing TCGA-HNSC cohort (A) and TCGA-OV cohort (B) patient survival
probability by apCAFs signature scores. (C, D) Scatter plots showing Spearman’s correlation between the apCAFs signature scores and tumor cells
signature scores in TCGA-HNSC cohort (C) and TCGA-OV cohort (D). (E, F) Scatter plots showing Spearman’s correlation between the apCAFs gene
signature scores and CD4+ effector T cells gene signature scores in TCGA-HNSC cohort (E) and TCGA-OV cohort (F). (G, H) Scatter plots showing
Spearman’s correlation between the apCAFs gene signature scores and CD4+ effector T cells gene signature scores in HNSCC (G) and OV (H).
(I, J) Dot plots showing the expression levels of C1Q molecules in distinct fibroblasts subpopulations of HNSCC (I) and OV (J). (K, L) Bar plots
showing the selected signaling pathways with significant enrichment of GO: BP and HALLMARK terms for apCAFs compared to NFs in HNSCC
(K) and CC (L). Differences in pathway activities scored per cell by GSVA between apCAFs and NFs. t values from a linear model, corrected for
sample of origin. (M, N) Dot plots showing the expression profiles of molecule machinery involved in antigen processing and presentation in distinct
fibroblasts subpopulations of HNSCC (M) and CC (N). P-values were calculated by the log-rank test (A, B). Dot size indicates fraction of expressing
cells, colored based on normalized expression levels (I, J, M, N). HNSCC, Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; CC,
Cervical Cancer; apCAFs, antigen-presenting CAFs; myCAFs, myofibroblastic CAFs; eCAFs, extracellular matrix CAFs; iCAFs, inflammatory CAFs; NFs,
normal fibroblasts.
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between apCAFs gene signature scores and CD4+ effector T cells

gene signature scores (Supplementary Figures 8A-E). However, in

CC scRNA-seq data cohort, there is a significant negative

correlation between apCAFs gene signature scores and CD4+

effector T cells gene signature scores (Supplementary Figure 8F),

while in CRC scRNA-seq data cohort, there is no significant

correlation between apCAFs gene signature scores and CD4+

effector T cells gene signature scores (Supplementary Figure 8G).

In a previous study, it was shown that complement C1Q

molecules expressed by apCAFs of NSCLC can directly bind to

the corresponding receptors on CD4+ T cells, promoting the

survival of CD4+ T cells (17). Therefore, we wondered whether

apCAFs in other solid tumor types also express complement C1Q

molecules. In the scRNA-seq data of HNSCC and OV, we observed

a higher expression of complement C1Q molecules, namely C1QA,

C1QB, and C1QC, in their apCAFs compared to other fibroblasts

subpopulations (Figures 2I, J). Similarly, across the NPC, CC, CRC,

BRCA, and AM scRNA-seq data cohorts, we consistently observed

apCAFs exhibited elevated expression for complement C1Q

molecules, specifically C1QA, C1QB, and C1QC, in contrast to

other subpopulations of fibroblasts (Supplementary Figures 9A-E).

Therefore, it appears that apCAFs may be associated with anti-

tumor immune responses, possibly by promoting the survival of

CD4+ T cells through C1Q molecules expression in these solid

tumor types.

Intracellular pathways are generally responsible for the cell’s

functionality. This led us to investigate the molecular pathways that

were enriched in apCAFs within tumors compared to fibroblasts in

normal tissues. The scRNA-seq datasets we collected contained

normal tissue samples only from HNSCC, CC, NPC, and RCC solid

tumor types. Therefore, we solely utilized the data from these solid

tumor types to assess the alterations in signaling pathways of

apCAFs. In brief, we conducted GSVA analysis to derive GSVA

enrichment scores of the selected pathways for apCAFs and NFs in

these solid tumor types. Subsequently, the limma R package was

employed to analyze the differential expression of the selected

pathways between apCAFs and NFs (Supplementary Table 9).

This approach aimed to uncover the biological processes that

contribute to the observed gene signature alterations. As a result,

we observed that immune-related and inflammatory-related

pathways were significantly enriched in apCAFs across these solid

tumor types (Figures 2K, L; Supplementary Figures 9F, G).

Surprisingly, when comparing apCAFs with NFs, we noted an

enhanced capacity of apCAFs for promoting cell killing,

activating NK cells and T cells, facilitating T cell-mediated

immunity and cytotoxicity, as well as antigen presentation

through MHC class I and MHC class II molecules. Moreover, we

observed a consistent upregulation of antigen processing and

presentation molecules, CTSS, LNPEP, RAB11A, TAP1, and

TAP2, in apCAFs compared to other fibroblasts subpopulations

in the majority of the solid tumor types based on the scRNA-seq

data (Figures 2M, N; Supplementary Figures 9H-N). Taken

together, these results strongly underscore the potential

importance of apCAFs in the realm of anti-tumor immunity.
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3.3 Illustration of the ST spots of various
solid tumor tissues with apCAFs, tumor
cells and CD4+ effector T cells
signatures enrichment

In order to examine the spatial relationship of apCAFs, tumor

cells, and CD4+ effector T cells in greater detail, we leveraged the

Visium ST data obtained from tumor tissue sections of patients with

HNSCC, OV, BRCA, and CRC. In short, we employed semla R

package to estimate cell type proportions from Visium ST spot

expression profiles using an annotated scRNA-seq Seurat object of

the same solid tumor type as a reference (Supplementary Table 10).

Moreover, using the gene signatures of apCAFs originating from

different solid tumor types and the gene signature of human CD4+

effector T cells, we employed the Seurat function AddModuleScore

to determine gene signature scores for both the apCAFs gene

signature and the CD4+ effector T cell gene signature at each

spatial spot on the tissue slices (Supplementary Table 11). In the

HNSCC slice, we observed distinct separation in the distribution of

enriched regions for tumor cells and apCAFs signatures. The areas

enriched with tumor cells signature exhibited low apCAFs

signature, while the regions enriched with apCAFs signature

showed reduced tumor cells signature (Figures 3A, B;

Supplementary Figures 10A, B, F, G). Furthermore, a consistent

inverse correlation between tumor cells signature scores and

apCAFs signature scores was apparent in the ST spots of HNSCC

(Figure 3C; Supplementary Figures 10C, H). Moreover, in the

HNSCC slice, we observed a co-localization distribution pattern

of enriched regions for CD4+ effector T cells gene signature and

apCAFs gene signature. In other words, the regions enriched with

CD4+ effector T cells gene signature exhibited elevated apCAFs

gene signature and the areas enriched with apCAFs gene signature

showed increased CD4+ effector T cells gene signature (Figure 3D;

Supplementary Figures 10D, I). In addition, within the ST spots of

HNSCC, a pronounced positive association between CD4+ effector

T cells gene signature scores and apCAFs gene signature scores was

observed (Figure 3E; Supplementary Figures 10E, J). Similarly, we

noted clear separation in the distribution of enriched regions for

tumor cells and apCAFs signatures in slices of OV (Figures 3F, G;

Supplementary Figures 11A, B, F, G), BRCA (Supplementary

Figures 12A, B, F, G, K, L), and CRC (Supplementary

Figures 13A, B, F, G). Moreover, a steady negative relationship

between the signature scores of tumor cells and apCAFs was

consistently visible in the ST spots of OV (Figure 3H;

Supplementary Figures 11C, H), BRCA (Supplementary

Figures 12C, H, M), and CRC (Supplementary Figures 13C, H).

