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Anti-PD-(L)1 therapy has shown great efficacy in some patients with cancer.

However, a significant proportion of patients with cancer do not respond to it.

Another unmet clinical need for anti-PD-(L)1 therapy is the dynamic monitoring

of treatment effects. Therefore, identifying biomarkers that can stratify potential

responders before PD-(L)1 treatment and timely monitoring of the efficacy of

PD-(L)1 treatment are crucial in the clinical setting. The identification of

biomarkers by liquid biopsy has attracted considerable attention. Among the

identified biomarkers, circulating T cells are one of the most promising because

of their indispensable contribution to anti-PD-(L)1 therapy. The present review

aimed to thoroughly explore the potential of circulating T cells as biomarkers of

anti-PD-(L)1 therapy and its advantages and limitations.
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1 Introduction

Over the past decade, anti-PD-(L)1 therapy has revolutionized the clinical treatment of

cancer. However, only some patients with cancer benefit from anti-PD-(L)1 therapy,

whereas most patients eventually experience disease progression. Furthermore, a few

patients receiving anti-PD-(L)1 therapy succumb to hyperprogressive diseases.

Therefore, identifying biomarkers that can stratify patients who will benefit from anti-

PD-(L)1 therapy is crucial in clinical practice.

The US Food and Drug Administration (FDA) has approved some biomarkers that can

predict the efficacy of anti-PD-(L)1 therapy in several cancer types, including PD-L1

expression (assessed using immunohistochemistry), mismatch repair deficient/

microsatellite instability-high (dMMR/MSI-high), and tumor mutation burden (TMB).

These biomarkers are mostly based on tumor lesions sampled through invasive surgery

or biopsy. Unfortunately, Previous studies have revealed that tumors usually exhibit
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hightemporal and spatial heterogeneity (1), making them

unrepresentative of the entire immune landscape based on a

biopsy sample from a single site. For example, approximately 55%

of patients with advanced non-small cell lung cancer (NSCLC) who

exhibit PD-L1 expression in at least 50% of tumor cells do not

benefit from the therapy (2). Therefore, there is an urgent need to

develop new approaches using robust biomarkers associated with

anti-PD-(L)1 therapy.

Liquid biopsy has emerged as an appealing method for

identifying new biomarkers that reflect the general immune

landscape (3, 4). Among the identified biomarkers, circulating T

cells are one of the most promising for three reasons: 1) It has been

historically accepted that effective anti-PD-(L)1 therapy relies on

the reactivation of pre-existing T cells of the tumor, which exhibit

high programmed cell death protein 1 (PD-1) expression levels;

however, recent data suggest that effective anti-PD-(L)1 therapy

relies on the continuous recruitment of new T cells from circulation

(5). Accordingly, recent studies demonstrated the existence of anti-

PD-(L)1 therapy-responding T cell subsets in circulation (6, 7); 2) A

previous theory suggested that activated T cells infiltrate the

tumor, become dysfunctional, and finally die within tumor

microenvironment (TME); however, recent research indicates that

some tumor-infiltrating T cells can escape from the tumor and re-

enter circulation (8). indicating that some circulating T cell subsets

may reflect the status of tumor-infiltrating T cells; 3) Given the gut

microbiota is involved in determining the efficacy of anti-PD-(L)1

therapy (9), circulating T cells against specific ectopic bacteria may

serve as a biomarker of anti-PD-(L)1 therapy. Consistently, recent

research has indicated that bacteria-specific T follicular helper (Tfh)

cells exist in the circulation and are correlated with PD-(L)1

efficacy (10).

This review aimed to thoroughly explore circulating T cell

subsets in the context of PD-(L)1 efficacy. The advantages and

limitations of the different subsets and functional states of

circulating T cells were also discussed.
2 CD8+ T cell subsets as a
potential biomarker

The number of peripheral CD8+ T cell subsets is closely

associated with immunotherapy efficacy (11–13). Herein, we

reviewed the predictive impact of peripheral blood CD8+ T cell

subsets on efficacy before and after anti-PD-(L)1 therapy

(Table 1, Figure 1).
2.1 Memory CD8+ T cell subsets

Upon antigen stimulation, naïve T cells differentiate into T

effector (Teffs) cells. After antigen elimination, most Teff cells

undergo apoptosis, whereas a small proportion of Teff cells

differentiate into long-lived memory T cells (34). Memory CD8+

T cells recirculating throughout the bloodstream can induce a rapid

and robust response upon antigen reengagement, thereby playing a

crucial role in sustaining long-lasting protective immunity.
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Circulating memory CD8+ T cells can be categorized into three

distinct subtypes: stem central memory (Tscm), central memory

(Tcm), and effector memory (Tem). Furthermore, memory CD8+ T

cells that reside within affected tissues and exhibit limited

recirculation capacity are called tissue-resident memory T (Trm)

cells. Trm cells can also re-enter circulation under specific contexts

(35). Current evidence indicates that memory CD8+ T cells in the

peripheral blood correlate with responsiveness to immunotherapy,

indicating their predictive value as a biomarker.
2.2 Effector memory CD8+ T cell (Tem)

Tem cells are usually characterized by a CD45RO+C-C motif

chemokine receptor 7 (CCR7)-killer cell lectin-like receptor G1

(KLRG1)high phenotype in patients with cancer. Tem cells emerge

among early responders to immunotherapy, and their early

expansion in the circulation is correlated with a durable response

and improved objective response rates (16). In addition, Tem cells

persist in the peripheral blood of patients with melanoma who

experience durable benefits from immunotherapy (36).
2.3 Baseline circulating Tem cells

Tem cells have been extensively studied as predictive markers of

the baseline response to anti-PD-(L)1 therapy in patients with NSCLC

(14, 15). Recent studies have demonstrated that anti-PD-(L)1 therapy

does not reverse the phenotype of terminally exhausted T cells but

promotes the differentiation of self-renewing progenitor T cells into

newly formed effector-like T cells, includingmemory T cells (37). T-cell

factor 1 (TCF1) is an established marker of self-renewing T cells. In

patients with NSCLC receiving anti-PD-(L)1 therapy, a higher

proportion of TCF1-expressing T cells was observed in the

circulating CD8+ Tem cells of patients who achieved durable clinical

benefit (DCB) at baseline than in those who were resistant to treatment.

