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Establishment of a prognostic
model for hypoxia-associated
genes in OPSCC and revelation
of intercellular crosstalk
Yichen Zhao †, Jintao Yu †, Chang Zheng and Baosen Zhou*

Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of
China Medical University, Shenyang, China
Hypoxia exerts a profound influence on the tumor microenvironment and

immune response, shaping treatment outcomes and prognosis. Utilizing

consistency clustering, we discerned two hypoxia subtypes in OPSCC bulk

sequencing data from GEO. Key modules within OPSCC were identified

through weighted gene correlation network analysis (WGCNA). Core modules

underwent CIBERSORT immune infiltration analysis and GSEA functional

enrichment. Univariate Cox and LASSO analyses were employed to construct

prognostic models for seven hypoxia-related genes. Further investigation into

clinical characteristics, the immune microenvironment, and TIDE algorithm

prediction for immunotherapy response was conducted in high- and low-risk

groups. scRNA-seq data were visually represented through TSNE clustering,

employing the scissors algorithm to map hypoxia phenotypes. Interactions

among cellular subpopulations were explored using the Cellchat package, with

additional assessments of metabolic and transcriptional activities. Integration

with clinical data unveiled a prevalence of HPV-positive patients in the low

hypoxia and low-risk groups. Immunohistochemical validation demonstrated

low TDO2 expression in HPV-positive (P16-positive) patients. Our prediction

suggested that HPV16 E7 promotes HIF-1a inhibition, leading to reduced

glycolytic activity, ultimately contributing to better prognosis and treatment

sensitivity. The scissors algorithm effectively segregated epithelial cells and

fibroblasts into distinct clusters based on hypoxia characteristics. Cellular

communication analysis illuminated significant crosstalk among hypoxia-

associated epithelial, fibroblast, and endothelial cells, potentially fostering

tumor proliferation and metastasis.
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1 Introduction

Head and neck squamous cell carcinomas (HNSCCs) emerge

from the mucous membrane of the oral cavity, pharynx, and larynx,

and are the most prevalent malignancies of the head and neck (1).

With a 5-year survival rate of only 40–50% (2), HNSCC frequently

receives a diagnosis in a late stage when it is challenging to cure.

Although tobacco (3) and alcohol used (4), betel quid chewing (5),

and poor oral hygiene (6) are still strongly associated with HNSCC,

high-risk oncogenic human papillomavirus (HPV) types, particularly

HPV type 16, plays a major role in the pathogenesis and progression

of HNSCC (7). HPV viruses are known to be causally linked to a

subset of oropharyngeal squamous cell carcinomas (OPSCC) arising

from the palatine and lingual tonsils (8).

HPV16 expresses E6 and E7 proteins. The E6 oncoprotein

disrupts the p53 pathway, leading to cell cycle dysregulation, and

the E7 oncoprotein induces retinoblastoma protein inhibition,

transforming infected cells into cancer cells (9). Patients with

HPV-positive OPSCC typically respond well to treatment and

have better long-term survival than patients with HPV-negative

OPSCC and HNSCC in general, regardless of whether they receive

radiotherapy alone or radio-chemotherapy (10).

Hypoxia is a hallmark of the tumor microenvironment (TME)

in major human tumors and promotes tumor malignancy, causing

resistance to radiation therapy, immune evasion and immune

resistance (11). HIF-1a (hypoxia-inducible factor 1-a) is a

transcription factor that is essential for cells to cope with low

oxygen levels, regulating genes involved in metabolism,

angiogenesis and survival under hypoxic conditions (12). Earlier

studies have shown that cells maintaining the HPV genome display

elevated levels of HIF-1a and that E7 enhances HIF-1a
transcriptional activity (13, 14). However, HPV-associated OSCC

exhibits lower levels of tumor hypoxia, which may be related to the

unique intrinsic ability of HPV-positive tumor cells to adapt to

hypoxia and their better prognosis (15). In recent years, the rise of

single-cell RNA sequencing (scRNA-seq) technology (16) has

become a powerful tool for enabling an understanding of the

heterogeneity of the tumor microenvironment and mechanisms

of cancer progression. Still, studies using methods combining bulk

sequencing with single-cell sequencing in relation to hypoxia-
Abbreviations:HNSCC, Head and neck squamous cell carcinoma; HPV, Human

papillomavirus; OPSCC, Oropharyngeal squamous cell carcinomas; TME, Tumor

microenvironment; HIF-1a, Hypoxia-inducible factor 1-a; scRNA-seq, Single-

cell RNA sequencing; GEO, Gene Expression Omnibus; TPM, Transcripts per

kilobase million; TCGA, The Cancer Genome Atlas; NMF, Non-negative matrix

factorization; WGCNA, Weighted gene co-expression network analysis; ssGSEA,

Single-sample gene set enrichment analysis; HG, Hypoxia group; TIDE, Tumor

immune dysfunction and exclusion; MsigDB, Molecular marker database;

LASSO, Least absolute shrinkage and selec tion operator ; IHC,

Immunohistochemistry; EMT, Epithelial mesenchymal transition; THBS,

thrombospondins; ANGPTL, Angiopoietin-like family of proteins; IGF2,

Insulin-like growth factor 2; CAF, Cancer-associated fibroblasts; bFGF, b

fibroblast growth factor; TGFb, Transforming growth factor b.
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associated subtype characterization, tumor immune landscapes,

and intercellular communication remain rare.

