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Impaired metabolism is recognized as an important contributor to pathogenicity

of T cells in Systemic Lupus Erythematosus (SLE). Over the last two decades, we

have acquired significant knowledge about the signaling and transcriptomic

programs related to metabolic rewiring in healthy and SLE T cells. However,

our understanding of metabolic network activity derives largely from studying

metabolic pathways in isolation. Here, we argue that enzymatic activities are

necessarily coupled through mass and energy balance constraints with in-built

network-wide dependencies and compensation mechanisms. Therefore,

metabolic rewiring of T cells in SLE must be understood in the context of the

entire network, including changes in metabolic demands such as shifts in

biomass composition and cytokine secretion rates as well as changes in

uptake/excretion rates of multiple nutrients and waste products. As a way

forward, we suggest cell physiology experiments and integration of orthogonal

metabolic measurements through computational modeling towards a

comprehensive understanding of T cell metabolism in lupus.
KEYWORDS
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Introduction

CD4+ T cells are an integral component of the adaptive immune system whose central

function is clonal expansion and development of effector functions such as cytokine

secretion and expression of co-stimulatory factors following exposure to antigens. To

facilitate rapid proliferation, the metabolic network of T cells undergo a switch from a

quiescent metabolic state characterized primarily by catabolic and homeostatic activities to

a proliferative state characterized by anabolic activities (1).
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The signaling program as well as the associated changes in gene

expression that affect the metabolic switch during T cell

proliferation have been thoroughly explored and reviewed

elsewhere (2, 3). In contrast, our understanding of the changes in

the metabolic state of cells is nascent but ever expanding (4). The

first concrete explorations of metabolic rewiring accompanying the

proliferation of healthy T cells occurred only two decades ago when

it was shown that a switch to the proliferative state is accompanied

by a significant upregulation of glucose uptake (5). This initial

observation led to a flurry of research towards understanding the

metabolic underpinnings of T cell function.

There is emergent consensus that impaired metabolic rewiring

of T cells during proliferation is an essential feature of pathogenesis

in several autoimmune disorders including systemic lupus

erythematosus (SLE) (6), an autoimmune disorder that

disproportionately affects women of Hispanic, African, and Asian

ancestry (7). Importantly, these differences in metabolic rewiring

have led to the development of several candidate therapeutics, some

of which are currently being tested clinical trials, that target

biochemical mechanisms that are orthogonal (8–10) to the

standard of care for SLE based on immunosuppressants.

Therefore, it is crucial that we gain a comprehensive

understanding of impaired metabolic rewiring in SLE.

Most previous inquiries of SLE metabolism have studied

metabolic pathways and nutrients in isolation, either by using

only one approach (e.g. metabolomics or transcriptomics) or one

metabolic pathway (e.g. glycolysis) as previously reviewed (11–13).

In this perspective, we argue that the mammalian cellular metabolic

network simultaneously carries out hundreds of interdependent

chemical conversions (14), with large-scale dependencies and

compensation mechanisms. Moreover, the metabolic network can

be probed using multiple approaches, e.g. transcriptomics,

metabolomics, and proteomics. Therefore, a comprehensive

understanding of the impaired metabolic rewiring requires a

simultaneous analysis of the exchange of nutrients and waste

products and their relationship with cell proliferation and the

cellular metabolic state.

Here, we first review metabolic rewiring in healthy T cells,

followed by highlights of impaired rewiring in SLE. Next, we discuss

how biophysical demands and constraints induce correlation across

multiple pathways in the metabolic network and gaps in our

knowledge. Finally, we sketch how biophysical measurements and

computational integration of orthogonal metabolic, physiological,

and transcriptomic data can estimate the metabolic state of T cells.
Metabolic rewiring of healthy T cells

Metabolism of quiescent T cells is driven by homeostatic

activities and is largely catabolic, requiring limited uptake of

glucose, glutamine, and fatty acids, which are then routed

through the oxidative pathways - oxidative phosphorylation

(OXPHOS) and fatty acid oxidation (FAO) - to generate energy

in the form of adenosine triphosphate (ATP) in the mitochondria.

Consequently, quiescent T cells show very little aerobic glycolysis

and low levels of lactate production (1). In contrast, metabolism of
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proliferating T cells is more active as it serves homeostatic,

biosynthetic, and secretory functions. These functions demand a

significantly higher energy requirement, utilized for polymerization

of macromolecules as well as production of biomass precursors

(amino acids, lipids, nucleotides etc.) from raw materials such as

glucose, glutamine, and other amino acids.

