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Background: Acetaminophen (APAP) is commonly used as an antipyretic analgesic.

However, acetaminophen overdose may contribute to liver injury and even liver

failure. Acetaminophen-induced liver injury (AILI) is closely related to mitochondrial

oxidative stress and dysfunction, which play critical roles in cuproptosis. Here, we

explored the potential role of cuproptosis-related genes (CRGs) in AILI.

Methods: The gene expression profiles were obtained from the Gene Expression

Omnibus database. The differential expression of CRGs was determined between

the AILI and control samples. Protein protein interaction, correlation, and

functional enrichment analyses were performed. Machine learning was used to

identify hub genes. Immune infiltration was evaluated. The AILI mousemodel was

established by intraperitoneal injection of APAP solution. Quantitative real-time

PCR and western blotting were used to validate hub gene expression in the AILI

mouse model. The copper content in the mouse liver samples and AML12 cells

were quantified using a colorimetric assay kit. Ammonium tetrathiomolybdate

(ATTM), was administered to mouse models and AML12 cells in order to

investigate the effects of copper chelator on AILI.

Results: The analysis identified 7,809 differentially expressed genes, 4,245 of

which were downregulated and 3,564 of which were upregulated. Four optimal

feature genes (OFGs; SDHB, PDHA1, NDUFB2, and NDUFB6) were identified

through the intersection of two machine learning algorithms. Further

nomogram, decision curve, and calibration curve analyses confirmed the

diagnostic predictive efficacy of the four OFGs. Enrichment analysis indicated

that the OFGs were involved in multiple pathways, such as IL-17 pathway and

chemokine signaling pathway, that are related to AILI progression. Immune

infiltration analysis revealed that macrophages were more abundant in AILI

than in control samples, whereas eosinophils and endothelial cells were less

abundant. Subsequently, the AILI mouse model was successfully established, and

histopathological analysis using hematoxylin–eosin staining along with liver
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function tests revealed a significant induction of liver injury in the APAP group.

Consistent with expectations, both mRNA and protein levels of the four OFGs

exhibited a substantial decrease. The administration of ATTAM effectively

mitigates copper elevation induced by APAP in both mouse model and AML12

cells. However, systemic administration of ATTM did not significantly alleviate AILI

in the mouse model.

Conclusion: This study first revealed the potential role of CRGs in the

pathological process of AILI and offered novel insights into its

underlying pathogenesis.
KEYWORDS

acetaminophen-induced liver injury, cuproptosis, mitochondria, immune infiltration,
machine learning
1 Introduction

Acetaminophen (APAP) is a widely used antipyretic and

analgesic drug in the clinic. Unlike traditional nonsteroidal anti-

inflammatory drugs, APAP does not irritate the stomach or

intestinal lining. However, APAP has a relatively narrow window

of safety. APAP overdose is an important factor that contributes to

liver injury and even liver failure (1). At therapeutic doses, most

APAP is metabolized into nontoxic glucuronosylated or sulfated

metabolites in the liver, and only approximately 5%–9% of APAP is

oxidized by cytochrome P450 enzymes into the toxic N-acetyl-p-

benzoquinone imine (NAPQI), which is efficiently scavenged by

glutathione (GSH) (2). When APAP overdose occurs, excessive

NAPQI depletes GSH and binds to the cysteine residues of essential

proteins, forming APAP protein adducts. In mitochondria,

excessive NAPQI combines with ATP synthase, GSH synthase

and respiratory chain enzymes contributing to mitochondrial

oxidative stress and dysfunction (2, 3). Mitochondrial oxidative

stress and dysfunction are central to APAP-induced liver

injury (AILI).

AILI contributes to extensive hepatocyte death, and based on

the overwhelming experimental and clinical evidence, the

mechanism of APAP-induced cell death should be referred to as

programmed necrosis (4). Various forms of programmed cell

death such as necroptosis, apoptosis, pyroptosis, and ferroptosis

have been reported to potentially participate in APAP-induced

cell death (5–8). Cuproptosis, a novel form of programmed cell
en induced liver injury;

ferase; AUC, area under

, differentially expressed
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death, was first described by Tsvetkov et al. at 2022. Tsvetkov et al.