This study centers on the subset of head and neck cancer

primarily linked to HPV, namely OPSCC. Initial scrutiny involved

the analysis of distinct phenotypes arising from hypoxia-associated

genes across various bulk sequencing datasets. Hypoxia models and

corresponding risk scores were formulated with prognostic

evaluations. Subsequent investigations delved into diverse hypoxia

phenotypes and associated risks, with a specific focus on their

interplay with HPV status, immunological attributes, and

implications for immunotherapy outcomes. Then we employed the

scissor algorithm in conjunction with single-cell sequencing datasets

to obtain subpopulations of cells associated with hypoxia, and further

did cellular communication and metabolic analyses. This integrated

approach is intended to aid in personalizing treatment strategies and

to facilitate the elucidation of new therapeutic targets, providing

insights for advancing tailored therapeutic interventions.
2 Materials and methods

2.1 Data collection and processing

The sequencing data and microarray data for this study were

derived from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo/), in which GSE171898 (262

HPV+,49HPV-) and GSE65858 (Supplementary Table 1) were

selected as the primary datasets, and specifically extracted from

the HPV containing information from OPSCC samples. In

addition, as a validation dataset, we downloaded transcripts per

kilobase million (TPM) data of HNSC from The Cancer Genome

Atlas (TCGA) database (https://tcga-data.nci.nih.gov/tcga/) and

screened 70 OPSCC samples from it (Supplementary Table 2).

For single-cell sequencing data, we obtained them from the

GSE182227 dataset of the GEO database. This dataset covers a

total of 70,970 cells from 11 HPV-positive and 5 HPV-negative

oropharyngeal squamous cancer patients. We used the ‘Seurat’

package (version: 4.4.0) to read the raw sequencing data. During

the data processing stage, cells with a total gene count of less than

200, cells with a mitochondrial gene proportion of more than 20%,

and cells with a hemoglobin gene proportion of more than 1% were

filtered out. ‘SCP’ R package (version:0.5.6, https://github.com/

zhanghao-njmu/SCP.), a single-cell data-processing package based

on the Seurat algorithm, was used to perform visualization and

enrichment analysis of the results (Figure 1).
2.2 Consistency clustering of hypoxia-
related genes

The 200 hypoxia-associated genes were obtained from the

hallmarks gene set of the GSEA database. Consistency clustering

was used with the ‘ConsensusClusterPlus’ package (version:1.60.0).

Single-sample gene set enrichment analysis (ssGSEA) was used to

quantify hypoxia score in each sample using the ‘GSVA’ R

package (version:1.44.0).
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2.3 WGCNA analysis

The weighted gene co-expression network analysis (WGCNA)

R package (version:1.71) was analyzed using weighted gene co-

expression network to obtain critical genes after hypoxia clustering.

Based on the GSE171898 expression matrix, the proximity matrix

was transformed into a topological overlap matrix by choosing an

appropriate power index. Then correlation analysis between gene

co-expression modules and hypoxia group (HG) phenotypes was

performed, and the modules positively correlated with HG and with

the highest correlation were selected for further analysis.
2.4 Immune infiltration analysis

CIBERSORT (https://cibersortx.stanford.edu/) was used to

assess the proportions of 22 immune-infiltrating cell types in each

sample in different hypoxia groups and different HPV groups. After

removing samples with p-values < 0.05, the empirical p-value of the

back-convolution in each case was determined. In addition, the

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

(http://tide.dfci.harvard.edu/) was used to predict the response to

immune checkpoint inhibitors in patients with OPSCC.
2.5 Functional enrichment analysis

Gene set enrichment analysis (GSEA) was performed using the

‘ClusterProfiler’ (version: 4.10.0) package to explore the differences

in function and associated pathways between the HG1 and HG2

groups. The groups were categorized into low and high expression

groups based on differential gene expression. The C2 (KEGG), C5

(GO), C6 (cellular pathway), C7 (immune pathway) gene sets

downloaded from the Molecular Marker Database (MsigDB)

(https://www.gsea-msigdb.org/gsea/msigdb/) were used as

reference gene sets. The same was visualized with the

‘ClusterProfiler’ package.
2.6 Construction of hypoxia score

The GSE65858 data was utilized as a training set to construct

the model. Module genes with the highest correlation with hypoxia

phenotype obtained from WGCNA analysis were selected.

Univariate Cox proportional risk regression analysis was

performed on the candidate genes in the training set to screen for

characteristic genes associated with prognosis. Significant variables

were included in the Least absolute shrinkage and selection operator

(LASSO) regression analysis, which was performed with the R

software ‘glmnet’ package to reduce the number of genes in the

final risk model according to the risk score = gene exp1 × b1 + gene

exp2 × b2 +… + gene expression n × bn. Patient survival curves and
risk maps were visualized using the ‘survminer’ and ‘ggrisk’

packages. ROC curves were plotted using the ‘timeROC’ package

(version:0.4) to assess the performance of OPSCC patients in

predicting overall status (OS) risk scores at 1, 3 and 5 years. In
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addition, an external dataset, TCGA-OPSCC, validated the

predictive model. Gene Set Variation Analysis (GSVA) was used

to determine the risk score in different hypoxia groups via ‘GSVA’ R

package (version:1.44.0).
2.7 Scissors algorithm for identifying
phenotype-associated cells

Scissor algorithm (17) is a novel method for analyzing single-

cell data. Bulk phenotypes are utilized to identify subpopulations of

cells highly correlated with phenotypes from single-cell sequencing

data. The hypoxia phenotype was chosen as the phenotype for the

logit model. The parameter alpha was set to 0.2 to identify the most

relevant hypoxic subtype.
2.8 Cell Communication analysis

Explore interactions between cell clusters using the ‘CellChat’

(version:1.6.1) software package (18). The tool is based on 2021

CellChatDB experimentally validated ligand-pair predictions of

cellular interactions in the database. Interactions and interaction

strengths between different cell subpopulations were calculated and

the overall information flow of each signaling pathway

was compared.
2.9 Single-cell hypoxia scoring and
metabolic detecting

Use ‘AUCell’ (version: 1.24.0) to identify cells with a hypoxia-

active gene set in single-cell RNA data. AUCell uses Area Under the

Curve (AUC) to calculate whether a critical subset of the input gene

set is enriched in expressed genes in each cell. First, we use the

‘AUCell _ buildRankings’ function to calculate the gene expression

rankings in each cell using an expression matrix for each cell using

default parameters. ‘AUCell_exploreThresholds’ was used to

determine the threshold for gene set activity. We used

‘scMetabolism’ (version: 0.2.1) (19) to analyze differences in

metabolic pathway activity in the single-cell dataset .