Furthermore, in the slices of OV (Figure 3I; Supplementary

Figures 11D, I), BRCA (Supplementary Figures 12D, I, N), and

CRC (Supplementary Figures 13D, I), a co-localization in the

distribution of enriched regions for CD4+ effector T cells gene

signature and apCAFs gene signature was noted. In addition, within

the ST spots of OV (Figure 3J; Supplementary Figures 11E, J),

BRCA (Supplementary Figures 12E, J , O), and CRC

(Supplementary Figures 13E, J), a significant positive relationship
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between the gene signature scores of CD4+ effector T cells and

apCAFs was evident.

Collectively, the spatially inverse relationship between tumor cells

and apCAFs across these 4 solid tumor types suggests that apCAFs are
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associated with tumor suppression. Moreover, across these 4 types of

solid tumor, CD4+ effector T cells and apCAFs exhibit a co-localized

spatial distribution, indicating that apCAFs may be associated with

anti-tumor effects by promoting the survival of CD4+ T cells.
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FIGURE 3

Illustration of the ST spots of various solid tumor tissues with apCAFs, tumor cells and CD4+ effector T cells signatures enrichment. (A, F) Left:
Spatial transcriptomic spots with tumor cells signature enrichment in P210325T5 slice of HNSCC (A) and GSM6592133 slice of OV (F); Right: Spatial
transcriptomic spots with apCAFs signature enrichment in P210325T5 slice of HNSCC (A) and GSM6592133 slice of OV (F). (B, G) Spatial
transcriptomic spots with apCAFs and tumor cells signatures enrichment in one single plot in P210325T5 slice of HNSCC (B) and GSM6592133 slice
of OV (G). (D, I) Left: Spatial transcriptomic spots with CD4+ effector T cells gene signature enrichment in P210325T5 slice of HNSCC (D) and
GSM6592133 slice of OV (I); Right: Spatial transcriptomic spots with apCAFs gene signature enrichment in P210325T5 slice of HNSCC (D) and
GSM6592133 slice of OV (I). (C, E, H, J) Scatter plots showing Spearman’s correlation between apCAFs signature scores and both tumor cell
signature scores and CD4+ effector T cell signature scores in the spatial transcriptomic spots in P210325T5 slice of HNSCC (C, E) and GSM6592133
slice of OV (H, J). HNSCC, Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; apCAFs, antigen-presenting CAFs.
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3.4 The correlation between apCAFs and T
cells subpopulations

Given that different T cells subpopulations normally co-exist in

the TME, we performed correlation studies between apCAFs and

other T cells subpopulations, e.g., naïve CD4+ T cells, total CD8+ T

cells, exhausted CD8+ T cells, Tregs, Th17 cells. We first utilized

scRNA-seq data of the same solid tumor type with pre-annotated

apCAFs and T cells subpopulations as a reference dataset to

generate a signature matrix. Then, we applied the CIBERSORTx

algorithm to perform deconvolution analysis on the bulk RNA-seq

data of the same solid tumor type. Thus, we obtained cell type

signature scores for each sample in the bulk RNA-seq data. In the

TCGA-HNSC cohort, apCAFs were significantly negatively

correlated with total CD8+ T cells, exhausted CD8+ T cells, and

Tregs (Figure 4A). In the TCGA-OV and TCGA-CESC cohorts,

there was no correlation between apCAFs and all types of T cells

subpopulations (Figures 4B, D). In the GSE102349-NPC cohort,

apCAFs were significantly negatively correlated with exhausted

CD8+ T cells and Tregs, while significantly positively correlated

with Th17 cells (Figure 4C). In the TCGA-COAD and TCGA-

READ cohorts, apCAFs were significantly positively correlated with

naïve CD4+ T cells, total CD8+ T cells, exhausted CD8+ T cells, and

Tregs (Figures 4E, F). In the TCGA-BRCA cohort, apCAFs were

significantly negatively correlated with total CD8+ T cells and

exhausted CD8+ T cells (Figure 4G). In the TCGA-SKCM cohort,

apCAFs showed a weak positive correlation with exhausted CD8+ T

cells and Th17 cells (Figure 4H). In the TCGA-KIRC cohort,

apCAFs were negatively correlated with all types of T cells

subpopulations (Figure 4I). Taken together, apCAFs could be

negatively or positively correlated with other T cells

subpopulations or even no correlation, mostly depending on the

tumor types, suggesting apCAFs probably involved in regulating T

cells mediated immune response despite their heterogeneity.
3.5 Characterization of apCAFs origin

Previous studies have shown that macrophages (47, 48), DCs

(15), and endothelial cells (48, 49) can undergo a transformation

into fibroblasts under certain conditions, suggesting that these cells

could be potential sources of apCAFs. To investigate the potential

cellular origins of apCAFs, we conducted transcriptomics similarity

analysis between apCAFs and their potential source cell types

(Supplementary Table 12). In HNSCC, we observed a strong

transcriptional resemblance between apCAFs and NFs (R = 0.69)

(Figure 5A). This finding suggests that NFs are likely the primary

source of apCAFs in HNSCC. Notably, pseudotime trajectory

analysis using Monocle R package provided insights into a

potential differentiation path from NFs to apCAFs (Figures 5B,

C). Within the pseudotime trajectory of NFs differentiation into

apCAFs in HNSCC, we observed an upregulation of CD74, a

signature gene of apCAFs, along the trajectory (Figure 5D).