first reported that an excessive abundance of copper could trigger

a cell death mechanism different from those associated with

oxidative stress, such as apoptosis, ferroptosis and necroptosis

(9). In cuproptosis, ferrodoxin-1 reduces cupric ions to cuprous

ions, which bind to the enzymes involved in regulation of

tricarboxylic acid (TCA) cycle, resulting in the excessive

aggregation and the loss of Fe-S cluster proteins. Finally,

mitochondrial proteotoxic stress occurs and triggers

cuproptosis. Interestingly, GSH also plays a protective role in

cuproptosis, similar to APAP, functioning as a thiol-containing

copper chelator that inhibits this cell death process (9). Copper is

mainly stored in the liver and is an essential cofactor for diverse

biological processes. Aberrant copper concentrations are involved

in many liver diseases (10, 11). In addition, copper plays an

important role in the immune response (12). Since the

mechanisms of both AILI and cuproptosis depend on

mitochondrial dysfunction and are related to GSH, we were

intrigued by whether the newly emerging concept of cuproptosis

could also contribute to AILI.

Here, we analyzed the expression of cuproptosis-related genes

(CRGs) and immune characteristics in 10 AILI model mice and 10

control mice. Machine learning algorithms were used to explore the

optimal feature genes (OFGs). The predictive model was validated

using a nomogram, decision curve analysis (DCA), and calibration

curve analysis. Finally, the relationship between the OFGs and

immune infiltration was investigated.
2 Materials and methods

2.1 Data collection and processing

The transcriptome profiling data of the AILI and control

samples, including the GSE51969 (GPL17226 platform),
frontiersin.org
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GSE205201 (GPL29970 platform), and GSE111828 (GPL19057

platform) datasets, were downloaded and selected from the Gene

Expression Omnibus database. The GSE51969 and GSE205201

datasets were used to explore the hub genes, and each contained

five AILI and five control samples. The GSE111828 dataset was used

for validation and included four AILI and four control samples.

After merging the GSE51969 and GSE205201 data, the merged

datasets contained 10 AILI and 10 control samples. Thirty-five

CRGs were retrieved from previous literature (ATP7B, CDKN2A,

DLD, DPYD, FDX1, GLRX5, GLS, ISCA2, LIPT1, MTF1,

NDUFA1, NDUFA8, NDUFB10, NDUFB2, NDUFB6, NDUFC1,

NDUFC2, NDUFV2, PDHA1, PLAT, POLD1, PPAT, SLC31A1,

SDHB, TIMMDC1, DLAT, GCSH, DBT, DLST, LIAS, LIPM, LIPA,

LIPT2, PDHB, ACO2, NLRP3, and NFE2L2) (11, 13, 14). The

flowchart of this study is presented in Figure 1.
2.2 Differential gene expression
analysis of CRGs

The R “limma” package and Wilcoxon signed-rank test was

used to explore DEGs between the AILI and control groups. The

“ggpubr” R package was used to construct a boxplot of DEGs from

35 CRGs. The results were visualized as volcano and heatmap plots

using the “ggplot2” and “pheatmap” R packages. The

“VennDiagram” R package was used to present the intersection of

DEGs with CRGs. The intersecting genes were defined as DEG-

CRGs for subsequent analysis. The genes exhibiting a P value<0.05

and |log2FC|>1 was designated as differentially expressed.
Frontiers in Immunology 03
2.3 Correlation analysis and PPI
network construction

A heatmap of 24 DEG-CRGs was generated using the R package

“heatmap.” A correlation analysis was performed based on

Pearson’s correlation analysis between the DEG-CRGs, and a

protein–protein interaction (PPI) network of 24 DEG-CRGs was

constructed using the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database (https://string-db.org). A

medium confidence interval of 0.4 was used for the PPI analysis.
2.4 Enrichment analysis of DEG-CRGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses of the 24 DEG-CRGs were

performed using the “clusterProfiler” R package and visualized

using the R “enrichplot” package. A significant enrichment

threshold was set at p < 0.05. Gene set enrichment analysis

(GSEA) was also performed to investigate the hub genes’

potential function further (adjust P value<0.05, |log2FC|>1). The

reference KEGG gene set was selected from the Molecular

Signatures Database. Gene set variation analysis (GSVA) was

performed to illustrate the differentially enriched gene sets

between the high- and low-expression subtypes using the “GSVA”