‘scMetabolism’ is an R package based quantification of metabolic

activity at the single-cell level. It uses the VISION algorithm to score

each cell, ultimately obtaining an activity score for each cell in each

metabolic pathway.
2.10 Patients’ characteristics and
specimens’ collection

Tissues were collected for immunohistochemical validation

from 46 patients operated for oropharyngeal squamous

carcinoma at the Department of Otorhinolaryngology Head and

Neck Surgery, the First Affiliated Hospital of China Medical

University between 2013 and 2017. The patient cohort ranged in

age from 25 to 75 years, consisting of 7 females and 39 males.
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Clinical data, including patient age, gender, and tumor pathological

grading, were meticulously recorded for further investigation.

Detailed information is presented in Supplementary Table 1.
2.11 Immunohistochemical
experiment validation

Immunohistochemistry was used to evaluate P16 and TDO2 in

oropharyngeal cancers. Positive staining of P16 protein was defined

as HPV positive. All tissues were paraffin-embedded, fixed and

serially sectioned for use. After elimination of endogenous enzymes

with 3% peroxidase solution, tissues were incubated in 5% bovine

serum albumin for 20 minutes at room temperature and then

incubated overnight with primary antibodies (anti-CDKN2A,P16:

Abcam; anti-TDO2: Proteintech). The next day, the tissues were

incubated with the secondary antibody for 30 min and visualized

with 3,3′-diaminobenzidine. Finally, the slides were counterstained

with hematoxylin, dehydrated, and cover-slipped. The

immunohistochemical scoring was conducted by experienced

pathologists using a semi-quantitative method, simultaneously

assessing staining intensity and the number of positive cells.

Different percentages of positive cells corresponded to different

scores: 0%–25% for 1 point, 26%–50% for 2 points, 51%–75% for 3

points, and 76%–100% for 4 points. Different staining intensities

corresponded to different scores: no staining for 0 points, pale

yellow for 1 point, light brown for 2 points, and dark brown for 3

points. The sum of scores for positive cell percentage and staining

intensity ranged from 1 to 7. Scores less than 3 were considered

negative expression, while scores greater than 3 were considered

positive expression. This study was approved by the Ethics

Committee of the First Affiliated Hospital of China Medical

University (No.[2022]199) and conformed to the Declaration

of Helsinki.
2.12 Statistical analysis

All statistical data were based on R software (version: 4.3.1). In

this study, we used t-test and one-way ANOVA to compare

continuous variables. The c2 test was employed to assess the

statistical significance of the relationship between TDO2

expression and clinicopathological variables. Correlation and

Wilcoxon rank sum test were used to compare the infiltration of

immune cells in the TDO2 high and low expression groups.

Disease-free survival was defined as the duration from diagnosis

to the occurrence of the initial local recurrence or metastasis.

Overall survival was defined as the period from the date of

diagnosis to the date of death or to the latest follow-up. The

survival rate data were analyzed using the Kaplan-Meier method,

with survival curves compared utilizing the log-rank test at a

significance level of 0.05. Univariate regression was conducted to

identify hypoxia-related genes associated with prognosis, followed

by further selection of core genes using Lasso Cox regression.

Multivariate regression analysis was performed to ascertain the

prognostic factors of clinical characteristics, including age, gender,
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HPV status, clinical stage, smoking, alcohol consumption, and risk

score. Hazard ratios and their corresponding 95% confidence

intervals were computed to estimate risk. Statistical significance

was defined as a p-value less than 0.05.
3 Results

3.1 Unsupervised clustering of hypoxia-
associated genes reveals two distinct
classes with varied immune and
glycolytic activity

Using unsupervised clustering of 200 hypoxia-associated genes

in 311 samples from GSE171898, we determined that the samples

were optimally classified into two classes: HG1 and HG2

(Figures 2A–C). To further identify other phenotypic differences

caused by hypoxic patterns, 523 differential genes were found, 256

up-regulated and 267 down-regulated (logFC>1, P<0.05)

(Figure 2D). The GSEA functional enrichment analysis revealed

that these genes were predominantly enriched in hallmark hypoxia,

hallmark glycolysis, GOBP adaptive immune response, GOBP

immune response regulating cell surface receptor signaling

pathway. Subsequent ssGSEA analysis of the HG1 and HG2

classes for hypoxia-related gene expression indicated higher levels

in the HG2 class (Figures 2E, F). CIBERSORT analysis of immune

cell infiltration across the hypoxia classes and HPV status revealed

divergent patterns, with most infiltrates being more abundant in the

HG1 class compared to the HG2 class (Figures 3A, B). Recognizing

WGCNA as a robust method for detecting key genes associated with

specific modules, we utilized this approach to identify genes

significantly correlated with HG. Initially, we selected 4 as the

soft-thresholding power (Supplementary Figures 1A, B). Among

them, the lightcyan and midnight blue modules showed a

significant positive correlation with HG. The light cyan module,

which exhibited the highest correlation (cor = 0.8, P < 0.05), was

chosen for subsequent analysis (Supplementary Figures 1C, D).
3.2 Construction of hypoxia model genes

All genes within the lightcyan module underwent prognostic

correlation analysis and gene screening within the GSE65858

dataset, which contains prognostic information. Univariate Cox

regression analysis identified 32 hypoxia-related genes significantly

associated with overall survival (Figure 4A). Core genes were

further refined using LASSO-Cox regression, resulting in a

prognostic model comprising seven genes that became more

robust with an increased penalty (Figures 4B, C). These genes are

BASP1, C16orf72, GPSM1, P4HA1, SYDE1, TDO2, and ZDHHC9.