Similarly, our analysis revealed that apCAFs displayed the highest

transcriptional similarity with NFs in CC (Figure 5E), NPC

(Supplementary Figure 14A), and RCC (Supplementary
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Figure 14E), with R of 0.91, 0.85, and 0.57, respectively. Through

pseudotime trajectory analysis, we observed a potential

evolutionary path from NFs to apCAFs in CC (Figures 5F, G),

NPC (Supplementary Figures 14B, C), and RCC (Supplementary

Figures 14F, G). Remarkably, during pseudotime trajectory, the

expression level of CD74, a signature gene of apCAFs, was

consistently upregulated in CC (Figure 5H), NPC (Supplementary

Figure 14D), and RCC (Supplementary Figure 14H). Our data

strongly suggests that NFs are the likely origin of apCAFs in these

solid tumor types.
3.6 Transcription factors enrichment
in apCAFs

Since transcription factors (TFs) are essential for cell

differentiation, we applied the SCENIC software to identify highly

activated TFs within apCAFs (Supplementary Table 13). Utilizing

the pySCENIC python package, we conducted a comprehensive

analysis to pinpoint TFs in apCAFs that could contribute to their

functional attributes. In our findings, we noted the enrichment of

TFs such as OTUD4, RUNX3, and IKZF1 in HNSCC (Figure 6A),

STAT4, RUNX3, and IKZF1 in OV (Figure 6B), IKZF1, KLF3, and

RUNX3 in NPC (Figure 6C), IKZF1, RUNX3, and SPI1 in BRCA

(Figure 6D), IKZF1, RUNX3, and BCL11B in CM (Figure 6E), and

IKZF1, TCF7, and RUNX3 in RCC (Figure 6F). Taken together, our

analysis revealed that RUNX3 and IKZF1 were consistently

enriched in apCAFs across 6 solid tumor types, indicating that

they may be associated with the formation of apCAFs.
3.7 apCAFs exhibit a distinct glycolytic
metabolic pattern

As is known, metabolic processes regulate the function of

immune cells (50). We applied the scMetabolism algorithm (37)

to analyze scRNA-seq data of fibroblasts subpopulations in various

solid tumor types, and our analysis revealed a significant increase in

the enrichment of the glycolysis and gluconeogenesis pathway in

apCAFs as compared to other fibroblasts subpopulations within

solid tumor types, including HNSCC (Figure 7A), NPC (Figure 7B),

and BRCA (Figure 7C). To further validate the enrichment of the

glycolytic pathway in apCAFs, we employed the GSVA algorithm to

calculate the GSVA enrichment scores of the glycolysis pathway of

HALLMARK term in fibroblasts subpopulations from various solid

tumor types (Supplementary Table 14). We observed that the

glycolysis pathway GSVA enrichment scores of apCAFs were

higher compared with all other fibroblasts subpopulations except

for eCAFs in solid tumor types including HNSCC (Figure 7D), NPC

(Figure 7E), and BRCA (Figure 7F). Moreover, using the single-cell

metabolic flux estimation algorithm scFEA, we discovered that the

metabolic flux from pyruvate to lactate in apCAFs was higher

compared to other fibroblasts subpopulations in HNSCC

(Figure 7G), NPC (Figure 7H), and BRCA (Figure 7I)

(Supplementary Table 15). Furthermore, glucose transporter 1

(GLUT1) serves as a pivotal regulatory protein in glycolysis,
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aiding in the translocation of glucose across the plasma membranes

of most cells of the body (51). Interestingly, we found that apCAFs

exhibited higher expression of the GLUT1 gene, SLC2A1, compared

with other fibroblasts subpopulations in solid tumor types including

HNSCC (Figure 7J), NPC (Figure 7K), and BRCA (Figure 7L).

Collectively, all these lines of evidence strongly support that in

certain solid tumors, apCAFs may be associated with a notable

glycolytic metabolic pattern, consistent with the notion of

metabolism regulating immunity.
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4 Discussion

Our study is the first to perform a comprehensive pan-cancer

analysis of apCAFs in 9 solid tumor types despite several large

bioinformatical analyses reporting heterogeneity, plasticity (48) and

prognostic value of CAFs (52). We first have shown that apCAFs are

not limited to a few specific types of solid tumor but rather generally

exist within the microenvironment of various solid tumor types,

which largely extends the findings of apCAFs presence in pancreatic
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FIGURE 4

The correlation between apCAFs and T cells subpopulations. (A-I) Scatter plots showing Spearman’s correlation between the apCAFs and naïve CD4
+ T cells, total CD8+ T cells, exhausted CD8+ T cells, Tregs, Th17 cells signature scores in TCGA-HNSC cohort (A), TCGA-OV cohort
(B), GSE102349-NPC cohort (C), TCGA-CESC cohort (D), TCGA-COAD cohort (E), TCGA-READ cohort (F), TCGA-BRCA cohort (G), TCGA-SKCM
cohort (H), and TCGA-KIRC cohort (I). NPC, Nasopharyngeal Carcinoma; apCAFs, antigen-presenting CAFs.
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cancer (6) and breast cancer (53). Then, our analysis revealed that a

higher apCAFs signature scores correlated with improved survival

outcomes in HNSCC, OV, NPC, CC, CRC, CM, and RCC.

Additionally, a noteworthy inverse relationship between the

signature scores of apCAFs and tumor cells was observed in

HNSCC, OV, NPC, CC, CRC, BRCA, and CM. Moreover, we
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observed a spatial inverse correlation between tumor cells and

apCAFs within spatial data from 4 out of the 9 solid tumor types

by spatial transcriptomics analysis. These results suggest that

apCAFs may be associated with anti-tumor effects in these solid

tumor types, consistent with the anti-tumor effect observed in

NSCLC (17), but contrasting with the tumor-promoting effect
B

C D

E F

A

G H

FIGURE 5

Characterization of apCAFs origin. (A, E) Transcriptomic similarity analyses among apCAFs, NFs, endothelial cells, various macrophages and various
dendritic cells in HNSCC (A) and CC (E). The darker the blue, the stronger the positive correlation, and the darker the red, the stronger the negative
correlation. The numbers in the circle represent the correlation coefficient R. (B, F) Left: The cell trajectory along the NFs-apCAFs path in HNSCC
(B) and CC (F); Right: The pseudotime trajectory along the NFs-apCAFs path in HNSCC (B) and CC (F). (C, G) Density distribution of apCAFs and NFs
along the pseudotime trajectory in HNSCC (C) and CC (G). (D, H) Dynamic variation in CD74 during pseudotime trajectory in HNSCC (D) and CC
(H). HNSCC, Head and Neck Squamous Cell Carcinoma; CC, Cervical Cancer; apCAFs, antigen-presenting CAFs; NFs, normal fibroblasts; cDC1,
conventional type 1 dendritic cells; cDC2, conventional type 2 dendritic cells; LAMP3+ DCs, LAMP3+ dendritic cells.
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found in PDAC (16). However, it is essential to conduct further

s t ud i e s t o c ompr eh en s i v e l y e l u c i d a t e t h e p r e c i s e

mechanism involved.