R package. The R “limma” package was used to discover the

differentially expressed pathways by comparing GSVA scores

between the low- and high-expression subtypes. A p value < 0.05

was considered to indicate significance.
FIGURE 1

Flowchart of the present study.
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2.5 Construction and evaluation of the
CRG diagnostic model

The GSE51969 and GSE205201 datasets were merged and used

as the training set, while the GSE111828 dataset was used as the

validation dataset for the machine learning model. The random

forest (RF) algorithm and least absolute shrinkage and selection

operator (LASSO) regression were used to screen the OFGs related

to AILI prognosis. LASSO regression was performed with the

“glmnet” R package (15, 16). The minimum lambda value was set

as the optimal value for building the model. The RF model was used

to determine the optimal number of variables using various

independent decision trees (17), and the RF model was generated

using the “randomForest” R package with the “ntree” set at 500. The

intersection was used to screen the OFGs derived from the RF and

LASSO algorithms. A nomogram model was constructed to predict

the occurrence of AILI using the R “rms” package. Each OCG

contributes a score, and the “total score” represents the sum of the

scores of the OFGs. Calibration curve and decision curve analyses

were performed to assess the predictive efficiency of the nomogram

model. In addition, clinical impact and decision curves were

generated to evaluate the clinical utility of the models. The

diagnostic value of the OFGs was evaluated through receiver

operating characteristic (ROC) curves generated by calculating

the area under the ROC curve (AUC). The R package “pROC”

was used to perform the ROC curve analysis (18).
2.6 Evaluating immune infiltration

The Microenvironment Cell Populations-counter (mMCP-

counter) method (19) was used to estimate the fractions of 13

types of immune cells in each sample from the merged dataset, and

to evaluate the correlation between the OFGs and immune cells.

The results were visualized with box-plots and heatmaps. A p value

< 0.05 was considered to indicate significance.
2.7 AILI mouse model construction

Eight-week-old male C57BL/6J mice were purchased from

GemPharmatech (Jiangshu, China). All animal experiments were

performed according to the Animal Care and Use Committee of

Guangxi Medical University. The mice were fasted for 12 h before

dosing and then injected intraperitoneally with either normal saline

(NS) or 300 mg/kg APAP solution. The mice were sacrificed 24 h

after injection. Fresh liver and blood samples were collected

immediately for the subsequent analyses.
2.8 Cell culture and treatment

AML12 cells were obtained from Procell (CL-0602, Procell,

China) and cultured in specialized medium (CM-0602, Procell,
Frontiers in Immunology
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China) in a humidified atmosphere of 5% CO2 at 37°C. The

establishment of APAP-induced cellular damage was achieved by

treating AML12 cells with a 10 mM APAP solution for 24

hours (20).
2.9 Cell viability assay

Cellular viability was analyzed using the cell counting kit-8

(C6005M,UElandy, China) according to themanufacturer’s instructions.
2.10 Validation of the OFGs in the
AILI mouse model

Formalin-fixed, paraffin-embedded liver tissue sections were

stained with hematoxylin–eosin (HE). Percent necrosis areas were

estimated in five randomly selected high power fields (200×) per

sample, with the mean representing the degree of liver necrosis in

each sample. Serum alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) levels were measured with an autoanalyzer

(catalyst one, IDEXX, USA). Total RNA was extracted from liver

tissues using TRIzol reagent (15596026, Invitrogen) according to

the manufacturer’s instructions. cDNA was synthesized using a

PrimeScript RT reagent kit (RR036A, TaKaRa), followed by

quantitative PCR with iTaq Universal SYBR Green Supermix

(172–5124, Bio-Rad) on a real-time PCR system (CFX 96 Touch,

Bio-Rad). The expression of each OFG was normalized to that of

GAPDH in the same sample. The primers used are listed in

Supplementary Table 1. Western blotting (WB) was performed to

measure the protein expression of the OFGs as previously described

(21), with antibodies against NDUFB2 (17614–1-AP, Proteintech),

NDUFB6 (16037–1-AP, Proteintech), PDHA1 (18068–1-AP,

Proteintech), and SDHB (10620–1-AP, Proteintech). b-actin
(81115–1-RR, Proteintech) was used as an internal control.
2.11 Detection of the hepatic copper
and the administration of
ammonium tetrathiomolybdate

The copper content in the mouse liver samples were quantified

using a colorimetric assay kit (E-BC-K300-M; Elabscience)

according to the instruction. To investigate the effects of copper

chelator on AILI, ATTM (HY-W076067, MedChemExpress) was

administered to mouse models. Briefly, the mice received oral

gavage of 10 mg/kg (22, 23) of ATTM once daily for three

consecutive days and were subsequently utilized to establish an

AILI mouse model following the aforementioned protocol.