A prognostic model utilizing risk scoring was established based on

the gene expression levels and regression coefficients of seven genes

and each patient was assigned a risk score. Using the median risk

score as the threshold, patients in each dataset were classified into

low-risk and high-risk groups. Overall survival significantly differed

between the two groups (P = 0.0077, log-rank test). Figures 5A and
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B shows the higher scores suggest a worse prognosis. We further

performed external validation using TCGA-OPSCC, which showed

that the model also had some predictive power (Figure 5D). ROC

curves were generated using the timeROC package (Figures 5C, E).

To discern whether the risk score could have independent

prognostic assessment ability, we collated clinical information of

patients and filtered these clinical factors by multifactorial Cox

stepwise regression, and we found that hypoxic risk score and stage

were independent risk factors for patient prognosis. Finally, we used

the clinical information and risk model to build a prognostic

correlation prediction nomogram (Supplementary Figures 2A–C).
Frontiers in Immunology 05
3.3 Association between immune
infiltration and hypoxia score

Further investigation was conducted to explore the relationship

between hypoxia phenotype, risk score, and HPV status. The HG2 risk

score was higher (Figure 6A) and most HPV16-positive patients were

in the HG1 and low-risk groups (Figure 6B). Increasing evidence

reveals that the hypoxic microenvironment may protect tumors from

natural anti-tumor immune responses by inhibiting anti-tumor

immune effector cells and promoting immune escape mechanisms.

The CIBERSORT method combined with the LM22 feature matrix
FIGURE 1

Flowchart of this study.
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was used to assess the differences in immune infiltration of 22 immune

cells in patients in the high and low risk groups of oropharyngeal

cancer (Figure 6C). Plasma cells, M0 macrophages, M2 macrophages,

activated dendritic cells, and neutrophils showed relatively high

infiltration in the high-risk group. In contrast, naïve B cells,

memory B cells, and CD8+ T cells were infiltrated to a relatively

low extent in the high-risk group. Correlation analysis showed a high

correlation between immune cell subsets (e.g., memory B cells, CD8+
Frontiers in Immunology 06
T cells, activated NK cells, etc.) and risk scores (Figure 6D). In the

GSE17189 cohort, the TIDE score was significantly higher in the high

risk score group than in the low score group (Figure 7A). In addition,

there were significant differences in T-cell dysfunction scores

(Figure 7B) and T-cell exclusion scores (Figure 7C) in addition to

MSI scores (Figure 7D) between the two groups. These results suggest

that patients with high hypoxia scores have poor immunotherapy

benefit, which is consistent with previous findings.
B C

D E F

A

FIGURE 2

Consistency clustering of hypoxia-associated genes revealed two distinct classes with varying levels of immune and biological function.
(A, B) Consensus matrix of 311 OPSCC samples based on 200 hypoxia-related genes. Two subtypes were determined for all samples (k = 2).
(C) ssGSEA analysis of expression abundance of 200 hypoxia genes in different HG groups (1-HG1, 2-HG2). (D) Volcano plot of DEGs between HG1
and HG2 groups. P < 0.05 and |log2FoldChange|>1 were identified as significant DEGs. The red dots represent upregulated genes and the blue dots
represent downregulated genes. (E, F) Bubble plots of the Hallmark and GO pathways of DEGs. *** means p<0.001.
BA

FIGURE 3

Immune infiltration of different gene subgroups. (A) The fractions of 22 immune cells between the HG1 and HG2 by the CIBERSORT method (group
1-HG1, group 2-HG2). (B) The fractions of 22 immune cells between the HPV-positive and HPV-negative groups by the CIBERSORT method (group
neg-Negative, group pos-Positive). * Means p<0.05; ** means p<0.01; *** means p<0.001; **** means p<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1371365
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1371365
3.4 Prognostic impact of TDO2 expression
and its association with HPV status
in OPSCC

Survival analysis was executed on seven hub genes using the

Kaplan-Meier method applied to the GSE65858 dataset

(Supplementary Figures 3A–G). According to the median gene

expression, patients were divided into two groups: high
Frontiers in Immunology 07
expression and low expression level. Notably, the expression

levels of BASP1, TDO2, and ZDHHC9 demonstrated a close

association with overall survival, indicating an unfavorable

prognosis. However the expression of the 7 genes had no effect

on disease-free survival (Supplementary Figures 4A–G). Subsequent

exploration of expression variations in these genes across diverse

HPV statuses uncovered a significant divergence in the expression

of TDO2 and ZDHHC9 between patients with HPV-positive and
B

C

A

FIGURE 4

Construction of prognostic model for hypoxia-related genes. (A) Forest plot showing Hazard ratio and 95% CI derived from univariate Cox
regression analysis of significant genes in the lightcyan module of WGCNA. HR for each variable is depicted as a box, and 95% CIs are shown as
horizontal lines. The vertical line crossing the value of 1 represents a non-statistically significant effect, and odds greater than one indicate worse
effects. (B) LASSO coefficient distribution of each independent gene. (C) The partial likelihood deviance in LASSO Cox regression analysis.
B C

D E

A

FIGURE 5

The relationship between risk score and survival. (A) Relationship between survival status and risk score in GSE65858 cohort. (B) Kaplan−Meier curves
for OS(Overall Survival) for different risk score groups in the GSE65858 cohort. (C) ROC curves of key risk genes for predicting 1-, 3-, and 5-year OS
in the GSE65858 cohort. (D) Kaplan−Meier curves for OS(Overall Survival) for different risk score groups in TCGA-OPSCC. (E) ROC curves of key risk
genes for predicting 1-, 3-, and 5-year OS in the TCGA cohort.
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HPV-negative oropharyngeal squamous cell carcinoma, with lower

expression observed in HPV-positive individuals (Figure 8A).