Upon activation, T cells upregulate glucose consumption

through membrane expression of glucose transporter 1 (GLUT1)

(5). Most of the consumed glucose enters glycolysis where it

produces NADH, ATP, and pyruvate. Additionally, glucose enters

branched pathways including the pentose phosphate pathway

(PPP), where it regenerates the cofactor NADPH and produces

ribose-5-phosphate (R5P) (1, 15). NADPH is required for de novo

synthesis of lipids and as a reducing equivalent in the regeneration

of glutathione, a protective molecule that controls levels of reactive

oxygen species (ROS). Glucose-derived R5P is used as the sugar

backbone for nucleotide synthesis. A large fraction of pyruvate is

excreted in the extracellular medium as lactate, in a phenomenon

known as the Warburg effect (1, 16). The rest of the pyruvate enters

the tricarboxylic acid (TCA) cycle, where it is used in the

regeneration of ATP and in the synthesis of biomass precursors.

Proliferating T cells also uptake large amounts of glutamine

(17). Consumed glutamine is used for the synthesis of proteins and

nucleotides. Additionally, glutamine is converted to glutamate and

then to the TCA cycle intermediate a-keto glutarate in a process

called glutaminolysis. Glutamate, which is essential for epigenetic

regulation of T cell differentiation (18, 19), is also used in the

synthesis of nucleotides and glutathione. Recent work has also

shown that surprisingly, supplementation of nonessential amino

acids is crucial in T cell proliferation. T cells may be auxotrophic to

alanine (20), which can in principle be synthesized from pyruvate in

a single step using alanine transaminase. Similarly, serine which can

be synthesized from glycolysis intermediate 3-phosphoglycerate,

also needs to be supplemented externally in proliferating T cells

(21). Consumed serine is used in the synthesis of proteins, lipid

headgroups, nucleotides, and amino acids glycine and proline.

Serine is also a key component of the one-carbon cycle which is

essential for generating methyl groups that are used for

DNA methylation.
Pathogenic rewiring of T cells in SLE

There is now a growing consensus that impaired metabolic

rewiring of T cells is central to the pathogenesis of SLE. It could be

argued that the most well-documented metabolic impairment in

SLE T cells, especially in human patients, are differences in

mitochondrial utilization of glucose. When stimulated, SLE T

cells show a marked increase in glycolysis and OXPHOS (10)

with potentially lowered NADPH production through the PPP

(22). SLE T cells are characterized by a high oxidative state and

depleted levels of glutathione (23). Higher glycolysis in SLE T cells is

achieved through a higher expression of GLUT1 (24) and higher

OXPHOS (25) is achieved through an increased mitochondrial

biomass (26). Paradoxically, mitochondria in SLE produce less

ATP compared to healthy controls (HC) even though they are
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hyperpolarized (26). Additionally, evidence suggests that there are

significant differences in glutamine (27) and lipid metabolism (28)

in SLE T cells. A subset of CD4+ T cells producing IL-17 (Th17

cells) is expanded in SLE patients. Based on studies in mice,

differentiation of Th17 cells relies strongly on glutaminolysis (29),

as well as de novo lipid and cholesterol synthesis (30).

These key differences in metabolic rewiring have led to the

identification of several potential therapeutic targets, some of which

are currently being tested in clinical trials, that are orthogonal to the

standard of care for SLE based on steroidal and nonsteroidal

immunosuppressants (31–33). These include a combination

therapy of 2-deoxy-D-glucose (2DG) and metformin that inhibit

the first step of glycolysis and mitochondrial activity, respectively

(9, 10), and inhibition of glutaminase, the first enzyme in

glutaminolysis (34), in lupus-prone mice. Supplementation with

N-acetyl cysteine, a reducing agent that is a precursor of cysteine, an

amino acid used in glutathione synthesis, and treatment with

mTOR inhibitor sirolimus or with metformin, have also shown

promising results in SLE patients (35–38). The overarching goal to

use cellular metabolism to selectively dampen the inflammatory

autoreactive immune cells in SLE mirrors a growing effort to

activate exhausted immune cells in the tumor microenvironment

also through metabolic reprogramming (39).
A need for system-wide study of
metabolic changes

Several genetic, signaling, and metabolic investigations suggest

that there are large-scale differences in the metabolism of HC and SLE

T cells (13). However, most previous works, including those cited

above, have studied metabolic pathways and nutrients in isolation,

often using only one approach (e.g. metabolomics or transcriptomics)

or one metabolic pathway (e.g. glycolysis). Importantly, however, the

human metabolic network simultaneously carries out thousands of

interdependent chemical conversions (40), with in-built large-scale

dependencies and compensation mechanisms. Moreover, metabolic

reactions are governed by tight constraints imposed by mass (14) and

energy balance (41) as well as the laws of thermodynamics (41).