The copper content in the AML12 cells was quantified using a

colorimetric assay kit (E-BC-K775-M; Elabscience) according to the

instruction. Before the detection, AML12 cells were treated with

ATTM (10 µM) (24, 25), APAP (10 mM), or a combination of

ATTM and APAP for 24 hours.
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2.12 Statistical analyses

The statistical and data analyses were performed utilizing R

software (version 4.2.1). Normally distributed continuous variables

are expressed as the means ± standard deviations (SDs) and were

compared between two groups by two-tailed Student’s t test, while

the Wilcoxon rank-sum test was used for nonnormally distributed

variables. A two-tailed P value of less than 0.05 was considered to

indicate significance.
3 Results

3.1 Identification of cuproptosis-related
genes involved in AILI

Two datasets (GSE51969 and GSE205201), including 10 AILI

and 10 control samples, were merged and batch-normalized

(Supplementary Figures 1A–D). A total of 7,809 DEGs were

identified, 4,245 of which were downregulated and 3,564 of which

were upregulated. A heatmap and the volcano plots of the DEGs are

shown in Figures 2A, B. Overlapping the 7,809 DEGs with 35 CRGs

revealed 24 DEG-CRGs (NLRP3, POLD1, GLS, DPYD, DBT,

SDHB, NDUFC2, SLC31A1, DLAT, NDUFB10, NDUFB2, LIPT1,

ISCA2, ATP7B, FDX1, PDHB, MTF1, PPAT, ACO2, DLST,

NFE2L2, DLD, PDHA1, and NDUFB6; Figure 2C). The data

showed that NLRP3, POLD1, and GLS were upregulated in AILI,
Frontiers in Immunology 05
while the other DEG-CRGs were downregulated (Figure 2D). To

investigate the potential crosstalk between these DEG-CRGs, we

performed PPI analyses using STRING (Figure 2E). The

correlations between the 24 DEG-CRGs are depicted in Figure 2F.

Nlrp3, Pold1, and Gls were negatively associated with most of the

other DEG-CRGs. The interrelationship between the other 21 DEG-

CRGs was positive (Figure 2F).
3.2 Enrichment analysis of the DEG-CRGs

GO and KEGG enrichment analyses were performed on the 24

DEG-CRGs to determine their biological functions and pathways

using the “ClusterProfiler” package. The results are presented in

Supplementary Figure 2. The data suggested that the 24 DEG-CRGs

were significantly involved in lipoic acid metabolism, the TCA

cycle, 2-oxocarboxylic acid metabolism, carbon metabolism, and

other metabolic pathways, such as oxidative phosphorylation,

glycolysis, and pyruvate metabolism.
3.3 Construction of diagnostic marker
genes for AILI

The LASSO logistic regression and RF algorithms were used to

identify OFGs from the 24 DEG-CRGs to determine critical

markers with high diagnostic value. First, five OFGs were
B C

D E F

A

FIGURE 2

Identification of DEG-CRGs between the AILI and control samples. (A, B) Heatmap and volcano plots of the DEGs. (C) Venn diagram showing the
intersection of genes between DEGs and CRGs. (D) Heatmap of the 24 DEG-CRGs. (E) PPI analysis of the 24 DEG-CRGs. (F) Correlation analysis of
the 24 DEG-CRGs. Red and yellow represent positive and negative correlations respectively. AILI, acetaminophen induced liver injury; DEGs,
differentially expressed genes; CRGs, cuproptosis-related genes; DEG-CRGs, intersection of DEGs with CRGs; PPI, protein–protein interaction.
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obtained via LASSO logistic regression (Figures 3A, B). Then, the

support vector machine (SVM) model and RF model were

explained using the “DALEX” package. The data indicated that

the RF model had a lower residual weight (Supplementary

Figures 3A, B). Moreover, the RF model had a greater AUC

(SVM, AUC = 0.99; RF, AUC = 1.00; Supplementary Figure 3C).