Validation with the TCGA cohort affirmed the adverse prognosis

linked to TDO2 (Figure 8B). Furthermore, pathway analysis

revealed a substantial enrichment of TDO2 in biological pathways

such as African trypanosomiasis, drug metabolism, extracellular

matrix (ECM), and glycosaminoglycan biosynthesis (Figure 8C),

hinting at a potential association with metabolic pathways under

hypoxia. Immune infiltration analysis exposed an increased

presence of M0 and M2 macrophages, along with neutrophils, in

samples exhibiting high TDO2 expression. In contrast, memory B

cells and monocytes were more prevalent in samples with low

TDO2 expression (Figure 8D). We utilized 46 specimens of

oropharyngeal squamous cell carcinoma collected from The First

Hospital of China Medical University. Immunohistochemical

staining, combined with semi-quantitative scoring, identified 22

cases (47.82%) with high P16 expression as HPV-positive, while 22

cases (47.83%) exhibited high TDO2 expression (Figures 9A–D).

Statistical analysis revealed a tendency towards lower TDO2

expression in HPV-positive patients (Supplementary Table 1).

Subsequent analysis of TDO2 expression and clinical data,

including gender, age, smoking, alcohol consumption, clinical

stage, T stage, and M stage, indicated an association between
Frontiers in Immunology 08
TDO2 expression and HPV status (P < 0.001) and T stage (P

= 0.02).
3.5 Analysis of cellular heterogeneity of
OPSCC cells

The TSNE clustering was performed on 61,347 cells by Seurat

package. The results showed that these cells could be clustered into

25 subgroups. The cell markers for annotation are shown in

Figure 10A. Based on the existing literature reports, combined

with the identification and annotation of specific marker genes,

they were further classified into seven clusters (Figures 10B, C). To

deeply understand the biological properties of these subpopulations,

we employed the 'SCP' package for KEGG pathway analysis

(Figure 10D). The results of the analysis revealed the specific

biological pathways of different subpopulations. HPV-positive

epithelial cells were mainly enriched in pathways such as

chemical carcinogens and cardiac contraction; HPV-negative

epithelial cells were enriched in pathways related to estrogen

receptor; fibroblasts were mainly enriched in extracellular matrix

receptor and focal adhesion; endothelial cells showed enrichment in

pathways such as cell adhesion molecules and cancer proteoglycans;
B

C D

A

FIGURE 6

Relationship between risk scores and different hypoxia groups, HPV status, and immune cell infiltration. (A) Gene Set Variation Analysis (GSVA) to
calculate risk scores for different hypoxia groups. (HG1:N=234, HG2:N=77) (B) Sankey diagram showing the distribution of patients with HPV status,
risk score and HG group. (C) The fractions of 22 immune cells between the high and low risk groups by the CIBERSORT method. (D) Correlations
between risk score and the abundance of each immune cell in 311 OPSCC samples. * means p<0.05; ** means p<0.01; *** means p<0.001; ****
means p<0.0001.
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T cells were enriched in viral protein-cytokine interactions, primary

immunodeficiency, and other pathways; B cells showed specific

enrichment in hematopoietic cell lines, IgA-producing intestinal

immune network, and other pathways; and macrophages showed

significant enrichment in cell adhesion molecules, B cell receptors,

and other pathways. 7 genes from the hypoxia model were identified

using the AUCell algorithm for activity in single-cell sequencing

data. The method constructs a gene expression ranking for each cell

based on an area under the curve (AUC) value. A value of 0.046 was

identified as a suitable threshold. Subsequently, we clustered and

colored the t-SNE embedded cells according to the AUC score of

each cell (Supplementary Figure 5).
3.6 Scissor algorithm to map epithelial cells
and fibroblasts

Epithelial cell subpopulations were extracted using the “subset”

function, and the scissor algorithm was applied to combine the

different HG phenotypes obtained from bulk sequencing of

GSE71898 with the single-cell sequencing data to identify two

major epithelial cell subpopulations, SC1 and SC2 (Figure 11A).

Performing AUCell hypoxia score analysis on these two scissor

subpopulations, we found that the SC1 cell subpopulation displayed
Frontiers in Immunology 09
a higher degree of hypoxia (Figure 11B). Differential gene analysis

(Supplementary Figure 6) revealed that the Scissor1 mainly highly

expressed genes related to hypoxic stress and metabolism, such as

N-MYC downstream regulated genes NDRG1 and lactate

dehydrogenase A (LDHA); whereas the SC2 highly expressed

intermediate germline kinin (MDK) genes related to epithelial

mesenchymal transition (EMT) and genes of nucleosome binding

protein HMG family. KEGG analysis revealed that the SC1 was

mainly enriched in metabolic pathways such as the HIF-1 pathway

and glycolysis, whereas the SC2 subpopulation was mainly enriched

in pathways such as oxidative phosphorylation, Parkinson’s disease,

and chemical carcinogens (Figure 11C). scMetabolism analysis

showed that SC1 had higher metabolic activity (Figures 11D, E).