Therefore, the exchange of nutrients and waste products and their

relationship with cell proliferation and the cellular metabolic state

must be understood simultaneously.

Such analysis requires quantitative knowledge of metabolic

demands of proliferating T cells, both healthy as well as those in

SLE patients. Unfortunately, even the most basic quantification of

differences in metabolic demands is not available. For example, it is

well established that SLE T cells have higher mitochondrial mass

(26). But systematic changes in organelle distribution and their

effect on overall biomass composition in SLE are not known.

Similarly, the cytokine secretion profile is significantly altered

between SLE and healthy T cells (42), with an increased

production of pro-inflammatory cytokines in SLE. However, the

metabolic burden of increased cytokine production by SLE T cells

has not been quantified. Altered metabolic demands related to

biomass and cytokine production have a direct effect on the nutrient
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uptake profile, downstream nutrient usage, and consequently the

entire metabolic network. For example, increased protein (cytokine)

production requires higher levels of synthesis of amino acids and

higher ATP demand (43). Similarly, increased organelle mass

requires higher de novo lipid synthesis, which in turn requires

increased NADPH and NAD+ (44) regeneration rates.

Therefore, to elucidate metabolic driving mechanism of SLE

pathogenesis and to discover new druggable targets for SLE and

other autoimmune disorders, we need a systematic and unbiased

characterization of the differences in metabolic requirements as well

as metabolic network activity of SLE and healthy T cells.
Towards a system-wide
understanding of T cell metabolism
using computational integration

How do we obtain a network-wide characterization of T cell

metabolic activity? Advances in genomics, proteomics, and

metabolomics allow us to obtain a high dimensional and high-

resolution characterization of cellular metabolism. However, these

measurements only provide indirect information about the metabolic

state of cells - network-scale enzyme activity or reaction rates. This is

because reaction fluxes are a complex function of enzyme kinetics (45),

thermodynamics (45), metabolomics (45), and gene expression (46),

and therefore are not uniquely determined by -omics characterizations.

For example, metabolite levels may be high either because of a high

rate of production or a low rate of clearance. Similarly, high gene

expression levels may imply higher reaction rates or a compensatory

mechanism to maintain constant reaction rates. Therefore, typical

omics measurements cannot be directly used to infer differences in

metabolic states of cells. Moreover, while labeled carbon experiments

allow estimation of intracellular fluxes in bacteria (47, 48), a direct

measurement of most intracellular fluxes is not possible in mammalian

cells, owing to compartmentalization (47). Consequently, metabolic

states cannot be characterized using direct measurements either.

A way to overcome these limitations is through computational

modeling and data integration. Notably, omics-based indirect

characterizations can be integrated with cell physiological information

such as proliferation rate, cell size, cytokine excretion rate, and crucially,

the consumption and release rates (CORE) of several nutrients and

waste products, which can be accurately measured in cell culture using

mass spectrometry (49). This integration can be achieved using the flux

balance analysis (FBA) framework (14) (Figure 1).

While omics data do not uniquely determine the fluxes using

FBA, they do constrain the plausible fluxes to a feasible space (14)

(Figure 1D). To further identify unique fluxes, FBA approaches

typically invoke optimality of an underlying objective function, for

example, fast growth or maximum yield, to obtain a unique flux

solution (50). While these optimality-based approaches have been

quite successful in modeling the metabolism of single cell organisms

(50), mammalian cells have not necessarily evolved for fast growth,

and the specific metabolic objective (e.g., lipid production, cytokine

secretion, cell proliferation) may depend on cell type and extracellular

environment, and may not even be metabolic in nature.
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In the absence of direct measurements, a conceptually

straightforward way to obtain an estimate of intracellular fluxes is

probabilistic sampling of the feasible space using a Bayesian

framework and Markov Chain Monte Carlo (51) that integrates

all available measurements and biophysical constraints. For

example, the feasible space defined by CORE measurements and

proliferation rates can be further constrained using transcriptomics

by requiring fluxes to align with reaction activity scores (46).