Higher TCF-1 expression was associated with longer progression-free

survival (PFS) (14). CD28 is a surface marker of TCF1-expressing

CD8+ cells. Analysis of pre-treatment peripheral blood lymphocytes

from 87 patients with different tumors undergoing first-line anti-PD-

(L)1 therapy revealed significantly elevated circulating CD8+CD28+ T

cell counts in patients who responded to treatment (median [range]

counts: 236 (30–536) vs. 138 [36-460]/mL). Using 190/mL as the cut-off,
patients with higher CD8+CD28+ T cell counts exhibited significantly

prolongedmedian PFS than patients with lower counts (not reached vs.

8.7 months, p < 0.001). In addition, they had a significantly extended

overall survival (OS) (not reached vs. 16.2 months, p < 0.001) (15).

These findings suggest that Tem cells are strongly associated with

response to PD(L)1 therapy.
2.4 On-treatment circulating Tem cells

In a clinical study investigating the impact of single-cycle anti-PD-

(L)1 therapy on peripheral T cell dynamics in treatment-naive patients

with metastatic melanoma, a significant expansion of CD27-CCR7-
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TABLE 1 Predictive outcome of peripheral conventional CD8+ T cell subsets in PD-(L)1 therapy.

VS low) Cancer type Enrollment Ref

) PFS (mos)

17.0 vs 3.0 aNSCLC 22 (14)

NR vs. 8.7 NSCLC 87 (15)

- MM 30 (16)

- MM 20 (16)

NR vs 5.6* MM 69 (17)

18.0 vs 3.5 aNSCLC 20 (14)

- NSCLC 71 (18)

- mUC 20 (19)

- mUC 50 (19)

1.3 vs 1.8 aNSCLC 37 (20)

1.8 vs 6.4 aNSCLC 46 (20)

1.7 vs 3.8 aNSCLC 83 (20)

- NSCLC 71 (18)

↑ GC 25 (21)

↑ GC 25 (21)

2.7 vs 1.1 aGC 30 (22)

- Melanoma 188 (23)

2.7 vs 10.6 Melanoma 76 (23)

1.2 vs 3.6 UC 94 (23)

3.3 vs 1.5 aGC 30 (22)

↑ aMelanoma 23 (24)

- 19 19 (24)

- aMelanoma 26 (25)

21 vs 2.1* aNSCLC 31 (26)

11.0 vs 3.0 NSCLC 66 (27)

(Continued)
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Subset Sampling time Biomarker Method %Biomarker of
R vs NR

Cut-off Outcome (high

ORR OS (mos

Tem Pre-ICB %TCF1+/CCR7-CD8+ FACS 41% vs 22% 31% - -

#CD28+CD8+ FACS 236 vs 138/mL 190/uL - NR vs. 16.2

On-ICB Dw3TIE FACS 10.04% vs -0.58% 0.8% - NR vs 9.6

FACS 3.3% vs -1.3% 0.8% - NR vs 4.2

#Large clones scRNA-seq - Median - NR vs 30.7*

%TCF1+/CCR7-CD8+ FACS 47% vs 26% 36.5% - -

Terma Pre-ICB %
CD45RA+CCR7-/CD8+

FACS 43.1% vs 29.7% - - -

%CD57+/CD8+ CyTOF 48.1% vs 14.9% - - -

CyTOF - 25.9% - NR vs 4.3*

%CD28-

CD57+KLRG1+/CD8+
FACS - 39.5% - 3.2 vs NR

FACS - 39.5% 0% vs 30% 2.8 vs 20.8

FACS - 39.5% - 3.1 vs 20.8

On-ICB CD45RA+CCR7-CD8+ FACS 52% vs 31% - - -

Trm On-ICB %CD103+/PD1+CD8+ FACS - 3.6% - -

%CD103+ 2w/pre FACS - 2.8% - -

Tex Pre-ICB %LAG3+/CD8+ FACS - 2% - -

%LAG3+/CD8+ FACS - - 39% vs 53% 22.2 vs 75.8

FACS - - 20% vs 49% 12.4 vs 75.8

FACS - - 0% vs 49% 4.7 vs 27.5

Tex On-ICB %LAG3+/CD8+ FACS - 2% - -

%(Ki67+/
PD1+CD8+)/TB

FACS、
CyTOF

- 1.94 61% vs 10% ↑

- 1.94 73% vs 29% ↑

PD1+TIGIT+ FACS - 17% - NR vs 8.26*

Teff Pre-ICB #PD1+CD8+ FACS - 49/uL - NR vs 19.5*

%CD137+CD8+/PBMC CyTOF 45.4% vs 37.6% 0.8% 17.0 vs 5.0
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TABLE 1 Continued

r of Cut-off Outcome (high VS low) Cancer type Enrollment Ref

ORR OS (mos) PFS (mos)