The findings by Huang H et al. revealed that apCAFs were

capable of selectively driving the differentiation of naive CD4+ T

cells into Tregs in response to antigens in PDAC (16). Furthermore,

Elyada E et al. have proposed a theory proposing that apCAFs use
Frontiers in Immunology 14
MHC class II molecules as decoy receptors to render CD4+ T cells

nonfunctional, either through the induction of anergy or by

facilitating their differentiation into Tregs, particularly in the

context of PDAC (6). Conversely, Kerdidani D et al. reported that

apCAFs directly activated CD4+ effector T cells in NSCLC and

promoted the survival of CD4+ effector T cells through the

expression of C1Q molecules and proposed an innovative
B

C D

E F

A

FIGURE 6

Transcription factors enrichment in apCAFs. (A-F) Top 3 regulons enrichment of NFs and various CAFs via SCENIC analysis in HNSCC (A), OV
(B), NPC (C), BRCA (D), CM (E), RCC (F). Square colors represent different fibroblasts subpopulations. Scale bar represents Z-score. Symbol “(+)”
indicates positive regulation by the transcription factor. HNSCC, Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC,
Nasopharyngeal Carcinoma; BRCA, Breast Cancer; CM, Cutaneous Melanoma; RCC, Renal Cell Carcinoma; apCAFs, antigen-presenting CAFs;
myCAFs, myofibroblastic CAFs; eCAFs, extracellular matrix CAFs; iCAFs, inflammatory CAFs; NFs, normal fibroblasts.
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conceptual framework suggesting that efficient MHC class II

immunity in NSCLC requires in situ antigen presentation by CD4

+ T cells within the TME (17). Extending these findings, our results

revealed a notable positive relationship between the apCAFs gene

signature and the CD4+ effector T cells gene signature across
Frontiers in Immunology 15
HNSCC, OV, NPC, CC, CRC, BRCA, CM, and RCC and apCAFs

displayed increased expression levels of complement C1Q

molecules. In addition, we identified spatial co-localization

between CD4+ effector T cells and apCAFs in 4 solid tumor

types. We thus reason that apCAFs may potentially be associated
B C

D E F

G H I

J K L

A

FIGURE 7

apCAFs exhibit a distinct glycolytic metabolic pattern. (A-C) Metabolic pathway enriched in different fibroblasts subpopulations within HNSCC (A),
NPC (B), and BRCA (C) through the utilization of scMetabolism algorithm. (D-F) Boxplots showing glycolysis pathway of HALLMARK term enriched in
distinct fibroblasts subpopulations within HNSCC (D), NPC (E), and BRCA (F) using GSVA algorithm. (G-I) Boxplots showing relative level of the
estimated metabolic flux from pyruvate to lactate in distinct fibroblasts subpopulations of HNSCC (G), NPC (H), and BRCA (I) using scFEA algorithm.
(J-L) Dot plots showing the expression profiles of glucose transporter 1 (GLUT1) gene SLC2A1 in distinct fibroblasts subpopulations of HNSCC (J),
NPC (K), and BRCA (L). ns, *, **, and **** represent P-value > 0.05, P-value ≤ 0.05, P-value ≤ 0.01, and P-value ≤ 0.0001, respectively, P-value was
calculated from Wilcoxon rank sum test (D-I). HNSCC, Head and Neck Squamous Cell Carcinoma; NPC, Nasopharyngeal Carcinoma; BRCA, Breast
Cancer; apCAFs, antigen-presenting CAFs; myCAFs, myofibroblastic CAFs; eCAFs, extracellular matrix CAFs; iCAFs, inflammatory CAFs; NFs,
normal fibroblasts.
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with anti-tumor immune effects by promoting the survival of CD4+

effector T cells through the reported mechanism of expressing C1Q

molecules. Additionally, our analysis results indicate a significant

negative correlation between apCAFs and exhausted CD8+ T cells

in HNSCC, NPC, BRCA, and RCC, suggesting a potential negative

association between apCAFs and immunosuppression in these

cancers. In HNSCC, NPC, and RCC, apCAFs show a significant

negative correlation with Tregs, similar to findings where CAFs

expressing the macrophage classical marker CD68 in oral squamous

cell carcinoma is found to inhibit Tregs infiltration (54). Moreover,

in NPC, CM, and RCC, apCAFs exhibit significant correlations with

Th17 cells, while Th17 cells have dual roles in promoting and

inhibiting tumor development (55, 56). In CRC and CM, apCAFs

are significantly positively correlated with exhausted CD8+ T cells,

akin to findings in CRC where CAFs driven antigen cross-

presentation via MHC class I molecules led to CD8+ T cells

exhaustion (57), and in a B16 cell model where CAFs mediated

antigen cross-presentation via MHC class I molecules weaken CD8

+ T cells cytotoxic effects (58). In CRC, apCAFs are significantly

positively correlated with Tregs, similar to findings where IL1R2

expressed by Tregs in a mouse MC38 cell tumor model enhances

the interaction between Tregs and CAFs by upregulating MHC class

II molecules on CAFs (59). All of these suggest that apCAFs are

linked with different T cells mediated immune response and the

microenvironment difference in different solid tumor types may

result in varying relationships between apCAFs and T cells

subpopulations. The functional role of apCAFs on different T

cells and underlying mechanism are warranted to be investigated

in the future.

Compared with NFs, intrinsic signaling pathway enrichment

analysis showed apCAFs possessed an enhanced ability to promote

cell killing, activate NK cells, induce T cell activation, strengthen T-

cell-mediated immunity, facilitate T-cell-mediated cytotoxicity, and

enable antigen presentation via MHC class I and MHC class II.

Moreover, across the majority of the solid tumor types we collected,

antigen processing and presentation molecules expression increased

in apCAFs. Furthermore, apCAFs showed greater responsiveness to

interferon and inflammatory signals in comparison to NFs. These

results align with earlier studies indicating that the IFN-g induce

MHC class II molecules expression in fibroblasts (60). This suggests

that interferon has the potential to enhance apCAFs, leading to the

activation of CD4+ effector T cells within tumors and provides

valuable insights for the future development of treatments for solid

tumor. All these findings provide support for the “2nd hit

hypothesis” proposed by Tsoumakidou M, which suggests that

complete T cells activation requires in situ antigen presentation

by apCAFs, besides interactions with professional APCs such as

DCs, macrophages, and B cells (18). Consequently, apCAFs may be

associated with anti-tumor effects through these mechanisms.

However, there is a need for further studies to fully elucidate the

precise mechanisms involved. Additionally, we found that apCAFs

subpopulation identified in most solid tumor types exhibit higher

expression of immune checkpoint receptors such as TIGIT, LAG3,

and CTLA4 compared to other fibroblast subpopulations

(Supplementary Figures 8H-P). These immune checkpoint

receptors are primarily expressed on cells such as CD8+ T cells
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and CD4+ T cells, which usually inhibit activation and function of

these cells (61–63). The functional role of these immune checkpoint

receptors in apCAFs is warranted to be investigated in the future.

Our data indicate that NFs are likely to be the primary source of

apCAFs in HNSCC, CC, NPC, and RCC. These results are

consistent with the earlier study conducted by Sebastian A et al.,

where they identified cells displaying the apCAFs signature in both

normal breast tissue and breast cancer (64). This consistency

strengthens the reliability of our results. Moreover, Luo H et al.

speculated that apCAFs might represent a transitional state between

myCAFs and tumor-associated macrophages (TAMs) (48).

