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Bacterial membrane vesicles (MVs) have attracted increasing attention due to

their significant roles in bacterial physiology and pathogenic processes. In this

review, we provide an overview of the importance and current research status of

MVs in regulating bacterial physiology and pathogenic processes, as well as their

crucial roles in environmental adaptation and pathogenic infections. We describe

the formation mechanism, composition, structure, and functions of MVs, and

discuss the various roles of MVs in bacterial environmental adaptation and

pathogenic infections. Additionally, we analyze the limitations and challenges

of MV-related research and prospect the potential applications of MVs in

environmental adaptation, pathogenic mechanisms, and novel therapeutic

strategies. This review emphasizes the significance of understanding and

studying MVs for the development of new insights into bacterial environmental

adaptation and pathogenic processes. Overall, this review contributes to our

understanding of the intricate interplay between bacteria and their environment

and provides valuable insights for the development of novel therapeutic

strategies targeting bacterial pathogenicity.
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1 Introduction

The concept of bacterial membrane vesicles (MVs) can be

traced back to the 1960s when vesicles derived from bacterial cells

were first observed in Escherichia coli and Vibrio cholerae, and it

was proposed through electron microscopy that these vesicles

originated from the outer membrane of bacteria (1, 2). However,

due to limited understanding of their specific biological functions at

that time, these small vesicles were considered as by-products of

bacterial growth imbalance and metabolic remnants. Recent studies

have demonstrated that bacterial MVs play important roles in

bacterial physiology and pathogenesis and have thus attracted

widespread research attention from scientists.

Bacterial membrane vesicles (MVs) represent a category of

spherical vesicles with diameters ranging from 10 to 400

nanometers, characterized by a bilayer lipid membrane structure

derived from the bacterial cell membrane release process. These

vesicles exhibit unique and multifunctional secretion patterns and

transport mechanisms. Typically, specific cargo is packaged and

transported within or on the surface of MVs. MVs of varying

contents participate in diverse physiological activities of bacteria,

including nutrient acquisition, intercellular communication,

environmental adaptation, antibiotic resistance, release of

virulence factors, invasion of host cells, biofilm formation, and

immune modulation, thereby playing adaptable roles based on

contextual requirements (Figure 1). These bacterial MVs are

widely present in various bacterial species, being secreted not only
Frontiers in Immunology 02
by Gram-negative and Gram-positive bacteria (3), but also

originating from cell lysis induced by endolysins, which explains

why bacteria can produce different types of MVs. Microorganisms

from different taxa can release extracellular vesicles that are

associated with the cell membrane into the surrounding

environment, which explains their high abundance in natural

environments such as soil and oceans, as well as their presence in

various internal environments like host tissues, thereby playing

various functional roles in the microbial ecosystem (4).

Bacterial MVs formation is initiated by the expansion and

contraction of the bacterial outer membrane, resulting in the

release of spherical structures containing cytoplasmic proteins,

lipids, and nucleic acids. The biogenesis of MVs is a complex and

dynamic process involving various intricate molecular mechanisms

such as membrane bending, peptidoglycan remodeling, and lipid

and protein aggregation. At present, the universal mechanism of

biogenesis of bacterial MVs has not been confirmed, and several

possible biogenesis mechanisms of bacterial MVS from different

species have been proposed (Figure 2). (1) The removal of proteins

anchoring the outer membrane and the underlying peptidoglycan

serves to augment membrane fluidity, thereby enabling the

membrane to flex and give rise to membrane vesicles (MVs) (5–

8). For instance, in Pseudomonas aeruginosa, proteins anchoring

the outer membrane impacts MVs production. Inactivation of lpp

protein can results in increased MVs production (6).This

orchestrated modification in membrane dynamics represents a

pivotal step in the biogenesis of MVs, emphasizing the
FIGURE 1

The role of bacterial membrane vesicles in environmental adaptation and pathogenic dynamics. Bacterial MVs exhibit a bilayer membrane structure,
and their surfaces may carry specific receptors or membrane proteins. Due to differences in bacterial physiological conditions and environmental
stress, various types of MVs are actively secreted, carrying and transporting a diverse range of biomolecules, including nucleic acids, proteins,
enzymes, antibiotics, bacteriophages and so on. These MVs with distinct contents play crucial roles in microbial communities for environmental
adaptation and pathogenic dynamics.
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significance of protein-lipid interactions in membrane curvature

and vesicle formation. (2) The localized aggregation of

peptidoglycan fragments or misfolded proteins in the periplasmic

space initiates a curvature phenomenon in the outer membrane of

bacterial cells (9–11).This mechanism is proposed for

Porphyromonas gingivalis (10), This intriguing process

underscores the intricate interplay between molecular

components in the periplasm and the resulting morphological

changes in the outer membrane. (3) Owing to charge repulsion,

locally enriched lipopolysaccharide (LPS) species possessing anionic

charges induce curvature of the outer membrane, culminating in

the subsequent formation of MVs (12–14). From this mechanism,

we can reasonably speculate that MVs may be formed in the

position where LPS is more abundant, and the bending of OM

may alleviate the charge repulsion in the region (12). The

electrostatic forces governing this curvature offer a nuanced

perspective on the physicochemical principles guiding membrane

architecture and vesiculation. (4) The downregulation of the VacJ/

Yrb ABC transporter, a key player in the retrograde transport of

phospholipids in the outer membrane, leads to the accumulation of

phospholipids in the outer leaflet (15, 16). This accumulation results

in the rapid expansion of the outer leaflet relative to the inner leaflet,
Frontiers in Immunology 03
instigating membrane bending and facilitating the formation of

MVs. The intricate regulation of phospholipid transport elucidates

a molecular mechanism underlying membrane curvature dynamics.