0.8% - - NR vs 5.0 RCC, UM
HNSCC

43 (27)

16.6% 27.8% vs 59.5% 16.8 vs NR* 3.1 vs 6.5* aMelanoma 73 (28)

2.3% - 6.9 vs 22.4 2.7 vs 9.0 aMelanoma 100 (29)

- - - - HR+MBC 16 (30)

20% 80% vs 0.05% NR vs 19.5 8.6 vs 5.7 NSCLC 36 (31)

4w 15.4% vs 57% - - aNSCLC 27 (32)

2.8 33.3% vs 6.3% 14.8 vs 14.2 8.7 vs 3.9 TET 31 (33)

2.8 43.8% vs 11.8% 13.8 vs 2.0 6.0 vs 1.4 aNSCLC 33 (33)

2.8 38.5% vs 5.0% NR vs 7.0 10.9 vs 2.1 aNSCLC 46 (33)
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Subset Sampling time Biomarker Method %Biomark
R vs NR

CyTOF -

%PD1+/CD56+CD3+ FACS -

%CD73+

PD1+/CD3+CD8+
FACS 0.85% vs 3.02%

KLRG1+CD45RA+/
CD8+

FACS 37.9% vs 14.8%

On-ICB CX3CR1 score FACS -

TProliferat On-ICB Early or delayed PD-1+/
neg CD8+ T cells
response

FACS -

%Ki67D7/D0/PD1
+CD8+ FACS -

FACS -

FACS -

TIE: CD3
+CD8+CD45RA−CD45ROhighCD27−CCR7−.

Large clones: clones with count numbers >0.5% of the total number of clones per chain as ‘large’.
CX3CR1 score: % change of CX3CR1 in CD8 + T cells from baseline.
#: Absolute number.
%: Percentage.
*: The specific values are not given in the original article, and the results are predicted by GetData software.
↑: Increased survival time in patients with higher biomarker expression.
-: Not mentioned in the article.
e
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CD45ROhigh CD8+ T cells was observed during the third week of

treatment with pembrolizumab or nivolumab. An amplification ratio >

0.8% in these cells indicated a favorable prognosis with a predictive

accuracy of 90% (16). These findings highlight the significant role of

Tem cells in response to PD-(L)1 immunotherapy.
2.5 Terminally differentiated effector
memory cells

Prolonged stimulation with antigens induces the progressive

differentiation of Tem cells into terminally differentiated effector

memory (Terma) cells, distinguished primarily by the re-emergence

of CD45RA (CD45RA+CCR7-CD28-CD27-) and robust effector

functionality, limited proliferative potential, and a profusion of

senescence-related phenotypic traits (38). Terma cells are present in

the peripheral blood of patients with different kinds of tumor (18,

19), and their presence is strongly correlated with the outcomes of

PD-(L)1 immunotherapy (17, 18).

A study on patients with NSCLC receiving nivolumab reported

increased numbers of CD45RA+CCR7-CD8+ T cells in patients who

achieved a partial response (PR) at baseline and after the second or

third dose (18). CD57 is a crucial marker of Terma cells (38). A

study on patients with metastatic uroepithelial cancer (mUC)

receiving PD-(L)1 (atezolizumab) therapy reported a remarkable
Frontiers in Immunology 05
prevalence of CD57 within circulating neoantigen-specific CD8+ T

cells, particularly in individuals who responded to atezolizumab

treatment, and responders to atezolizumab exhibited an increased

proportion of Terma cells in the peripheral blood (19).

In contrast, some studies have suggested that circulating Terma

cells are associated with an unfavorable prognosis in patients

receiving PD-(L)1 immunotherapy (17, 20). A study examining the

influence of immune senescence on anti-PD-(L)1 therapy in patients

with advanced NSCLC found that CD28-CD57+KLRG1+CD8+ T cells

(Terma-like CD8+ T cells) were associated with a lack of benefit from

PD-(L)1 immunotherapy (20).

The ambiguity surrounding the predictive value of circulating

Terma cells in immunotherapy may be attributed to variable tumor

types and their clinical stages. Therefore, broadening the scope of

the tumor species and increasing the sample size for further

investigation on Terma cells are necessary. Terma cells are

potential circulating markers for predicting the effectiveness of

immunotherapy; however, further investigation is needed.
2.6 Tissue resident memory cells

Trm cells persist within tissues and offer rapid and effective

protective immunity against pathogens and metastatic cancer cells

(39). Trm cells represent a distinct subpopulation of memory cells
FIGURE 1

Prognostic value of circulating T cell subsets in the context of PD-(L)1 efficacy.
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characterized by CD103+CD69+CD49a+CD8+ expression and unique

transcriptome features, including RUNX family transcription factor 3,

neurogenic locus notch homolog protein, B lymphocyte-induced

maturation protein-1, and basic leucine zipper ATF-like transcription

factor (40). Trm cells are mainly localized within tissues; however, they

can also be detected in peripheral blood (35) and play a crucial role in

the early response to anti-PD-(L)1 therapy[6. In patients with oral

cancer receiving neoadjuvant treatment with either PD-1 monotherapy

or PD-1 therapy combined with cytotoxic T-lymphocyte associated

protein 4 (CTLA-4) inhibitor, single-cell and T-cell receptor (TCR)

sequencing revealed that both peripheral blood and tumor-infiltrating

CD8+ T cells exhibited activation and amplification, featuring highly

overlapping clone types (6). Notably, the proportion of peripheral

blood KLRG1-PD-1+CD8+ T cells was positively associated with

pathological responses in both pre-and-on-treatment groups. The

findings of the study highlight the pivotal role of neoadjuvant

immunotherapy in the treatment of early-stage tumors involving

Trm cells. In another study involving patients with gastric cancer

who underwent surgery, individuals with a higher proportion of

CD103 in peripheral blood PD-1+CD8+ T cells at week 2 of

immunotherapy exhibited significantly improved PFS (21).