Furthermore, Kerdidani D et al. have provided evidence that

apCAFs originated from alveolar epithelial cells in lung cancer

(17), and Huang H et al. reported that apCAFs have been revealed

to have their origin in mesothelial cells within pancreatic cancer

(16). TAMs, alveolar epithelial cells, and mesothelial cells also serve

as potential sources of apCAFs. Moreover, in PDAC, apCAFs

exhibited an enrichment of nuclear factor kB (NF-kB) signaling

and transforming growth factor b (TGF-b) signaling compared to

their source cells, mesothelial cells (16). This is distinct from

apCAFs in solid tumor types such as HNSCC, CC, NPC, and

RCC, where an enrichment in immune response pathways, such as

T cells activation and NK cells activation, relative to NFs, was

observed. Although both apCAFs in PDAC and apCAFs in certain

solid tumor types such as HNSCC, CC, NPC, and RCC express

MHC class II molecules like CD74, the potential transformation

paths and enriched signaling pathways of these 2 apCAFs types

greatly differ, possibly accounting for the pro-tumor effects of

apCAFs in PDAC and the association of apCAFs with anti-tumor

effects in certain solid tumor types like HNSCC, CC, NPC, and

RCC. However, future experiments utilizing labeling and lineage

tracing methods will be useful to validate the origin of apCAFs.

In addition, our findings revealed that the TFs RUNX3 and

IKZF1 were significantly enriched in apCAFs across 6 solid tumor

types. This is consistent with previous findings in which apCAFs of

hepatocellular carcinoma were found to be enriched in TFs RUNX3

and IKZF1 (65). Study have shown that RUNX3 was necessary for

the maturation of splenic DCs, whereas RUNX3-deficient splenic

DCs displayed impaired expression of MHC class II molecules and

diminished T cells priming activity (66). Therefore, the enrichment

of the RUNX3 in apCAFs may be associated with the MHC class II

molecules expression and T cell priming of apCAFs. Moreover,

IKZF1 plays essential roles throughout various phases of

lymphocyte development and hematopoiesis (67). Hence, the

enrichment of the IKZF1 in apCAFs may be associated with the

formation or function of apCAFs. RUNX3 and IKZF1 could

potentially be involved in either the formation or functionality of

apCAFs. However, the precise underlying molecular mechanism by

which RUNX3 and IKZF1 promote apCAFs formation requires

additional investigation.

The functions of immune cells and host immunity are affected

by their metabolic processes (68). For instance, effector T cells

primarily exhibit a glycolytic phenotype (69), whereas the anti-

inflammatory Tregs re ly on mitochondria l oxidat ive

phosphorylation (70). In addition, metabolic patterns, especially

glycolysis, also affect the differentiation, activation, and antigen-
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presenting function of APCs (71, 72). Particularly, a recent article

has reported that fibroblastic reticular cells in B cell lymphoma

exhibited enhanced antigen presentation and glycolysis pathways

relative to normal tissue’s fibroblastic reticular cells (73). Similarly,

our analysis revealed that apCAFs originating from solid tumor

types such as HNSCC, NPC, and BRCA are associated with

enriched glycolytic metabolic patterns, with higher expression of

the glucose transporter GLUT1. These results propose the idea that

glycolysis could be related to the functions of apCAFs in HNSCC,

NPC, and BRCA, potentially analogous to the role of glycolysis in

DCs. For example, studies have shown that monocyte-derived DCs

required glycolysis to support the expression of their MHC class II

molecules (74), while the inhibition of glycolysis in DCs within the

local draining lymph nodes of mice could lead to decreased antigen

presentation capacity of DCs and subsequent decreased percentages

of activated antigen specific Th17 cells (75).
5 Conclusions

In conclusion, our findings showcase that apCAFs, likely

primarily derive from NFs, are prevalent in various solid tumors

and generally are associated with anti-tumor effects. apCAFs may be

linked to the activation of CD4+ effector T cells and potentially

promote the survival of CD4+ effector T cells through the

expression of C1Q molecules. Moreover, apCAFs exhibit specific

enrichment of TFs RUNX3 and IKZF1, along with significant

glycolytic metabolism. All these results provide novel insights into

a deeper understanding of apCAFs and the potential therapeutic

implications of apCAFs-targeted cancer immunotherapy.
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SUPPLEMENTARY FIGURE 1

Quality control of overall single-cell transcriptome profiles. (A-I) Violin plots
of nFeature_RNA, nCount_RNA and percent.mt of all samples in HNSCC (A),
CM (B), OV (C), CC (D), NPC (E), CRC (F), BRCA (G), AM (H) and RCC (I). The
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identities under the horizontal axis represent the source of the sample.
HNSCC, Head and Neck Squamous Cell Carcinoma; CM, Cutaneous

Melanoma; OV, Ovar ian Cancer; CC, Cerv ica l Cancer ; NPC,

Nasopharyngeal Carcinoma; CRC, Colorectal Cancer; BRCA, Breast Cancer;
AM, Acral Melanoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY FIGURE 2

Batch effects of overall single-cell transcriptome profiles. (A-I) UMAP plots of
the overall 43507 cells in HNSCC (A), 46116 cells in OV (B), 236707 cells in

NPC (C), 58964 cells in CC (D), 37345 cells in CRC (E), 77196 cells in BCRA (F),
181677 cells in AM (G), 23452 cells in CM (H) and 176664 cells in RCC (I), with
each cell color coded for the sample of origin. HNSCC, Head and Neck

Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC, Nasopharyngeal
Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer; BRCA, Breast

Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC, Renal
Cell Carcinoma.

SUPPLEMENTARY FIGURE 3

Hierarchical clustering of overall single-cell transcriptome profiles. (A-I)
Clustering trees showing hierarchical clustering for HNSCC (A), OV (B),
NPC (C), CC (D), CRC (E), BRCA (F), AM (G), CM (H) and RCC (I). HNSCC,

Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC,
Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer;

BRCA, Breast Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC,

Renal Cell Carcinoma.

SUPPLEMENTARY FIGURE 4

Hierarchical clustering of overall CAFs single-cell transcriptome profiles. (A-I)
Clustering trees showing hierarchical clustering for CAFs in HNSCC (A), OV
(B), NPC (C), CC (D), CRC (E), BRCA (F), AM (G), CM (H) and RCC (I). HNSCC,

Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC,

Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer;
BRCA, Breast Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC,

Renal Cell Carcinoma.