Since the RF model had better performance, it was used to filter out

nine OFGs (Figures 3C, D). Finally, the LASSO and RF OFGs were

intersected, and four OFGs were identified (SDHB, PDHA1,

NDUFB2, and NDUFB6) for further analysis (Figure 3E).
3.4 Validation of the OFGs

To further assess the predictive efficiency, a nomogram model

was constructed using the “rms” package using SDHB, PDHA1,

NDUFB2, and NDUFB6 (Figure 4A). Each OCG was assigned a

score, and AILI risk was predicted using the cumulative score. The

calibration curve and DCA were applied for assessing the predictive

efficiency of the nomogrammodel. The calibration curves suggested

a relative link between the predicted and actual probabilities

(Figure 4B). DCA indicated that the nomogram model had

significantly greater net benefits than the individual OCG,
Frontiers in Immunology 06
suggesting a high level of accuracy and providing a foundation

for physician decision-making (Figure 4C). The clinical impact

curve also indicated that the nomogram model has a relatively high

diagnostic ability (Figure 4D). The ROC curves showed that the

individual OCGs had high diagnostic value (SDHB, AUC = 0.99;

PDHA1, AUC = 0.94; NDUFB2, AUC = 0.98; NDUFB6, AUC =

0.955; Figure 4E). Moreover, the four OFGs demonstrated a

significantly greater diagnostic value (AUC = 1, Figure 4F). These

results indicate that the diagnosis model is efficacious in

distinguishing AILI from normal individuals.

The gene expression and ROC curves of the four OFGs were

validated using the GSE111828 dataset for further verification. The

results showed that the expression of the four OFGs was

significantly downregulated (Figure 5A). Additionally, the ROC

curve analysis demonstrated that these OFGs, individually and

together, demonstrated powerful predictive abilities (AUC = 1,

Figures 5B, C).
3.5 GSVA and GSEA

GSVA and GSEA of the KEGG enrichment analysis were

performed to detect the differentially active pathways between the
B

C D

E

A

FIGURE 3

Identification of OFGs for AILI through machine learning. (A) Ten-fold cross-validation of tuning parameter selection in the LASSO model. Each
curve represents one gene. (B) LASSO coefficient analysis. The dotted vertical line is drawn at the optimal lambda. (C) Relationships between the
number of random forest trees and the number of errors. (D) RF algorithm for OFG selection (genes highlighted in red, copper transporter). (E) Venn
diagram showing the overlap of OFGs between LASSO and random forest analyses. AILI, acetaminophen induced liver injury; OFGs, optimal feature
genes; RF, random forest; LASSO, least absolute shrinkage and selection operator.
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low- and high-expression subtypes according to the expression level

of the four OFGs (Supplementary Figure 4). Interestingly, the data

indicated that all four OFGs were related to cytokine cytokine

receptor interaction and the IL-17 signaling pathway. GSVA and

GSEA of the OFGs based on the GO enrichment also were performed

(Supplementary Figure 5), and the results showed that the OFGs were

involved with immune system process and inflammatory response.

These findings implied that the OFGs may play a crucial role in the

regulation of immune inflammatory response in AILI.
Frontiers in Immunology 07
3.6 Immune infiltration analysis

Studies have shown that various immune cells, such as

macrophages, neutrophils, and natural killer cells, play pivotal

roles in AILI. Notably, CRGs also play a regulatory role in the

immune response (26, 27). Our GSVA and GSEA results further

substantiate the pivotal role of OFGs in regulating immune

inflammatory response in AILI. Therefore, we evaluated the

immune microenvironment through the mMCP-counter method.
B CA

FIGURE 5

Validation of the OFGs in the GSE111828 dataset. (A) Boxplots indicating that the four OFGs were significantly altered between the AILI and control
samples (B) ROC curves of the four OFGs in the GSE111828 dataset. (C) ROC curve analysis of the four-OFG-based model in the GSE111828 dataset.
P values are shown as * p < 0.05 and ** p < 0.01. OFGs, optimal feature genes; ROC, receiver operating characteristic.
B C