Moreover, fluxes can be required to satisfy energy balance (41),

thereby eliminating unrealistic loops that satisfy mass balance but

violate the second law of thermodynamics.
Computational integration predicts
network-wide changes in
metabolic activity

To test whether such an integration can consistently identify

potential differences in metabolic states of SLE and healthy T cells,

we performed preliminary analyses on splenic CD4+ T cells from

lupus-prone (TC) and healthy control (B6) mice (see methods). In
Frontiers in Immunology 04
this proof of principle work, CD4+ T cells that do not express

surface markers associated with receptor activation (i.e. “naïve”)

were used to eliminate the differences in activation status that exist

between TC and B6 T cells. To obtain constrained metabolic rates,

we measured uptake and excretion rates of amino acids, glucose,

and lactate in these T cells that were activated in vitro through their

CD3ϵ, a signaling subunit of the T cell receptor, and the co-receptor

CD28. As shown in Figure 1C, there are large scale differences in

nutrient exchange profile with highest exchange fluxes were

glucose/lactate and glutamine/glutamate. Surprisingly, while most

amino acids were consumed, glutamate, alanine, aspartate, and

glycine were excreted. Importantly, there were significant

differences in exchange fluxes between T cells from TC and B6

mice. These data already hint at global metabolic differences

between TC and B6 T cells that could not be detected by

traditional metabolomic analyses.

Next, we integrated the measured the uptake and excretion rates

with measured gene expression of metabolic enzymes using a model

of the human metabolic network and the FBA framework. By

sampling the feasible space of intracellular fluxes constructed

using the FBA framework (see methods), we obtained posterior
B

C

D

A

FIGURE 1

Flux balance (FBA) framework integrates biophysical constraints and measurements with transcriptomics. (A) Genome-scale map of metabolic
interconversions (40) is expressed in (B) as the stoichiometric matrix S whose entries Smr denote the participation of metabolites m in reactions r. If

metabolite concentrations are at steady state, the vector �j of reaction rates must be in the null space of S. (C) Constraints to this metabolic map can
be provided in the form of consumption and release (CORE) rates. We show measured CORE rates of high flux metabolites (glucose (glc), glutamine
(Q), lactate (lac), and glutamate (E)) and low flux nutrients (other amino acids) separately. Error bars represent standard error of the mean from
measurements on T cells derived from n = 4 mice each (see Methods). (D) These linear constraints and reasonable upper and lower bounds on

reaction fluxes (�l ≤�j ≤ �u) defines a feasible space. The feasible space can be further constrained by biophysical and transcriptomic measurements.
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distributions of intracellular fluxes. Fluxes from these distributions

satisfied mass balance and laws of thermodynamics as imposed by

the metabolic network. The fluxes were constrained to reproduce

the measured growth rate and nutrient exchange rates. The fluxes

were also biased to align with gene expression profiles obtained by

RNA sequencing. Figures 2A, B show that according to the Bayesian

model, there are network-wide differences in the metabolism of T

cells. Overall, TC T cells had a more active metabolism, ∼ 76% of

the reactions in the model had a higher flux in the lupus mice. These

preliminary analyses show that simple biophysical and metabolic

experiments, combined with transcriptomics and genome-wide

metabolic models can allow us to estimate a detailed picture of

intracellular fluxes.

These predictions offer a systematic route to integrate measured

information and thereby obtain testable hypotheses concerning the

role of shifts in metabolic activity in SLE pathogenesis. For example,

consistent with known SLE pathology, glucose consumption by TC

mice is significantly higher compared to B6 mice (10). Surprisingly,

while lactate excretion by TC mice is also higher (10, 13), the fraction

of pyruvate excreted as lactate is similar between B6 and TC mice

(67 ± 6:5% vs 65 ± 5%, Wilcoxon rank sum test p = 0:49, n = 4 mice

for each condition). This suggests that higher lactate production by T

cells of TCmice may largely be explained by their higher proliferation

rate and consequent higher metabolic activity. Indeed, consistent

with the model prediction, despite shifts in glucose and lactate

utilization, the ratio of oxygen consumption rate (OCR) to

extracellular acidification rate (ECAR), a proxy for pyruvate
Frontiers in Immunology 05
utilization, is similar between B6 and TC mice (10). In contrast, the

amount of glucose entering the oxidative pentose phosphate pathway

is higher in T cells from TCmice compared to B6 mice (0:017 ± 0:01

vs 0:07 ± 0:004, Wilcoxon rank sum test p = 0:0571, n = 4 mice for

each condition). This may reflect not only the higher demand for

anabolic NADPH but also the NADPH required to regenerate

glutathione. While fluxes in Figure 2 are only predictions from the

computational model, these examples show that they offer numerous

testable hypotheses about the utilization of nutrients.