SUPPLEMENTARY FIGURE 5

Identification of apCAFs in various solid tumor types. (A, C, E, G, I, K, M) Left:
UMAP plots showing the major cell types in NPC (A), CC (C), CRC (E), BRCA
(G), AM (I), CM (K) and RCC (M); Right: Dot plots showing selected cell marker
genes expression levels of the major cell types in NPC (A), CC (C), CRC (E),
BRCA (G), AM (I), CM (K) and RCC (M). (B, D, F, H, J, L, N) Left: UMAP plots
showing 4 major subpopulations of CAFs in NPC (B), CC (D), CRC (F), BRCA
(H), 5 major subpopulations of CAFs in AM (J), 4 major subpopulations of
CAFs in CM (L) and 3 major subpopulations of CAFs in RCC (N). Right: Dot
plots showing selected cell marker genes expression levels for each

subpopulation of CAFs in NPC (B), CC (D), CRC (F), BRCA (H), AM (J), CM
(L) and RCC (N). Dot size indicates fraction of expressing cells, colored based

on normalized expression levels (A-N: Right). NPC, Nasopharyngeal
Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer; BRCA, Breast

Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC, Renal Cell
Carcinoma; apCAFs, antigen-presenting CAFs; myCAFs, myofibroblastic

CAFs; eCAFs, extracellular matrix CAFs; iCAFs, inflammatory CAFs, pDCs,

plasmacytoid dendritic cells.

SUPPLEMENTARY FIGURE 6

Myeloid cells and T cells subpopulations in various solid tumor types. (A, C, E,
G, I, K, M, O, Q) Left: UMAP plots showing 7 major subpopulations of myeloid
cells in HNSCC (A), 6 major subpopulations of myeloid cells in OV (C), NPC

(E), CC (G), 5 major subpopulations of myeloid cells in CRC (I), 6 major

subpopulations of myeloid cells in BRCA (K), 5 major subpopulations of
myeloid cells in AM (M), CM (O), and 6 major subpopulations of myeloid

cells in RCC (Q). Right: Dot plots showing selected cell marker genes
expression levels for the major subpopulations of myeloid cells in HNSCC

(A), OV (C), NPC (E), CC (G), CRC (I), BRCA (K), AM (M), CM (O) and RCC (Q).
(B, D, F, H, J, L, N, P, R) Left: UMAP plots showing 3major subpopulations of T

cells in HNSCC (B), OV (D), 4 major subpopulations of T cells in NPC (F), 3
major subpopulations of T cells in CC (H), 4 major subpopulations of T cells in

CRC (J), BRCA (L), and 3 major subpopulations of T cells in AM (N), CM (P),
RCC (R). Right: Dot plots showing selected cell marker genes expression
levels for the major subpopulations of T cells in HNSCC (B), OV (D), NPC (F),
CC (H), CRC (J), BRCA (L), AM (N), CM (P) and RCC (R). Dot size indicates
fraction of expressing cells, colored based on normalized expression levels

(A-R: Right). HNSCC, Head and Neck Squamous Cell Carcinoma; OV, Ovarian
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Cancer; NPC, Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC,
Colorectal Cancer; BRCA, Breast Cancer; AM, Acral Melanoma; CM,

Cutaneous Melanoma; RCC, Renal Cell Carcinoma; cDC1, conventional

type 1 dendritic cells; cDC2, conventional type 2 dendritic cells; LAMP3+
DCs, LAMP3+ dendritic cells; pDCs, plasmacytoid dendritic cells; Tregs,

regulatory T cells.

SUPPLEMENTARY FIGURE 7

apCAFs show the anti-tumor effects. (A) Kaplan-Meier plot showing

progression free survival rate of patients by apCAFs signature scores in

GSE102349-NPC RNA-seq cohort. (B-G) Kaplan-Meier plots showing
overall survival probability of patients by apCAFs signature scores in TCGA-

CESC cohort (B), TCGA-COAD cohort (C), TCGA-READ cohort (D), TCGA-
BRCA cohort (E), TCGA-SKCM cohort (F) and TCGA-KIRC cohort (G). (H-N)
Scatter plots showing Spearman’s correlation between the apCAFs signature
scores and tumor cells signature scores in GSE102349-NPC RNA-seq cohort

(H), TCGA-CESC cohort (I), TCGA-COAD cohort (J), TCGA-READ cohort (K),
TCGA-BRCA cohort (L), TCGA-SKCM cohort (M), and TCGA-KIRC cohort (N).
(O-U) Scatter plots showing Spearman’s correlation between the apCAFs

gene signature scores and CD4+ effector T cells gene signature scores in
GSE102349-NPC RNA-seq cohort (O), TCGA-CESC cohort (P), TCGA-COAD

cohort (Q), TCGA-READ cohort (R), TCGA-BRCA cohort (S), TCGA-SKCM
cohort (T), and TCGA-KIRC cohort (U). P-values were calculated by the log-

rank test (A-G). NPC, Nasopharyngeal Carcinoma; apCAFs, antigen-

presenting CAFs.

SUPPLEMENTARY FIGURE 8

Spearman’s correlation between the apCAFs signature scores and CD4+

effector T cells signature scores in scRNA-seq datasets, as well as the
expression level of immune checkpoint receptors in fibroblast

subpopulations. (A-G) Scatter plots showing Spearman’s correlation

between the apCAFs signature scores and CD4+ effector T cells signature
scores in NPC (A), BRCA (B), AM (C), CM (D), RCC (E), CC (F), and CRC (G). (H-
P) Dot plots showing the expression levels of CTLA4, LAG3, and TIGIT in
distinct fibroblasts subpopulations of HNSCC (H), OV (I), NPC (J), CC (K), CRC
(L), BRCA (M), AM (N), CM (O), and RCC (P). Dot size indicates fraction of
expressing cells, colored based on normalized expression levels (H-P).
HNSCC, Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer;

NPC, Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC, Colorectal
Cancer; BRCA, Breast Cancer; AM, Acral Melanoma; CM, Cutaneous

Melanoma; RCC, Renal Cell Carcinoma; apCAFs, antigen-presenting CAFs;
myCAFs, myofibroblastic CAFs; eCAFs, extracellular matrix CAFs; iCAFs,

inflammatory CAFs; NFs, normal fibroblasts.

SUPPLEMENTARY FIGURE 9

Immune characteristics of apCAFs. (A-E) Dot plots showing the expression
levels of C1Q molecules in distinct fibroblasts subpopulations of NPC (A), CC
(B), CRC (C), BRCA (D), and AM (E). (F-G) Bar plots showing the selected
signaling pathways with significant enrichment of GO: BP and HALLMARK

terms for apCAFs compared to NFs in NPC (F) and RCC (G). Differences in
pathway activities scored per cell by GSVA between apCAFs and NFs. t values

from a linear model, corrected for sample of origin. (H-N) Dot plots showing

the expression profiles of molecule machinery involved in antigen processing
and presentation in distinct fibroblasts subpopulations of NPC (H), OV (I), CRC
(J), BRCA (K), AM (L), CM (M) and RCC (N). Dot size indicates fraction of
expressing cells, colored based on normalized expression levels (A-E, H-N).
OV, Ovarian Cancer; NPC, Nasopharyngeal Carcinoma; CC, Cervical Cancer;
CRC, Colorectal Cancer; BRCA, Breast Cancer; AM, Acral Melanoma; CM,

Cutaneous Melanoma; RCC, Renal Cell Carcinoma; apCAFs, antigen-

presenting CAFs; myCAFs, myofibroblastic CAFs; eCAFs, extracellular matrix
CAFs; iCAFs, inflammatory CAFs; NFs, normal fibroblasts.