D E F

A

FIGURE 4

The predictive efficiency of the OFGs. (A) Nomogram of the four OFGs. (B) Calibration curve showing the diagnostic ability of the nomogram model.
(C) DCA illustrating the predictive efficiency of the nomogram models. (D) Clinical impact curve showing the greater diagnostic ability of the
nomogram model. (E) ROC results for the four OFGs. (F) A logistic regression model was used to determine the AUC of AILI. AILI, acetaminophen
induced liver injury; ROC, receiver operating characteristic; AUC, area under the ROC curves; DCA, decision curve analysis; OFGs, optimal
feature genes.
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The data indicated that macrophages were more abundant in the

AILI group than in the control group, whereas eosinophils and

endothelial cells were less abundant (Figure 6A). A heatmap of the

immune cells is presented in Figure 6B. Correlation analysis

revealed positive correlations between NDUFB2 and B-cell-

derived cells, and between PDHA1 and eosinophils. SDHB

appears more extensively involved in regulating the immune

microenvironment. The analysis revealed that SDHB was

positively correlated with T cells, eosinophils, and endothelial

cells, and negatively correlated with macrophages (Figure 6C).

These results suggest that modifications in the immune

microenvironment may contribute to AILI development.
3.7 OFG expression in AILI

We established an AILI mouse model and further verified the

expression of the four OFGs. HE demonstrated massive hepatic

necrosis in the livers of the APAP-treated mice (Figures 7A, B).

Similarly, liver function tests showed that the serum ALT and AST

levels were significantly higher in the APAP group than in the NS

group (Figures 7C, D). We evaluated the expression of the four

OFGs at both the mRNA and protein levels. As expected, the

expression of SDHB, PDHA1, NDUFB2, and NDUFB6 in the

APAP group was significantly decreased at both mRNA and

protein levels (Figures 7E–G).
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3.8 Detection of hepatic copper levels and
the effects of ATTM on AILI

The accumulation of intracellular copper is a pivotal characteristic

of cuproptosis. Therefore, we sought to investigate whether the

administration of copper chelator could effectively ameliorate AILI

by reducing copper levels. The results of in vitro cell experiments

revealed a significant increase in copper levels within the APAP group

compared to the NS group, whereas ATTM exhibited a remarkable

ability to effectively mitigate the elevated copper levels (Figure 7H).

Correspondingly, the subsequent experiments demonstrated that

ATTM could significantly alleviate APAP-induced inhibition on the

cellular viability of AML12 cells (Figure 7I). To further validate the

effects of ATTM on AILI, we performed additional experiments using

AILI mouse model. As expected, the hepatic copper levels were

significantly higher in the APAP group than in the NS group, and

ATTM could significantly reduce hepatic copper levels in the context of

AILI (Figure 7J). However, ATTM did not significantly alleviate AILI.

In fact, ATTM seemed to have a tendency to worsen AILI (Figures 7K,

L; Supplementary Figure 6).
4 Discussion

Drug-induced liver injury (DILI) is a global problem caused by

various commonly used drugs. Some of the drugs often implicated

in DILI are APAP, aspirin, and cocaine (28). Due to the widespread
B C

A

FIGURE 6

Immune infiltration analysis of the AILI and control samples. (A) Box plots showing the differences in immune infiltration between the AILI and
control samples. (B) Heatmap of immune cells. (C) Correlation analysis between the OFGs and immune cells. P values are shown as * p < 0.05,
** p < 0.01, and *** p < 0.001. AILI, acetaminophen induced liver injury; OFGs, optimal feature genes.
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application of APAP, AILI has become a significant threat to public

health. The mechanism underlying AILI is complex and

multifactorial and involves liver metabolism, mitochondrial

oxidative stress and dysfunction, sterile inflammation, and

autophagy. Cuproptosis is a newly discovered type of apoptosis

mainly characterized by the aberrant accumulation of cellular

copper above a certain threshold, which induces cell toxicity and,

eventually, cell death (9). Cuproptosis plays an important role in

numerous diseases, such as Wilson’s disease, neurodegenerative

diseases, and cancer (10). Notably, mitochondrial oxidative stress

and dysfunction are the major cellular events involved in both AILI

and cuproptosis. However, whether cuproptosis plays a role in the

pathogenesis of AILI has not been well investigated. Our present

study aimed to identify potential CRGs that may contribute to AILI.