Tem, Terma, and Trm cells aid in distinguishing patients who are

more likely to benefit from PD-(L)1 immunotherapy and predict their

clinical prognosis. However, owing to contradictory reported data, the

significance of Tem and Terma cells as predictors needs to be

interpreted with caution. Additional studies are necessary to

elucidate the specific markers of circulating memory cells associated

with the prognosis of patients receiving PD-(L)1 immunotherapy.
2.7 Exhausted (like) CD8+ T cells

T cell exhaustion is the specific differentiation state of T cells

induced by persistent antigens and inflammatory signals, resulting

in reduced effector function, diminished proliferative capacity,

altered expression of multiple inhibitory receptors, and

dysregulation of transcriptional mechanisms (41). Exhausted

CD8+ T (Tex) cells exhibit high heterogeneity, which makes it

challenging to define Tex cells using limited markers and molecular

patterns. In the present review, Tex cells were defined using any of

the following criteria: (1) expression of at least one additional co-

inhibitory receptor other than PD-1, (2) high PD-1 expression

levels, and (3) expression of at least one exhaustion-associated

transcriptional factor, such as thymocyte selection-associated high

mobility group-box (TOX), Eomesodermin (EOMES), nuclear

receptor subfamily 4A, and nuclear factor of activated T cells 1.

Using this category standard, we summarized the presence of

heterogeneous Tex cells in the peripheral blood of patients with

cancer and their predictive value in guiding the stratification of

patients who may benefit from anti-PD-(L)1 therapy (22–25, 42).
2.8 Baseline Tex cells

Numerous studies have reported the baseline levels of Tex cell

populations to predict clinical outcomes before treatment (22, 23,
Frontiers in Immunology 06
42). Lymphocyte-activation gene 3 (LAG-3) is a surface inhibitory

molecule highly expressed in Tex cells. In patients with gastric

cancer receiving immunotherapy, a significant positive correlation

was observed between LAG3+CD8+ T cells and PFS at baseline and

after the initial dose (22). Another study identified a subset of

LAG3+ T cells as an exhausted tumor-specific subpopulation that

could be rejuvenated by the PD-1/PD-L1 blockade and was

associated with an improved prognosis (22). Conversely, another

study suggested that circulating LAG-3+ CD8+ T cells are predictive

markers for identifying patients who are unlikely to benefit from

PD-1 therapy. Analysis of pre-treatment blood samples from 188

patients with melanoma undergoing PD-1 therapy revealed a

median survival discrepancy of > 4 years between patients with a

LAG+ immunophenotype and those without (22.2 months vs. 75.8

months). Furthermore, in a validation cohort of 94 patients with

bladder cancer treated with PD-1 therapy, those with the LAG+

immunophenotype demonstrated a response rate of 0. The

LAG+CD8+ T cell immunotype is an independent prognostic

marker (23). The noticeable discrepancy between the results of

these two studies might be attributed to the patient population or

methodological differences.

Patients with melanoma resistant to anti-PD-(L)1 therapy

exhibited a distinct subpopulation of CD8+ T cells characterized

by high levels of oxidative phosphorylation (OXPHOS), CD38 and

CD39 expressions, and markers of exhaustion such as TOX, PD-1,

and C-X-C motif chemokine ligand 13. Single-cell transcriptome

analysis revealed an overlap between CD8+ and intratumoral CD8+

T cells. The study indicated that OXPHOS+CD8+ T cells among

pre-treatment peripheral blood CD8+ T cells correlate with immune

checkpoint inhibitor resistance in patients with malignant

melanoma (42).
2.9 On-treatment Tex cells

Changes in Tex cells after treatment can predict clinical

outcomes because the systemic response to anti-PD-(L)1 therapy

is dynamic and complex (43). Notably, several studies have

investigated the role of post-treatment peripheral blood Tex cells

in predicting the clinical outcome of anti-PD-(L)1 therapy (24,

25, 42).

In patients with stage IV melanoma receiving PD-1

(pembrolizumab) therapy, the magnitude of reinvigoration of

circulating Tex cells, determined in relation to the pre-treatment

tumor burden, correlated with the clinical response (24). The

reinvigoration of circulating Tex cells is characterized by the

expression of CD45AloCD27hiEomeshiT-betlo and co-expressed

suppressor molecules (PD1, CTLA-4, and CD244), which

correspond to the Tex cells’ characteristics (24). Immunoglobulin,

immunoreceptor tyrosine-based inhibitory motif domains of T cell

immunoreceptors, and PD1 double-positive T cells (DPOS) are present

in the peripheral blood of patients with cancer and can serve asmarkers

for predicting response to anti-PD-(L)1 therapy. In three cohorts of

patients with cancer undergoing PD-1 therapy, a higher proportion of

DPOS T cells in the peripheral blood after 1 month of treatment

correlated with improved clinical response and extended OS (25).
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In summary, peripheral circulating Tex cells play a crucial role

in the response to PD-(L)1 treatment and can potentially serve as

biomarkers for predicting the efficacy of anti-PD-(L)1 therapy.
2.10 Effector CD8+ T cells

CD8+ Teff cells express chemokine receptors, including CCR5,

C-X-C motif chemokine receptor 3, and C-X3-C motif chemokine

receptor 1 (44, 45), enabling their migration and infiltration from

peripheral blood into the tumor microenvironment, where they

exert their cytotoxic effects (45). Previous studies have shown that

tumor-reactive T cells, including neoantigen-specific T cells, are

present in the peripheral blood of patients with cancer and are

enriched within the population of PD1+CD8+ T cells (46–48).