SUPPLEMENTARY FIGURE 10

Illustration of the spatial transcriptomic spots of HNSCC with apCAFs, tumor
cells and CD4+ effector T cells signatures enrichment. (A, F) Left: Spatial
transcriptomic spots with tumor cells signature enrichment in
HNSCC201125T10 slice (A) and P210325T3 slice (F) of HNSCC; Right:

Spatial transcriptomic spots with apCAFs signature enrichment in

HNSCC201125T10 slice (A) and P210325T3 slice (F) of HNSCC. (B, G)
Spatial transcriptomic spots with apCAFs and tumor cells signatures

enrichment in one single plot in HNSCC201125T10 slice (B) and P210325T3
slice (G) of HNSCC. (D, I) Left: Spatial transcriptomic spots with CD4+ effector

T cells gene signature enrichment in HNSCC201125T10 slice (D) and
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P210325T3 slice (I) of HNSCC; Right: Spatial transcriptomic spots with
apCAFs gene signature enrichment in HNSCC201125T10 slice (D) and

P210325T3 slice (I) of HNSCC. (C, E, H, J) Scatter plots showing

Spearman’s correlation between apCAFs signature scores and both tumor
cell signature scores and CD4+ effector T cell signature scores in the spatial

transcriptomic spots in HNSCC201125T10 slice (C, E) and P210325T3 slice (H,
J) of HNSCC. HNSCC, Head and Neck Squamous Cell Carcinoma; apCAFs,

antigen-presenting CAFs.

SUPPLEMENTARY FIGURE 11

Illustration of the spatial transcriptomic spots of OV with apCAFs, tumor cells
and CD4+ effector T cells signatures enrichment. (A, F) Left: Spatial

transcriptomic spots with tumor cells signature enrichment in GSM6592135
slice (A) and GSM6592137 slice (F) of OV; Right: Spatial transcriptomic spots

with apCAFs signature enrichment in GSM6592135 slice (A) and GSM6592137
slice (F) of OV. (B,G) Spatial transcriptomic spots with apCAFs and tumor cells

signatures enrichment in one single plot in GSM6592135 slice (B) and

GSM6592137 slice (G) of OV. (D, I) Left: Spatial transcriptomic spots with
CD4+ effector T cells gene signature enrichment in GSM6592135 slice (D)
and GSM6592137 slice (I) of OV; Right: Spatial transcriptomic spots with
apCAFs gene signature enrichment in GSM6592135 slice (D) and

GSM6592137 slice (I) of OV. (C, E, H, J) Scatter plots showing Spearman’s
correlation between apCAFs signature scores and both tumor cell signature

scores and CD4+ effector T cell signature scores in the spatial transcriptomic

spots in GSM6592135 slice (C, E) and GSM6592137 slice (H, J) of OV. OV,
Ovarian Cancer; apCAFs, antigen-presenting CAFs.

SUPPLEMENTARY FIGURE 12

Illustration of the spatial transcriptomic spots of BRCA with apCAFs, tumor
cells and CD4+ effector T cells signatures enrichment. (A, F, K) Left: Spatial
transcriptomic spots with tumor cells signature enrichment in CID4465 slice

(A), CID4535 slice (F) and CID44971 slice (K) of BRCA; Right: Spatial
transcriptomic spots with apCAFs signature enrichment in CID4465 slice

(A), CID4535 slice (F) and CID44971 slice (K) of BRCA. (B, G, L) Spatial
transcriptomic spots with apCAFs and tumor cells signatures enrichment in

one single plot in CID4465 slice (B), CID4535 slice (G) and CID44971 slice (L)
of BRCA. (D, I, N) Left: Spatial transcriptomic spots with CD4+ effector T cells

gene signature enrichment in CID4465 slice (D), CID4535 slice (I) and

CID44971 slice (N) of BRCA; Right: Spatial transcriptomic spots with
apCAFs gene signature enrichment in CID4465 slice (D), CID4535 slice (I)
and CID44971 slice (N) of BRCA. (C, E, H, J, M, O) Scatter plots showing
Spearman’s correlation between apCAFs signature scores and both tumor

cell signature scores and CD4+ effector T cell signature scores in the spatial
transcriptomic spots in CID4465 slice (C, E), CID4535 slice (H, J) and

CID44971 slice (M, O) of BRCA. BRCA, Breast Cancer; apCAFs, antigen-

presenting CAFs.

SUPPLEMENTARY FIGURE 13

Illustration of the spatial transcriptomic spots of CRC with apCAFs, tumor

cells and CD4+ effector T cells signatures enrichment. (A, F) Left: Spatial
transcriptomic spots with tumor cells signature enrichment in GSM7089855

slice (A) and GSM7089857 slice (F) of CRC; Right: Spatial transcriptomic spots

with apCAFs signature enrichment in GSM7089855 slice (A) and
GSM7089857 slice (F) of CRC. (B, G) Spatial transcriptomic spots with

apCAFs and tumor cells signatures enrichment in one single plot in
GSM7089855 slice (B) and GSM7089857 slice (G) of CRC. (D, I) Left: Spatial
transcriptomic spots with CD4+ effector T cells gene signature enrichment in
GSM7089855 slice (D) and GSM7089857 slice (I) of CRC; Right: Spatial

transcriptomic spots with apCAFs gene signature enrichment in

GSM7089855 slice (D) and GSM7089857 slice (I) of CRC. (C, E, H, J) Scatter
plots showing Spearman’s correlation between apCAFs signature scores and

both tumor cell signature scores and CD4+ effector T cell signature scores in
the spatial transcriptomic spots in GSM7089855 slice (C, E) and GSM7089857

slice (H, J) of CRC. CRC, Colorectal Cancer; apCAFs, antigen-
presenting CAFs.

SUPPLEMENTARY FIGURE 14

Characterization of apCAFs origin. (A, E) Transcriptomic similarity analyses

among apCAFs, NFs, endothelial cells, various macrophages and various
dendritic cells in NPC (A) and RCC (E). The darker the blue, the stronger

the positive correlation, and the darker the red, the stronger the negative
correlation. The numbers in the circle represent the correlation coefficient R.