In this study, 24 DEG-CRGs were identified, and enrichment

analysis indicated that the DEG-CRGs were significantly related to

aerobic respiration, iron-sulfur cluster binding, the mitochondrial

respirasome, the citrate cycle, carbon metabolism, and pyruvate

metabolism. Tsvetkov et al. revealed that increased copper

accumulation causes the lipoylation and aggregation of enzymes

(especially DLAT, which is critical for the formation of the

multienzyme pyruvate dehydrogenase complex) involved in the

regulation of the mitochondrial TCA cycle (9). The destabilization

of Fe-S cluster proteins is another remarkable feature of

cuproptosis. Our bioinformatics analysis results are highly

consistent with those of previous studies on the mechanism of

cuproptosis. Additionally, we used machine learning models to

identify OFGs for the diagnosis of AILI according to the expression

profiles of 24 DEG-CRGs. A total of four OFGs were identified,
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namely, SDHB, PDHA1, NDUFB2, and NDUFB6. The predictive

efficacy was verified by constructing a nomogram, generating

calibration curves, and performing DCA. Theoretically, the four-

gene model could be a reliable and robust biomarker for

predicting AILI.

SDHB encodes the iron–sulfur protein subunit of succinate

dehydrogenase (complex II), which is a key enzyme in the TCA

cycle and the electron transport chain. SDHB deficiency increases

mitochondrial copper concentrations and contributes to increased

oxidative stress (29, 30). These findings are consistent with our

bioinformatics analysis results showing that SDHB, a CRG, is

significantly downregulated in AILI and may promote oxidative

stress in this disease. In addition, the decreased expression of SDHB

may increase mitochondrial copper levels in AILI, indicating that

cuproptosis may be involved in AILI. PDHA1 encodes the alpha 1

subunit of pyruvate dehydrogenase, which catalyzes the conversion

of pyruvate to acetyl-CoA and serves as a significant bridge between

glycolysis and the TCA cycle. Our findings demonstrated that the

expression level of PDHA1 is decreased in AILI. Theoretically,

decreased PDHA1 expression may lead to decoupling of glycolysis

from the TCA cycle. Interestingly, a metabolic profiling study on

AILI revealed that it is associated with the decoupling of glycolysis

from the TCA cycle, the loss of nicotinamide adenine dinucleotide

phosphate (NADPH) production, and the suppression of anabolism

(31). The authors of the metabolic profiling study proposed that

APAP toxicity may be caused by the decoupling of glycolysis from

the TCA cycle, lactic acidosis, reduced NADPH production, and

subsequent suppression of the anabolic pathways required for rapid

growth (31). These implied that PDHA1 and AILI may be related
B C D E F

G H I J K L

A

FIGURE 7

Altered expression of the OFGs and effects of ATTM on AILI. (A, B) HE staining to assess liver necrosis (Scale bar, 500 µm; n = 6 per group).
(C, D) Serum concentrations of ALT and AST (n = 6 per group). (E) Quantitative PCR analysis of NDUFB2, NDUFB6, PDHA1, and SDHB (n = 6 per
group). (F, G) Western blotting and densitometry analysis of NDUFB2, NDUFB6, PDHA1, and SDHB (n = 3 per group). (H) Copper levels of AML12
cells (n = 3 for each group). (I) Cell viability of AML12 cells (n = 4 for each group). (J) Hepatic copper levels of AILI mouse model (n = 5 for NS and
ATTM group, n = 10 for APAP and APAP+ATTM group). (K, L) HE staining to assess liver necrosis (Scale bar, 500 µm; n = 6 per group). The results
are expressed as the mean ± SD. P values are shown as * p < 0.05 and ** p < 0.01; ns, not significant. AILI, acetaminophen induced liver injury;
OFGs, optimal feature genes; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HE, hematoxylin-eosin staining; PCR, polymerase
chain reaction; ATTM, ammonium tetrathiomolybdate.
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through the metabolic profile remodeling. NDUFB2 and NDUFB6

encode the subunits of the nicotinamide adenine dinucleotide

(NADH): ubiquinone oxidoreductase (complex I). Mammalian

complex I has NADH dehydrogenase activity and oxidoreductase

activity. It has been reported that APAP toxicity occurs with the loss

of mitochondrial membrane potential and decreased NADH levels

(1). Furthermore, NADPH-dependent APAP-GSH conjugate

production was synergistically enhanced by NADH (32). In AILI,

both NDUFB2 and NDUFB6 were decreased, which may inhibit the

clearance of APAP by GSH.