Peripheral effector PD1lowCD8+ T cells exhibit an “effector-like”

phenotype (32). Current evidence has revealed the response of

peripheral circulating CD8+ Teff cells in patients with tumors to

anti-PD-(L)1 therapy and their value in predicting the prognosis of

patients with cancer (15, 26, 28, 29, 31, 49).
2.11 Baseline Teff cells

The predictive ability of circulating Teff cells before anti-PD-(L)

1 therapy has been investigated in various tumor types, including

malignant melanoma, NSCLC, and gastric cancer (26, 28, 29). One

study reported that among patients with advanced NSCLC

receiving nivolumab treatment, treatment responders exhibited

approximately two-fold higher baseline levels of PD1+CD8+ T

cells in the peripheral blood than non-responders. Increased

levels of circulating PD1+CD8+ T cells are associated with

prolonged OS and PFS (26). In another clinical cohort study

involving metastatic tumors of various origins, a higher

abundance of baseline CD137+CD8+ T cells was observed in the

peripheral blood of patients who responded to anti-PD-(L)1

therapy. Elevated levels of CD137+CD8+ T cells in peripheral

blood are associated with improved PFS and OS in patients (27).

The CD137 receptor (4-1BB, tumor necrosis factor receptor

[TNFR] superfamily) belongs to the costimulatory TNFR family

and is expressed on activated CD8+ T cells (50). Similar results have

been observed in patients with hormone receptor-positive

metastatic breast cancer treated with the cyclin-dependent kinase

4/6 inhibitor (palbociclib) and PD-1 therapy (pembrolizumab) (30).

In contrast, certain observations have been made for specific

subpopulations of PD1+ Teff cells. In patients with melanoma,

the proportion of PD-1+CD56+ T cells in the peripheral blood

is inversely correlated with clinical benefit (28). Another

study reported a correlation between an elevated number of

CD73+PD1+CD8+ T cells in the peripheral blood and an

unfavorable response to anti-PD-(L)1 therapy (29). Among

patients with advanced melanoma receiving nivolumab treatment,

those who experienced clinical benefits exhibited considerably

lower baseline proportions of circulating CD73+PD1+CD8+

T cells than non-responding patients (29).
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2.12 On-treatment Teff cells

Studies have shown that Tex cells within the tumor are replaced

by CD8+ Teff cells recruited from the peripheral blood. This

suggests that peripheral circulating T cells respond to anti-PD-(L)

1 therapy (5). Circulating Teff cells are early responders to anti-PD-

(L)1 therapy, and changes in circulating Teff cells caused by PD-(L)

1 treatment strongly correlate with the prognosis of patients with

tumor (31, 49).

A clinical trial investigating the impact of anti-PD-(L)1 therapy

on CD8+ T cell function utilized single-cell sequencing of peripheral

blood samples obtained from patients with melanoma undergoing

immunotherapy. The results revealed the upregulation of natural

killer cell granule protein-7 in CD8+ Teff cells in responders,

whereas its downregulation was observed in non-responders (49).

CX3CR1 belongs to a class of chemokine receptors that are highly

expressed on the surface of Teff cells (45). Studies have shown that

an elevated proportion of CX3CR1+ subpopulations within

circulating CD8+ T cells at an early stage following anti-PD-1

therapy correlates with a favorable response and improved

survival in patients with NSCLC (31). Furthermore, another study

revealed an increase in neoantigen-reactive T cells among

responders to PD-L1 therapy (51). However, this potential was

constrained by the limited number of pre-and post-treatment

sample pairs. Furthermore, the identification of tumor antigen-

specific CD8+ T cells remains limited, and their universality

necessitates further investigation.
2.13 Proliferating CD8+ T cells

Reinvigoration of pre-existing tumor-infiltrating T cells by anti-

PD-(L)1 therapy is insufficient to inhibit tumor growth.

Maximizing anti-PD-(L)1 therapy-mediated tumor control

requires newly recruited T cells from the circulation (5). In

patients with chronic infection and cancer, the TCF1-expressing

subset of CD8+ T cells is responsible for the anti-PD-(L)1 therapy-

driven T cell proliferation burst, which depends on CD28 signaling

(52–54). Notably, most TCF1+CD8+ T cells in individuals with

cancer reside in tumor-draining lymph nodes (55, 56). Under anti-

PD-(L)1 therapy, TCF1+CD8+ T cells tend to proliferate (56).

Subsequently, proliferating CD8+ T cells are released into the

bloodstream, as evidenced by the increased proportion of Ki67+

CD8+ T cells in the blood after PD-1 therapy (53). The expansion of

T cells in the peripheral blood of patients with cancer consistently

predicts a better clinical response to anti-PD-L1 therapy

(57). Numerous studies have consistently reported that Ki-67

expression in peripheral blood CD8+ T cell subsets exhibits

a transient increase solely during the initial cycle after

immunotherapy (32, 33). Therefore, the independent predictive

and prognostic value of Ki-67-expressing CD8+ T cells as

biomarkers of anti-PD-(L)1 therapy remains debatable.