These preliminary analyses show that the integration of

biophysical measurements, gene expression data, and estimates of

consumption and release rates of metabolites can be accomplished

using a unifying Bayesian framework to obtain unbiased predictions

about the metabolic states of cells.
Outlook

Targeting the changes in the metabolic network is an attractive

therapeutic avenue in treating autoimmune disorders like SLE that

is orthogonal to current immunosuppressant-based treatments or

even more novel biologics targeting specific immunological cells or

pathways. However, our current understanding of metabolic

differences in SLE and healthy T cells is limited to studies

performed on individual pathways in isolation. While it remains

experimentally challenging to directly probe the entire metabolic

network, computational methods can integrate several pieces of
BA

FIGURE 2

Inferred metabolic activity HC and SLE T cells. Inferred intracellular metabolic fluxes in in vitro stimulated CD4+ T cells from HC (A) and SLE (B) mice.
Shown are key metabolic reactions in glycolysis, TCA cycle, and oxidative pentose phosphate pathway. Key enzymes in these pathways are shown in
magenta boxes. Numbers represent model estimated reaction rates in millimoles per gram dry cell weight per hour (mmol/g-DW-hr). The fluxes are
reported as an average of measurements on T cells harvested from n = 4 mice for each condition.
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multi-omics information and biophysical constraints to predict

network activity. We believe that these approaches will serve as

an important tool in forming global understanding of T cell

metabolism in health and disease.
Methods

Mice and cell culture preparation

B6.Sle1.Sle2.Sle3 (TC) mice have been previously described

(52). C57BL6/J (B6) mice were originally purchased from the

Jackson Laboratory. Both strains were maintained at the

University of Florida. Naïve CD4+ T cells were purified by

negative selection with antibody-coated magnetic beads (Miltenyi

Biotech) from the spleen of n = 4 B6 and TC mice and then

stimulated with plate-bound anti-CD3 (145-2C11, 2 mg/ml) and

soluble anti-CD28 (37.51, 1 mg/ml) antibodies, both purchased

from BD Biosciences, in serum-free RPMI medium as previously

described (10) with the addition of 25 mM glucose and 10 mM

glutamine. Naïve CD4+ T cells were used instead of total CD4+ T

cells to limit differences due to an increased frequency of activated T

cells in lupus. Cell numbers were measured in stimulated cells on

day 2 and day 3 of growth to fit an exponential growth parameter.
Measurement of consumption and
release rates

Consumption and release (exchange) rates of amino acids were

measured using mass spectrometric analysis of cell culture

supernatant using LC/MS/MS as described previously (49) using

an amino acid kit from Kairos Waters with a ThermoScientific TSQ

Altis with Vanquish UHPLC for all mass spectrometry analyses.

Glucose and lactate concentrations were measured using NMR.

Briefly, absolute concentrations of metabolites were measured in the

supernatant on day 2 and 3 and exchange rates were estimated by

dividing the net change in metabolite concentration by the area

under the curve of cell number profile 1H NMR spectra were

acquired using a 14 T magnet equipped with a 5 mm TXI

CryoProbe (Bruker BioSpin). Spectra were collected using a

spectral width of 12 (32768 complex data points) and an

acquisition time of 2.27 s using the NOESYPR1D experiment.

Data were processed using MestReNova (v14.2.1). Glucose and

lactate concentrations in media were calculated from an internal

standard of 0.5 mM DSS (Sigma-Millipore) and 0.5 mM pyrazine

(Sigma-Millipore) using appropriate T1 corrections for the

standards versus the metabolites.
Gene expression using single cell
RNA sequencing

Magnetic bead isolated cell specimens were confirmed to have

sufficient viability (>85%) with Acridine Orange/Propidium iodide

staining and a Nexcelom Cellometer, then prepared for droplet
Frontiers in Immunology 06
encapsulation using the 3’ Single Cell Profiling reagent kit (version

3.1) (10x Genomics) and manufacturer’s instructions for cDNA

library preparation. Libraries were sequenced on a NovaSeq S4 flow

cell. Demultiplexed libraries were analyzed using Cellranger.
Computational algorithm to predict
intracellular fluxes

Exchange fluxes and growth rates were used in a flux balance

model of the human metabolic network. The metabolic model

comprises the union of all reactions that enzymes coded in the

human genome can support. To obtain a tissue specific pruned

model, we used the measured exchange rates and proliferation rates

as described before (44). The constraints imposed by steady state

metabolite concentrations, exchange rates, and proliferation rates

described a convex polytope of plausible intracellular fluxes. We

sampled intracellular fluxes from this polytope using rejection

sampling that rejected flux distributions that violated the second

law of thermodynamics (41). Additionally, we biased the flux

distribution using gene expression that was converted into

reaction activity scores (46, 53) - aggregate expression levels of

genes that correspond to a given metabolic reaction. The data and

the scripts used for this preliminary analysis can be found at https://

github.com/adgoetz186/Flux_Code.
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