In this study, we analyzed immune infiltration in AILI samples.

The ratio of total to M1 macrophages was significantly higher in the

AILI group than in the control group. It has been reported that after

APAP overdose, the number of M1 macrophages in the liver of rats

increases significantly with increasing M1-related cytokines, such as

IFN-g and TNF-a (33). It is well known that proinflammatory M1

macrophages are involved in various liver diseases, especially in the

pathological processes of oxidative stress and sterile inflammatory

responses. Thus, the associations between M1 macrophage

polarization and damage-associated molecular patterns (DAMPs)

and autophagy might contribute to AILI pathogenesis (33). The anti-

inflammatoryM2macrophages also were observed, but their activation

was significantly delayed (33). Bioinformatics analysis revealed that the

number of eosinophils was significantly decreased in AILI samples.

However, these findings contradict previous findings. Xu et al. reported

that both the percentage and the total number of eosinophils were

increased in the livers of mice treated with APAP and proposed that

eosinophils were recruited into the liver and played a profound

protective role (34). This contradiction may be related to differences

in pretreatment and sampling times; however, further investigations

are needed. Our data indicated that endothelial cells are also

significantly decreased in AILI. Another study confirmed that hepatic

endothelial cells are an early and direct target for APAP hepatotoxicity

(35). It is reasonable to speculate that APAP-induced endothelial cell

injury may be responsible for the decrease in endothelial cells. Further

correlation analysis revealed a significant correlation between the OFGs

and multiple immune cells. SDHB, in particular, appears to be more

extensively involved in regulating the immune response. The aberrant

expression of SDHB could disrupt the assembly of mature complex II,

which is involved in multiple mitochondrial processes, including

oxidative phosphorylation, pyruvate metabolism, the citric acid cycle,

and phospholipid metabolism (36, 37). It has become increasingly

recognized that mitochondrial function is involved in the

differentiation and activation of immune cells. For example,

proinflammatory macrophages exhibit a break at complex II in the

TCA cycle, leading to the accumulation of succinate (38). The

accumulation of succinate is further linked to the induction of a

proinflammatory phenotype through autocrine stimulation of

succinate receptor 1, which activates inflammatory pathways by

promoting IL-1b production (39). Studies have also demonstrated
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that mitochondrial metabolism is necessary for T-cell activation,

proliferation, and function. For instance, loss of complex II could

inhibit the production of IFN-g by Th1 cells (40). Briefly,

mitochondrial respiratory-related genes such as SDHB may take a

part in the pathological course of AILI.

The experimental results suggested a potential involvement

of cuproptosis in AILI. Interestingly, although ATTM

demonstrates a significant improvement in the cell viability of

AML12 cells, it does not exhibit any ameliorative effects on AILI

in mouse model. Nonetheless, we consider that this result does

not invalidate the potential relationship between cuproptosis

and AILI. Copper plays an essential cofactor in innate immunity

and metabolism. Previous studies have demonstrated that

copper deficiency is an independent risk factor for mortality in

patients with advanced liver disease (41). Moreover, another

study revealed that although copper levels are elevated in various

liver fibrosis conditions, severe copper deficiency induced by

tetrathiomolybdate exacerbates liver injury and fibrosis in rats

(22). Therefore, it can be speculated that systemic administration

of copper chelators may not be a feasible approach to inhibiting

cuproptosis for alleviating AILI. Taking a step back, even if the

systemic administration of copper chelators could effectively

inhibit hepatic cuproptosis, it might still pose potential harm

rather than benefit. AILI involves complex and diverse

mechanisms beyond cuproptosis alone, thus maintaining a

relatively normal physiological environment with appropriate

copper levels could potentially offer more benefits for AILI.
5 Conclusions

In summary, our present study revealed the relationship

between CRGs and immune cells in the pathological process of

AILI. Four OFGs were identified using a machine-learning model.

Our research provides novel insights into the role of CRGs in AILI

and a better understanding of the underlying pathogenesis

mechanism of this disease. Nevertheless, our study has several

limitations. The datasets in this study were all obtained from an

AILI mouse model, and the sample size was small. In addition, the

research lacked clinical sample data, which would be more

convincing. Finally, we could not explore the regulatory

mechanism of OFGs in AILI. Hence, further investigations are

needed in the future.
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