(5) Bacteria release the Pseudomonas quinolone signal (PQS) into

the extracellular milieu, where it subsequently inserts into the outer

leaflet of the outer membrane through interactions with lipids and

phospholipids (17–19). This insertion of PQS induces expansion of

the outer leaflet, thereby amplifying the generation of MVs. The

interplay between bacterial signaling molecules and membrane

dynamics adds a layer of complexity to our understanding of MV

biogenesis and highlights the multifaceted nature of bacterial

communication and vesicle formation.

In Gram-negative bacteria, MVs are formed primarily through

two distinct avenues (20): one is through outer membrane blebbing

(B-type MVs), and the other is through explosive cell lysis or

bubbling cell death (E-type MVs), resulting in the curling and

self-assembly of shattered membrane fragments. Afterwards, B-type

MVs can be subdivided into outer membrane vesicles (OMVs),

Outer-inner MVs (OIMVs) and Cytoplasmic Membrane Vesicles

(CMVs) according to the different biological modes and contents.

Relatively, E-type MVs can also be subdivided into explosive

cytochrome membrane veins (ECMVs), explosive outer
FIGURE 2

The biogenesis mechanisms of MVs. Several possible biogenesis mechanisms of bacterial MVS from different species have been proposed. (1)
Membrane Cross-Links:Removal of proteins anchoring the outer membrane and underlying peptidoglycan enhances membrane fluidity, allowing the
membrane to bend and form membrane vesicles (MVs) (5–8). (2) Periplasmic Accumulation:Local aggregation of peptidoglycan fragments or
misfolded proteins in the periplasm induces curvature of the outer membrane (9–11). (3) Lipopolysaccharide Remodeling:Due to charge repulsion,
locally enriched lipopolysaccharide (LPS) species with anionic charges induce curvature of the outer membrane, leading to subsequent formation of
MVs (12–14). The Bilayer-Couple Model. (4). Downregulation of the VacJ/Yrb ABC transporter involved in retrograde transport of phospholipids in
the outer membrane results in the accumulation of phospholipids in the outer leaflet of the outer membrane. This accumulation causes rapid
expansion of the outer leaflet compared to the inner leaflet, resulting in membrane bending and MV formation (15, 16). (5) Bacteria secrete
Pseudomonas quinolone signal (PQS) into the extracellular space, which subsequently inserts into the outer leaflet of the outer membrane through
interactions with lipids and phospholipids. The insertion of PQS into the outer membrane causes expansion of the outer leaflet, increasing the
generation of MVs (17–19).
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membrane veins (EOMVs) and explosive outer–inner membrane

veins (EOI MVS) (3).

Bacteria can release soluble substances and complexes through

MVs, however, unlike other secretion mechanisms, MVs allow

bacteria to also release insoluble molecules in a concentrated,

protected, and targeted manner to distant targets. Key features of

MVs biogenesis include the outward expansion of regions lacking

membrane-peptidoglycan linkages, enhancing the ability of MVs

biogenesis without compromising the integrity of the outer

membrane, enrichment or exclusion of specific proteins and

lipids, and the lack of requirement for ATP/GTP hydrolysis to

provide energy for membrane division (21). Furthermore, MVs

have been shown to originate not only from live cells but also from

cell lysis induced by endolysins. In Pseudomonas aeruginosa

biofilms, the explosive cell lysis of cell communities leads to the

release of cytoplasmic contents and the rapid formation of MVs

through the production of ruptured membrane fragments (22).

The biogenesis of bacterial MVs is regulated by several key

factors, one of which is curvature-inducing proteins such as EspH,

FtsZ, and TolQ. These proteins promote outer membrane

deformation and neck-like structure formation, leading to the

generation of vesicles. Another important factor is peptidoglycan

remodeling enzymes, such as lytic transglycosylases, endolysins,

and hydrolases. These enzymes can cleave the covalent bonds

between peptidoglycan and the outer membrane, thereby

facilitating vesicle secretion and release. For example, studies have

shown that the formation of Bacillus subtilisMVs is triggered by the

expression of endolysins in bacterial subpopulations, resulting in

the formation of pores in the cell wall. Through these pores, the

intracellular material protrudes from the cytoplasm into the

extracellular space and is released as MVs (23). Due to the loss of

membrane integrity, the triggered cells eventually die, while the

bacteria releasing endolysins induce neighboring bacteria to

form MVs.