(B, F) Left: The cell trajectory along the NFs-apCAFs path in NPC (B) and RCC
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(F); Right: The pseudotime trajectory along the NFs-apCAFs path in NPC (B)
and RCC (F). (C, G) Density distribution of apCAFs and NFs along the

pseudotime trajectory in NPC (C) and RCC (G). (D, H) Dynamic variation in

CD74 during pseudotime trajectory in NPC (D) and RCC (H). NPC,
Nasopharyngeal Carcinoma; RCC, Renal Cell Carcinoma; apCAFs, antigen-

presenting CAFs; NFs, normal fibroblasts; cDC1, conventional type 1 dendritic
cells; cDC2, conventional type 2 dendritic cells; LAMP3+ DCs, LAMP3+

dendritic cells.

SUPPLEMENTARY TABLE 1

The clinical and sample information of selected studies containing scRNA-
seq data of HNSCC, OV, NPC, CC, CRC, BRCA, AM, CM and RCC, and spatial

transcriptome data of HNSCC, OV, BRCA and CRC. HNSCC, Head and Neck
Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC, Nasopharyngeal

Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer; BRCA, Breast
Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC, Renal

Cell Carcinoma.

SUPPLEMENTARY TABLE 2

Differentially expressed genes from major cell types derived from various
solid tumor types including HNSCC, OV, NPC, CC, CRC, BRCA, AM, CM, and

RCC. A two-sided Wilcoxon signed-rank test with Bonferroni correction was
used to assess statistical significance. HNSCC, Head and Neck Squamous Cell

Carcinoma; OV, Ovarian Cancer; NPC, Nasopharyngeal Carcinoma; CC,

Cervical Cancer; CRC, Colorectal Cancer; BRCA, Breast Cancer; AM, Acral
Melanoma; CM, Cutaneous Melanoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 3

Differentially expressed genes in the sub-clustering analysis of CAFs
populations originating from various solid tumor types, such as HNSCC,

OV, NPC, CC, CRC, BRCA, AM, CM, and RCC. A two-sided Wilcoxon

signed-rank test with Bonferroni correction was used to assess statistical
significance. HNSCC, Head and Neck Squamous Cell Carcinoma; OV, Ovarian

Cancer; NPC, Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC,
Colorectal Cancer; BRCA, Breast Cancer; AM, Acral Melanoma; CM,

Cutaneous Melanoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 4

The number of cells identified for each CAFs subpopulation in each solid
tumor type.

SUPPLEMENTARY TABLE 5

Signature Matrix derived from scRNA-seq data of various solid tumor types
including HNSCC, OV, NPC, CC, CRC, BRCA, CM, and RCC for CIBERSORTx

mediated digital cytometry analysis. HNSCC, Head and Neck Squamous Cell

Carcinoma; OV, Ovarian Cancer; NPC, Nasopharyngeal Carcinoma; CC,
Cervical Cancer; CRC, Colorectal Cancer; BRCA, Breast Cancer; CM,

Cutaneous Melanoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 6

CIBERSORTx results and patient survival information of various bulk RNA-seq

data including TCGA-HNSC, TCGA-OV, GSE102349-NPC, TCGA-CESC,

TCGA-COAD, TCGA-READ, TCGA-BRCA, TCGA-SKCM, and TCGA-KIRC.

SUPPLEMENTARY TABLE 7

Gene lists of CD4+ effector T cells gene signature and apCAFs gene

signatures derived from scRNA-seq data of various solid tumor types
including HNSCC, OV, NPC, CC, CRC, BRCA, AM, CM, and RCC. HNSCC,

Head and Neck Squamous Cell Carcinoma; OV, Ovarian Cancer; NPC,

Nasopharyngeal Carcinoma; CC, Cervical Cancer; CRC, Colorectal Cancer;
BRCA, Breast Cancer; AM, Acral Melanoma; CM, Cutaneous Melanoma; RCC,

Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 8

GSVA results for gene signatures representing apCAFs and CD4+ effector T

cells were computed using various bulk RNA-seq data including TCGA-
HNSC, TCGA-OV, GSE102349-NPC, TCGA-CESC, TCGA-COAD, TCGA-

READ, TCGA-BRCA, TCGA-SKCM, and TCGA-KIRC.

SUPPLEMENTARY TABLE 9

The differential expression of the selected pathways of HALLMARK and GO: BP
pathways between apCAFs and NFs were computed by the limma R package

using scRNA-seq data from 4 solid tumor types including HNSCC, CC, NPC,
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and RCC. HNSCC, Head and Neck Squamous Cell Carcinoma; CC, Cervical
Cancer; NPC, Nasopharyngeal Carcinoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 10

The semla R package was deployed for the purpose of inferring cell type

proportions from spatial transcriptome data originating from 4 distinct solid
tumor types, namely HNSCC, OV, BRCA, and CRC. HNSCC, Head and Neck

Squamous Cell Carcinoma; OV, Ovarian Cancer; BRCA, Breast Cancer; CRC,
Colorectal Cancer.

SUPPLEMENTARY TABLE 11

The AddModuleScore outcomes for gene signatures related to apCAFs and

CD4+ effector T cells were obtained from various spatial transcriptome data,
encompassing HNSCC, OV, BRCA, and CRC. HNSCC, Head and Neck

Squamous Cell Carcinoma; OV, Ovarian Cancer; BRCA, Breast Cancer;
CRC, Colorectal Cancer.

SUPPLEMENTARY TABLE 12

The top 5000 variably expressed genes in apCAFs, as well as their potential

source cell types such as NFs, endothelial cells, different macrophages, and
various dendritic cells, were identified using various scRNA-seq data

encompassing HNSCC, CC, NPC, and RCC. HNSCC, Head and Neck
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Squamous Cell Carcinoma; CC, Cervical Cancer; NPC, Nasopharyngeal
Carcinoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 13

AUCell AUC Z-score of regulons in fibroblasts subpopulations derived from

scRNA-seq data of 6 solid tumor types including HNSCC, OV, NPC, BRCA,
CM, and RCC. HNSCC, Head and Neck Squamous Cell Carcinoma; OV,

Ovarian Cancer; NPC, Nasopharyngeal Carcinoma; BRCA, Breast Cancer;
CM, Cutaneous Melanoma; RCC, Renal Cell Carcinoma.

SUPPLEMENTARY TABLE 14

GSVA results for HALLMARK_GLYCOLYSIS pathway in fibroblasts

subpopulations derived from scRNA-seq data of 3 solid tumor types
including HNSCC, NPC, and BRCA. HNSCC, Head and Neck Squamous Cell

Carcinoma; NPC, Nasopharyngeal Carcinoma; BRCA, Breast Cancer.

SUPPLEMENTARY TABLE 15

The estimated metabolic flux from pyruvate to lactate in fibroblasts
subpopulations derived from scRNA-seq data of 3 solid tumor types

including HNSCC, NPC, and BRCA, using scFEA analysis in FLUXestimator
website. HNSCC, Head and Neck Squamous Cell Carcinoma; NPC,

Nasopharyngeal Carcinoma; BRCA, Breast Cancer.
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