A longitudinal analysis of blood samples from patients with

advanced NSCLC undergoing PD-1 therapy revealed that

approximately 70% of the patients exhibited an increased
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proportion of Ki67+PD-1+CD8+ T cells after the initial or second

treatment cycle (32). This suggests that PD-1 therapy stimulates the

proliferation of peripheral circulating PD1+CD8+ T cells. Among

patients who experienced clinical benefits, 80% demonstrated a PD-

1+CD8+ T-cell response within 4 weeks of treatment. PD-1 therapy-

driven T cell proliferation is not uniform across different T cell

subsets, as researchers found that Epstein–Barr virus-specific CD8+

T cells exhibit a diminished response to PD-1 therapy, indicating

that the responsive cells might be specific to the tumor (32).

Proliferating CD8+ T cells exhibit the characteristics of an

effector-like phenotype (Human leukocyte antigen-DR+, CD38+,

and B-cell lymphoma 2lo) (32). Comparable outcomes have been

observed in patients with mUC treated with PD-L1 therapy. One

study reported that within the identified neoantigen-reactive CD8+

T cells (NART), patients with disease control exhibited a

Ki67+PD1+ effector phenotype in peripheral NART, indicating

that the early amplification and activation of effector NART in

patients with mUC is associated with a positive response to anti-

PD-(L)1 therapy (58). Another study reported that an early

proliferative response of PD1+CD8+ T cells was correlated with

improved clinical outcomes. Among patients with thymic epithelial

tumors and NSCLC undergoing PD-1 therapy, peripheral blood

PD-1+CD8+ T cells (Ki-67D7/D0) exhibited a proliferative response

within the initial week of treatment, enabling the differentiation

between response to therapy and disease progression. This finding

was confirmed in patients with NSCLC receiving PD-1 therapy.

Tumor-specific CD8+ T cells exhibited a significant increase in Ki-

67 expression on day 7, whereas virus-specific CD8+ T cells did not,

indicating the specificity of PD-1 therapy for expanding tumor-

reactive CD8+ T cells (33).

In summary, anti-PD-(L)1 therapy effectively restored the

expansion of peripheral circulating tumor-reactive CD8+ T cells.

The proliferation of peripheral circulating tumor-reactive CD8+ T

cells has been associated with improved clinical outcomes and

prolonged survival. However, additional studies are required to

establish the optimal sampling time due to the highly dynamic

expression of Ki-67 in circulating CD8+ T cells.
3 CD4+ T cell subsets as a
potential biomarker

Similar to CD8+ T cells, CD4+ T cells, including naïve, Tcm,

Tem, and Terma CD4+ T cell subsets and a unique group of

regulatory CD4+ T cells (Tregs), characterized by CD25 and

Forkhead box protein P3 expressions, are abundantly present

in the peripheral blood. It is generally accepted that CD8+ T

cells play a critical role in anti-PD-(L)1 therapy, whereas the

importance of CD4+ T cells is underappreciated. However, few

studies have revealed the significance of circulating CD4+ T cell

subsets in predicting the efficacy of anti-PD-(L)1 therapy.

Herein, we summarized the predictive value of CD4+ T

cell subsets in patients with cancer treated with PD-(L)1

(Table 2, Figure 1).
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3.1 Naïve and memory CD4+ T cells

Naïve CD4+ T cells are characterized by CD45RA+ and CCR7+

expressions, whereas CD4+ Tcm cell subsets are characterized by

CD45RA- and CCR7+ expressions. CD4+ Tcm cell subsets are T

cells with long-term persistence. In a study involving 26 patients

with bladder cancer who received PD-(L)1 (durvalumab) therapy, a

group of naïve (CD45RAhi/int CCR7+CD28+) CD4+ T cells from

pre-treatment (week 1) time points were enriched in the peripheral

blood of responders but not in that of progressors (59). In addition,

the pre-treatment proportions of circulating CD4+ Tcm cells were

associated with prolonged survival after treatment with nivolumab

combined with chemotherapy in patients with metastatic pancreatic

cancer (60).
3.2 Effector-like or exhausted-like CD4+

T cells

OX40 is a vital co-stimulator molecule (66). The proportion of

baseline OX40-expressing circulating CD4+ T cells has been

studied as a predictive marker of response to PD-1 therapy in

patients with advanced solid tumors. CD4+PD1+OX40+ and

CD4+a4b7+ cells among total CD4+ T cells have been reported

to be present in higher proportions in patients with DCB, PR, or

SD ≥ 6 months than in those without DCB (67). In addition to

baseline level, circulating OX40+ CD4+ T cell/CD4+ T cell ≥ 15%

was associated with better PFS in patients with advanced gastric

cancer after treatment with nivolumab (22). In two independent

phase I clinical trials, 19 patients with hormone receptor-positive

metastatic breast cancer were treated with pembrolizumab. A

study reported that the baseline proportion of circulating

KLRG1+inducible T cell costimulator +CD4+ T cells was

significantly higher in responders than in non-responders

(22.6% vs. 8.7%) (30). Another study reported that the

proportion of pre-treatment PD-1+CD39+CD4+ Tem cells was

associated with > 1-year survival (60). Horimoto et al. recently

suggested that the peripheral blood of patients with NSCLC

receiving PD-1 therapy contains abundant CCR4-CCR6+ CD4+

T cells (Th7R cells). Patients with a higher proportion of baseline

Th7R cells among CD4+ T cells (> 4.39%) showed significantly

prolonged OS and PFS (62). In addition, a subgroup of CD27-

CD28low cells, known as highly differentiated T cells, appears to be

associated with the prognosis of anti-PD-(L)1 therapy (68).
3.3 Terminally differentiated effector
memory CD4+ T Cells