The level of metabolism also varies by HPV status, with energy

metabolic pathways such as glycolysis being stronger in HPV-

negative and amino acid metabolism being stronger in HPV-

positive (Figure 11F). These findings suggest a corroborative

relationship between the results of large-scale sequencing analysis

and single-cell sequencing analysis. Cell communication analysis

using CellChat revealed a greater number and intensity of effects

between SC1 and SC2 subpopulations and fibroblasts

(Supplementary Figure 7A, B). Heatmaps showed that the CDH

pathway exhibited strong output signals in the SC1 and SC2

subpopulations, interacting with endothelial cells (Supplementary
B

C D

A

FIGURE 7

Predicting immunotherapy efficacy based on risk scores. (A–D) Differences in TIDE, T-cell dysfunction score, T-cell exclusion score and MSI in the
two risk score subgroups. The difference between positive and negative groups was compared through the Wilcoxon rank-sum test. ****
means p<0.0001.
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Figures 7C, D). Then we identified two major clusters by scissor,

FSC1 and FSC2 (Figures 12A, B), of which the FSC1 subpopulation

is involved in pathways such as ribosomes and systemic lupus

erythematosus. Considering that the main role of fibroblasts in

connective tissues is the synthesis of collagen and other
Frontiers in Immunology 10
extracellular matrix proteins, the activity of ribosomes in such

cells may be closely related to the synthesis of these proteins. In

contrast, the FSC2 subpopulation is involved in pathways such as

transcriptional dysregulation and inflammatory factors in

cancer (Figure 12C).
B

C

D

A

FIGURE 8

Characterizations of hubgene. (A) Differential expression of BASP1, TDO2 and ZDHHC3 in different HPV status. (B) Kaplan-Meier analysis of patients
in the high and low TDO2 expression group in TCGA-OPSCC cohort (Grouped according to the best cut-off value). (C) GSEA enrichment analysis of
the GSE65858 dataset based on high and low TDO2 expression. (D) The fractions of 22 immune cells between the high- and low-expression groups
of TDO2 by the CIBERSORT method. ** means p<0.01; *** means p<0.001; **** means p<0.0001. ns means none significance.
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3.7 Unraveling cellular interaction networks
in OPSCC: implications for metastasis and
tumor progression

To deeply investigate the cellular interaction network in the

immune environment of OPSCC, we used CellChat to reveal the

changes in the communication between endothelial, FC1,FC2,SC1

and SC2. CDH signaling showed the highest activity in SC1 and SC2

(Figures 12D, H). The autocrine mechanism of CDH mediates

direct cell-to-cell interactions through homology-selective

adhesion, which influences cell behavior. Thrombospondins

(THBS) as a group of multifunctional extracellular matrix

proteins, which are potent anti-angiogenic factors. We observed

that the interaction between THSB1 secreted by FSC1, FSC2 cell

clusters and SCD4, a surface protein of SC1,SC2 cell clusters,

promoted intercellular adhesion (Figures 12E, I).
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We also found that angiopoietin-like family of proteins

(ANGPTL) signaling plays a significant role in intercellular

crosstalk (Figures 12F, J, K). The hypoxic microenvironment

promotes the secretion of ANGPTL4. Binding of ANGPTL4 to

endothelial cells disrupts their connectivity, increases pulmonary

capillary permeability, and promotes vascular endothelial migration

of tumor cells. Members of the ANGPTL exhibit autocrine and

paracrine activities at different stages of angiogenesis, inflammation,

and regulation of cancer progression and metastasis, and in

particular the pro-oncogenic role of the C-terminal structural

domain of ANGPTL4 has been demonstrated in patients with

esophageal squamous cell carcinoma (ESCC) and oral squamous

cell carcinoma (OSCC). SDC4, an acetyl asparagine sulfate

proteoglycan that controls a variety of cellular processes such as

endocytosis, proliferation, and adhesion, and influences signaling

pathways such as FGF and VEGF by acting as a co-receptor that
FIGURE 9

Immunohistochemical staining for TDO2 and P16. (A) High TDO2 expression in OPSCC tissues as indicated by IHC. (B) Low TDO2 expression in
OPSCC tissues as indicated by IHC. (C) High P16 expression in OPSCC tissues as indicated by IHC. (D) Low TDO2 expression in OPSCC tissues as
indicated by IHC. 10× scale at 200mm; 40× scale at 50mm.
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binds to a variety of growth factors and extracellular matrix

components. There is a paucity of experimental studies on the

ANGPTL4-SDC4 ligand receptor, but previous studies have

demonstrated that binding of nANGPTL4 to SDC4 can inhibit
Frontiers in Immunology 12
WNT signaling by decreasing the lysosomal degradation of

lipoprotein receptor-associated protein 6. In a study of sclerosing

gastric carcinoma, Koichi et al. found that HIF-1a-induced
ANGPTL4 could inhibit WNT signaling by up-regulating c -Myc
B

C D

A

FIGURE 10

Single-cell dataset GSE182227 TSNE clustering and subgroup functional analysis. (A) Dotplot displaying the expression of selected marker genes in
25 subclusters. (B) TSNE visualization of seven different major clusters. (C) Heatmap of top different expression genes in seven clusters. (D) Dotplot
shows KEGG analysis of seven clusters. The size of the point represents the GeneRatio and the color represents the adjusted p-value.
B C
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A

FIGURE 11

Characterization of two groups of Scissor epithelial cells. (A) The Scissor algorithm identifies the two epithelial cells most associated with the two
HG groups, SC1 and SC2 cells. (B) Hypoxia-related AUC calculated by the AUCell function. (C) KEGG analysis in SC1 and SC2 clusters.(1-SC1, 2-SC2).
(D) Metabolically active pathways analysis in SC1 and SC2 clusters by scMetabolism method (1-SC1, 2-SC2). (E) TSNE maps visualize active pathways
of Glycolysis. (F) Metabolically active pathways analysis in HPV-positive and HPV-negative clusters by scMetabolism method (neg- HPV-negative,
pos-HPV-positive). *** means p<0.001.
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and down-regulation of p27 to promote tumor growth and

development of peritoneal metastasis. Therefore, in our study,

HPV infection leading to infiltration of the immune environment

with E7 promoting HIF-1a expression caused SC1 cell clusters to

exhibit activation of ANGPTL4-SDC4 signalling which may be

involved in oropharyngeal carcinogenesis and development.