CD4+ Terma cells (characterized by CD45RA+ and CCR7-

expression) represent a group of terminally differentiated T cells

with downregulation of costimulatory molecules and upregulation

of inhibitory molecules. The proportions of CD38+CD39+CD127-

GARP- CD4+ Terma cells were higher in the peripheral blood of
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patients with recurrence than in those without recurrence after

treatment with nivolumab plus ipilimumab (69). In addition, an

increased population of CD4+T cell immunoglobulin and mucin

domain-containing protein 3 (TIM3+)T cells after dual mitogen-

activated protein kinase kinase/PD-L1 inhibition correlated with

worse OS (64). In contrast to TIM3, which predicts a poor

prognosis, the relationship between LAG3+CD4+ T cells and

prognosis is more variable. At baseline, a high proportion

of LAG3-expressing CD4+ T cells indicates resistance to

ipilimumab plus nivolumab treatment (63). In contrast, another

study reported that patients with higher proportions of

LAG3+CD4+ T cells at baseline (> 3%) and after the first

administration(>3%) of nivolumab had longer PFS (22).
3.4 Regulatory T cells

Current evidence indicates that regulatory T cells (Tregs) are

essential for predicting the efficacy of anti-PD-(L)1 therapy.

Notably, most studies have shown that Tregs are negatively

correlated with prognosis, which is consistent with general

beliefs. At baseline, the proportion of Tregs among CD4+ T cells

was higher in patients with progressive disease (70). Furthermore,

the expression of ki67 on Tregs is higher in patients with

progressive disease (PD) (71). In addition, the percentage of
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circulating Tregs is significantly higher in patients resistant to

nivolumab (65).
4 Unique T cell subsets

The predictive capability of immunotherapy has traditionally

focused on classical CD8+ and CD4+ T cells; however, there is

emerging evidence that some unique T cell subsets, including

natural killer T cells (NKT), mucosa-associated invariant T cells

(MAIT) (72), gd T cells (73), CD8-CD4-T cells (double-negative T

[DNT]) (74), and Tfh cells (10) can effectively identify individuals

who will benefit from immunotherapy. Herein, we reviewed the

current research on the role of these unique T cells in predicting

immunotherapy outcomes and explored the need for further

investigation into their significance in determining the predictive

value of immunotherapy (Table 3, Figure 1).
4.1 Mucosa-associated invariant
T cells (MAIT)

MAIT cells, an atypical subset of T lymphocytes, are widely

distributed throughout the human body and have been implicated

in the pathogenesis of various human malignancies (75, 76). While
TABLE 2 Predictive outcome of peripheral CD4+ T cell subsets in PD-(L)1 therapy.

Subset Sampling
time

Biomarker Method %Biomarker of
R vs NR

Cut-
off

Outcome (high VS low) Cancer
type

Enrollment Ref

ORR OS
(mos)

PFS
(mos)

Naive Pre-ICB %CD45RA+CCR7+

CD28+/CD4+
FACS 42.6%* vs 22.6%* - - - 31.7

vs 7.9
UC 22 (59)

Tcm Pre-ICB %PD1+CD39+/
CD45RA-CCR7+CD4+

CyTOF 9.5%* vs 7.5%* - - - 20.6*
vs 10.2*

aPC 34 (60)

%CD27-CD28low/CD4+ FACS - 40% 44.8%
vs 0%

- 23.7
vs 6.1

NSCLC 51 (61)

Tem Pre-ICB %PD1+CD39+/CD45RA-

CCR7-CD4+
CyTOF 27.2%* vs 18.4%* - - - 23.9*

vs 10.2*
aPC 34 (60)

%CD62Llow CCR4-

CCR6+/CD4+
FACS - 4.39% - NR

vs 11.1
10.3
vs 4.3

aNSCLC 31 (62)

On-ICB %OX40+/CD4+ FACS - 15% - - 3.17
vs 1.7

aGC 30 (22)

Temra Pre-ICB %LAG3+/CD4+ FACS 0.08%* vs 0.24%* - - - - Melanoma 25 (63)

%LAG3+/CD4+ FACS - 3% - - 2.77
vs 1.27

aGC 30 (22)

On-ICB TIM3+CD4+ fold change FACS - 1.26 - 12.9
vs 6.6

- BTC 77 (64)

%LAG3+/CD4+ FACS - 3% - - 3.03
vs 1.4

aGC 30 (22)

Treg Pre-ICB prediction formula FACS - 192 - - 10.5
vs 1.7*

NSCLC 86 (65)
frontier
%: Percentage.
*: The specific values are not given in the original article, and the results are predicted by GetData software.
-: Not mentioned in the article.
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predominantly located in mucosal tissues, MAIT cells also exist in

the peripheral blood, lymphoid tissue, and organs including the

liver (77). These cells express a conserved alpha chain (Va7.2-Ja33)
and a restricted range of beta chains (Vb2 or Vb13 in humans),

facilitating the recognition of vitamin B metabolite antigens

presented by the major histocompatibility complex (MHC)-I-

related molecule (78). Among patients with NSCLC, those who

responded to PD-1 therapy exhibited a higher proportion of

circulating MAIT cells expressing the IFN-g receptor (IFN-gR) in
CD3+ T cells. Conversely, a lower proportion of MAIT cells

expressed PD-1 (72). While these findings suggest that specific

subsets of circulating MAIT cells expressing interferon (IFN)-g
receptor (MAIT-IFNGR cells) may serve as promising predictive

markers for therapeutic response, MAIT cells expressing

interleukin-17A (MAIT-IL17 cells) might indicate potential

resistance to PD-1 therapy.
4.2 gd T cells

gd T cells, a subset of unconventional T cells that operate

independently of the conventional MHC restriction, constitute

1%–5% of the circulating T cell population and exhibit natural

and adaptive immunity features (79). In patients with melanoma

undergoing ipilimumab treatment, investigators observed that a

decreased frequency of gd T cells and an increased frequency of gd T
cells in the peripheral blood before treatment correlated with

extended OS (73).
4.3 CD8-CD4-T cells (DNT) and NKT cells

DNT are a unique subpopulation of CD3+ cells that express ab
or gd T cell receptors but lack mature surface T cell markers,

including CD4, CD8, and CD56 (80). These cells are thought to play

a vital role in maintaining immune system homeostasis by

eliminating self-reactive immune cells and modulating the

allogeneic responses (81–83). In a prior study, it was observed

that patients who responded to treatment exhibited reduced DNT

and elevated NKT cell counts in their peripheral blood after

undergoing treatment (74).
4.4 Follicular helper T cells

Tfh constitute a specialized subset of CD4+ Teff cells that play a

vital role in germinal center responses, B-cell affinity maturation,

and the orchestration of lymph node structure development (84,

85). In the context of Muscle-Invasive Bladder Cancer (MIBC),

patients with a high proportion of circulating Tfh cells at baseline

exhibited improved prognostic survival. Mechanistically,

neoadjuvant therapy proves particularly beneficial for patients

with MIBC who possess pre-existing circulating Tfh cells, as these

cells play a pivotal role in orchestrating the development and

maturation of tertiary lymphoid structures (TLS) like cells and in
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promoting the infiltration of CD8+ T cells into the tumor

microenvironment (10).
5 Discussion

Driven by chronic stimulation of tumor antigens, inflammation

and hypoxic TME, tumor infiltrating T cells undergoes exhaustion,

characterized by hierarchical loss of cytokine secretion and

proliferation potential, while increase expression of various

inhibitory receptors (86). Among the inhibitory receptors, PD-1 is

the most attractive targets, due to its blockade refers to a significant

success in cancer treatment (87). PD-1 was first cloned by Honjo

et al. in 1992 (88). T cells are the major source of PD-1 in TME,

while other types of cell also express it (89). PD-1 has two major

ligands: PD-L1 and PD-L2 (87). PD-L1 is broadly expressed, while

PD-L2 expression is restricted to hematopoietic cells, including

dendritic cells, macrophages and B cells. Given the therapeutic

efficacy of anti-PD-1 and anti-PD-L1 therapies are comparable in

human, PD-L2 is probably of little importance in this context (87).

Therefore, our review mainly focus on PD-1 and PD-L1. However,

some recent studies suggest that PD-L2 are also promising

therapeutic target (90, 91).

The advent of anti-PD-(L)1 therapy has greatly transformed the

approach and prognosis of patients with cancer. Despite its notable

impact, the response rate of anti-PD-(L)1 therapy remains low

when applied in unselected patients with cancer. So far, the US FDA

has approved three biomarkers that can predict the efficacy of anti-

PD-1 therapy in several cancer types, including PD-L1 expression,

dMMR/MSI-high, and TMB. These biomarkers are mostly based on

tumor lesions sampled through invasive surgery or biopsy. Taking

PD-L1 as an example, despite widespread use in clinic, PD-L1

expression as a biomarker presents limits due to technical and

biological reasons, and its difficulty of assessment for pathologists

(92, 93). In addition, the intra- and inter-tumor heterogeneity is

another major issue for using PD-L1 as a biomarker (1, 94). Thus,

the PD-L1 expression can be underestimated in small biopsies (such

as bronchial and transthoracic biopsies), which are not

representative of the entire tumor.

Circulating T cells has emerged as a promising biomarker that

reflect the general immune landscape. Circulating T cells contains

several T cell population, including memory (like) T cells, exhausted

(like) T cells, effector T cells and proliferating T cells. Rencent

studies suggest that anti-PD-(L)1 relies on the activation of memory

(like) T cells or exhausted precursors T cells (52, 56), while

activation of terminally exhausted T cells may promotes tumor

progression by modulating cancer stem cells (95). Accordingly,

existence of abundant number of memory (like) T cells in

circulation was reported to be a favorable biomarker in patients

receiving anti-PD-(L)1 therapy (14). Although numerous studies

have explored the potential of circulating T cell subsets in predicting

the efficacy of anti-PD-(L)1 therapy, a consensus is yet to be reached

regarding the specific population and subsets of circulating T cell
Frontiers in Immunology 11
subsets. Consequently, prospective studies of large cohorts are

urgently needed to validate the value of circulating T cell subsets

in therapeutic decision-making. Lastly, it is important to note that

circulating T cells are modifiable, which means a patient could been

possiblely transformed toward an PD-(L)1-sensitive state before the

initiation of therapy. For example, circulating bacteria-specific Tfh

cells are correlated with PD-(L)1 efficacy (10). Accordingly, a recent

study suggest that oral administration of bacteria or faecal

microbiota transplantation were able to enhance efficacy of anti-

PD-(L)1 threarpy in mice (61). Circulating T cells is a promising

biomarker of PD-(L)1 therapy, as medicine becomes increasingly

personalized, they may play a vital role in informing treatment

decisions in the future.
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