IGF signaling was detected in FC cells clustered with endothelial

and SC cells (Figures 12G, L, M). Insulin-like growth factor 2

(IGF2) is not only a major factor in the development of primary

tumors, but also plays a crucial role in cancer spread, immune

evasion, and treatment resistance (20). Activation of the IGF2-Id1-

IGF2 loop stimulates chronic aberrant IFN signaling in cancer cells,

leading to a stem cell-like phenotype and chemotherapy resistance

(21). In breast cancer studies, bidirectional regulation between

autocrine IGF2 and inhibitor of DNA-binding 1 (Id1) promotes

tumor stemness (22). In contrast, paracrine IGF2 is associated with

EMT. Cancer-associated fibroblasts (CAF) from invasive tumors

secrete IGF2, which is due to the release of b fibroblast growth

factor (bFGF) and transforming growth factor b (TGFb) from
Frontiers in Immunology 13
epithelial tumor cells resulting in fibroblasts activation caused by

the release of bFGF and TGFb (23). Activation of AhR by KYN, a

product of IDO1 and TDO2, prompts the generation of immune-

tolerant dendritic cells (DCs) and regulatory T cells, which together

shape a tumor immune microenvironment incapable of recognizing

and destroying cancer cells (24). Interestingly, this was also

correlated in the TDO2 screened in the previous part of our

study. The above findings suggest that SC and FSC cell clusters

have metastatic invasive properties and display a more intensely

malignant phenotype.
3.8 SCENIC to analyze transcription factor
activity in SC1 and SC2 cells

SCENIC is an advanced computational method for

simultaneously reconstructing gene regulatory networks and

identifying cellular states based on single-cell RNA sequencing

data. The top five differentially expressed key transcription factors
B C

D E F G

H I J K L M

A

FIGURE 12

Scissor algorithm for fibroblast clustering and revealing of intercellular crosstalk pathways. (A) The Scissor algorithm identifies the two fibroblast cells
most associated with the two HG groups defined in GSE171898, FSC1 and FSC2 cells. (B) Volcano map showing differential genes between FC1 and
FC2. (C) KEGG analysis in FSC1 and FSC2 clusters.(1-FSC1, 2-FSC2) (D, H) CDH signal network pattern in SC1 and SC2. (E, I) THBS signal network
pattern in SC1,SC2, FSC1 and FSC2. (F, J, K) ANGPTL signal network pattern in SC1,SC2, FSC1 and FSC2. (G, L, M) IGF signal network pattern in SC1,
SC2, FSC1 and FSC2.
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between the SC1 and SC2 cell subpopulations were identified

(Supplementary Figure 8). Among the SC1 subpopulations, the

transcriptional activities of JUNB, ELF1, FOSB, and JUN were

particularly prominent. JUNB is an important component of the

AP-1 complex, which is commonly activated during stress

responses, immune responses, and cell differentiation. ELF1, on

the other hand, can regulate a wide range of immune-related genes,

including those involved in T cell activation, cytokine production,

and B cell function (25). In addition, JUN plays a role in regulating

cellular stress responses and inflammatory responses, for example,

THBS1 expression is mediated by JUNB on the MAPK pathway. Li

et al. (26) showed that tumor glycolytic metabolism may promote

immune escape by coordinating the molecular networks of

autophagy and CEBPB. CEBPB can bind to the promoter region

of TDO2, and the two are highly enriched in mesenchymal subtypes

of malignant gliomas, which are associated with a poor prognosis.
4 Discussion

Hypoxia is highly common in most solid tumors, driving

malignant progression as well as resistance to radiotherapy and

chemotherapy (27). However, the relationship between hypoxia and

another important oncogenic factor in HNSCC, HPV infection, has

not been clearly elucidated. In this study, we chose the subtype of

HNSCCmost affected by HPV infection, oropharyngeal cancer, as the

study population, and categorized OPSCC patients into two hypoxia-

associated subtypes based on the expression of hypoxia-associated

genes using concordant clustering. To explore the mechanism of

differences in different subgroups, key genes were identified using

WGCNA, and further genes related to prognosis were extracted using

Lasso-Cox’s method to obtain 7 genes to compose the model.

Correspondence between different HPV statuses and hypoxia

groups and risk scores were examined by Sankey plots. HPV

positive OPSCC patients were found to have lower hypoxia and

metabolic degree and better prognosis. Survival analysis and

differential expression of each of the seven genes within the model

revealed that TDO2 was significantly associated with prognosis, was a

risk factor and was lowly expressed in HPV-positive patients. We

collected additional clinical samples to validate the predictions using

immunohistochemical verification and TDO2 expression was found

to be low in HPV-positive oropharyngeal cancer patients. TDO2, a

dioxygenase enzyme containing heme, catalyzes the initial step of the

kynurenine pathway (KP), specifically the transformation of

tryptophan into formyl-kynurenine (28). HIF serves as a significant

controller of oxygen homeostasis, managing the equilibrium between

oxidative and glycolytic metabolism. HIF triggers the transcription of

numerous genes, orchestrating malignant biological processes such as

angiogenesis, epithelial-mesenchymal transition, extracellular matrix

remodeling, glucose and lipid metabolism, immune evasion, invasion,

and metastasis (29). Previous studies have shown that HPV16 E7

protein enhances the transcriptional activity of HIF-1a (13) and HIF-

1a negatively regulates TDO2, so we hypothesized that the interaction

between these molecules may have a role in prognosis (Figure 13) (30).

TDO2 has been identified in colorectal cancer to activate the

Kyn-AhR pathway, increase glycolysis to drive metabolic cancer cell
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growth and CXCL5 secretion to recruit macrophages into the tumor

microenvironment (31).We hypothesize that in HPV-positive

OPSCC, E7 transcriptional regulation of HIF-1a inhibits TDO2

expression, thereby inhibiting the glycolytic pathway, resulting in a

better prognosis and better treatment responsiveness in HPV-

positive OPSCC. This needs to be verified by further cellular

experiments. IDO1 and TDO2 are the initial Trp metabolizing

enzymes of KP and are highly expressed in a variety of cancers (32).

The results of the Phase I/II ECHO-204 trial demonstrated that

epacadostat, in combination with navulizumab, controlled

progression in the HNSCC cohort (33). Dual inhibitors of IDO1

and TDO are also in developmental studies. Wu et al. propose dual

IDO1/TDO2 inhibition to enhance anti-tumor immunity in

platinum-resistant non-small cell lung cancer (34). In esophageal

cancer, TDO2 can upregulate IL-8 through the AKT/GSK3b
pathway, thereby inducing polarization of M2 macrophages in

ESCC (35). Inhibition of TDO2 may also currently being

explored strenuously for their effects in cancer treatment but have

not yet reached the clinical trial stage. Both hypoxia and immune

infiltration are key features of the tumor microenvironment. By

CIBERSORT analysis we found that memory B cells and CD8+ T

cells, which are immune-promoting antitumor cells, infiltrated

lower in the high-risk group, whereas immunosuppressive tumor-

promoting M0 and M2 macrophages were higher. The TIDE score,

T-cell dysfunction score and exclusion score of the high-risk score

group were significantly increased compared with the low risk.

Previous studies have also shown that immunotherapy is less

effective in patients with higher levels of hypoxia. HIF signaling

also upregulates PD-L1 expression (36), so targeting key

downstream effectors of hypoxia or HIF-1a itself has therapeutic

advantages in preclinical tumor models. In HNSCC TME, hypoxia

suppresses the immune response by inhibiting immune cells,

regulating CAF, promoting tumor cell growth, and mediating

immune escape (37). HIF proteins and TGF-b promote each

other in a positive feedback loop. TGF-b activates and recruits

myofibroblasts and fibroblasts in primary tumors and transforms

them into CAF (38). The mRNA expression of other CAF-related

immunosuppressive regulators (e.g., VEGF, IL6, IL10, and PD-L1)

is also markedly enhanced under hypoxic conditions (39).

Subsequently, we mapped the hypoxia phenotype to the single-

cell level using a scissors algorithm, identifying SC1 and SC2

subpopulations of epithelial, and FCS1 and FSC2 subpopulations

of fibroblasts. AUCell and scMetabolism analyses revealed a higher

degree of hypoxia and metabolism in SC1, and HPV-negative

epithelial cells were characterized more in favor of the SC1

subtype. CelllChat identified several important cellular pathways.

CDH acts predominantly between epithelial cells and mediates

tumor progression through adhesion. the THBS pathway is

predominantly related to JUNB transcription. We also identified

JUNB activity in SC1 subpopulations using the SCENIC algorithm.

Several studies support the role of THBS in carcinogenesis, possibly

promoting laryngeal cancer cell proliferation and invasion through

fatty acid metabolic pathways (40). HIF-1a has been shown to

directly upregulate ANGPTL4 expression (41), promoting

transendothelial migration and increasing angiogenesis.

ANGPTL4 also activates the glycolytic pathway to energize the
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cell and stimulate EMT, thereby promoting metastasis and

chemoresistance (13, 42). IGF2 is predominantly secreted by

CAFs, whereas IGF1R is predominantly expressed by cancer cells.

IGF1R expression is significantly increased in colorectal cancer

tissues and acts as a potent receptor in response to IGF2 stimulation

leading to adverse outcomes (43). Similar studies have been

performed in breast cancer, where the IGFs/IGF-1R axis causes

activation of breast epithelial malignant cells and conversion of

stromal fibroblasts to CAFs, and it promotes TME remodeling for

tumor invasion (44).

Our study sheds light on the potential clinical implications of

TDO2 expression in HPV-positive head and neck cancer patients,

including its role in patient stratification, biomarker development,

treatment personalization, and mechanistic understanding. Further

validation and clinical translation of our findings are necessary to

realize the full potential of TDO2 as a prognostic biomarker and

therapeutic target in HPV-positive head and neck cancer. Due to

the small sample size included in the study, extrapolation to the full

population is not yet possible, and the emergence of sequencing

studies with larger samples is expected in the future.
5 Conclusion

The molecular characteristics of HPV-positive oropharyngeal

cancers allow for better prognosis and treatment responsiveness,

and quality of life remains high after treatment. Current ongoing

clinical trials are also focusing more on life-enhancing treatments

while maintaining a robust prognosis. In recent times, the Food and

Drug Administration (FDA) has granted approval for two immune

checkpoint inhibitors, namely pembrolizumab and nivolumab, in

the treatment of recurrent or metastatic head and neck squamous
Frontiers in Immunology 15
cell carcinoma. In summary, through bioinformatics analysis and

immunohistochemistry, we hypothesize the involvement of HIF-1a

in regulating TDO2 gene expression and downstream glycolytic

pathways in HPV-positive oropharyngeal squamous cell carcinoma.

Hypoxia and metabolism are hallmark pathways influencing

treatment responsiveness in head and neck cancer, closely linked

to HPV status and treatment sensitivity. Our study sheds light on

elucidating the mechanisms underlying these treatment response

disparities, offering insights into future therapeutic prospects for

head and neck cancer. In an increasingly patient-centered clinical

environment, personalized treatment and stratified therapy hold

promising avenues for further research.
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