Some studies have identified protein and lipid motifs involved

in the biogenesis and classification of bacterial MVs, such as

lipopolysaccharides (12), outer membrane pore proteins, and

chaperone proteins. Additionally, the selective packaging of

proteins and lipids into bacterial MVs is a highly selective process

involving specific targeting and recognition signals.

For instance, the human oral pathogen Porphyromonas

gingivalis possesses a selective mechanism for packaging proteins

into MVs, leading to the preferential encapsulation of virulence

factors into MVs (14), and the exclusion of numerous outer

membrane proteins from the protein cargo. In this specific

sorting mechanism, lipopolysaccharides play a crucial guiding

role. Due to their unique properties such as stability,

biocompatibility, and payload encapsulation, bacterial MVs have

been developed for potential biotechnological and medical

applications (24, 25), such as drug delivery vehicles (26–28),

vaccine adjuvants (29, 30), and diagnostic markers.

This paper offers a comprehensive review of the role of bacterial

MVs in environmental adaptation and pathogenic processes, with a

particular emphasis on their potential functions in intermicrobial

interactions. This review lays the groundwork for further

exploration of the role of bacterial MVs in the pathogenic
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microbial world, offering novel research avenues for scientists

studying bacterial MVs. The elucidation of the multifaceted roles

of MVs presented in this review not only advances our

understanding of bacterial adaptation and pathogenicity but also

serves as a springboard for the development of innovative strategies

for combating pathogenic infections.
2 Function of bacterial MVs in
environmental adaptation

Bacterial MVs serve as pivotal mediators in a myriad of

physiological and adaptive processes, including nutrient

acquisition, intercellular communication, environmental stress

responses, and the regulation of antibiotic resistance.

Understanding the multifaceted roles of MVs in bacterial

environmental adaptation is crucial for elucidating their impact

on bacterial fitness and their contribution to microbial community

dynamics. This knowledge is indispensable for comprehending the

intricate interplay between bacteria and their environment,

providing insights that are fundamental for ecological and

clinical implications.
2.1 Nutrition acquisition

Bacterial MVs play an essential role in nutrient acquisition.

Numerous studies have demonstrated that MVs-mediated

substance transport represents a novel bacterial nutrient transfer

pathway, to be considered as an additional and independent

secretion system, Secretion system type zero (31). By releasing

enzymes, proteins, lipids, and other components, bacterial MVs

assist in acquiring nutrients from the external environment, thus

enhancing the efficiency of nutrient utilization by bacteria. Bacterial

MVs can clear and transport various nutrients, which participate in

different forms of transport and regulate physiological processes,

thereby modulating various bacterial physiological activities.

Bacterial MVs achieve this by carrying vesicles containing

nutrients, releasing these substances into the surrounding

microbial environment, or transferring them between cells. For

example, the MVs of Streptomyces coelicolor contain complex

metabolic products. The study encompasses aspects related to

antibiotics, vitamins, amino acids, proteins, and carbon

metabolism components, with a particular focus on the

identification of a total of 166 proteins within MVs involved in

cellular metabolism/differentiation, molecular processing/transport,

and stress response. These proteins play a crucial role in bacterial

morphological and physiological differentiation functions (32).

These proteins remain protected from degradation by MVs, even

after treatment with proteinase K, indicating their specific

localization within MVs. Another study discovered that the

Antarctic bacterium Pseudoalteromonas distincta ANT/505

possesses a polysaccharide degradation-associated g-protein and

can produce outer membrane vesicles (OMVs) and vesicle chains

(VCs) on both polysaccharide and non-polysaccharide carbon

sources. Under carbohydrate culture conditions, the cell surface
frontiersin.org
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expresses a higher level of specific proteins, and in all growth

conditions, proteins encoded by genomic regions associated with

polysaccharide degradation can be detected in MVs and VCs

samples (33). Polysaccharides, a major nutritional source for

bacteria, significantly impact various physiological activities in

bacteria. Bacteria utilize polysaccharide enzymes to break down

polysaccharides into monosaccharides, entering metabolic

pathways to provide energy support for bacterial growth and

metabolic activities. MVs derived from symbiotic bacteria are rich

in glycoside hydrolases, effectively degrading environmental

polysaccharides. Bacterial polysaccharide metabolism not only

influences their survival and adaptability but also allows them to

regulate and utilize different types of polysaccharides as energy and

carbon sources in response to environmental changes, thus

maintaining the necessary nutrients for growth and metabolism.

These MVs equipped with hydrolytic enzymes demonstrate the

ability to degrade polymeric substrates of various non-human

glycoside hydrolases, providing a source of cut polysaccharides

for utilization by members of the bacterial community, including

rod-shaped bacteria and other microbial constituents (34). Such

functionality of MVs contributes to the bacterial community within

the entire microbial population, revealing novel functions of

bacterial MVs.

The nutrients present in bacterial MVs can provide energy and

raw materials to neighboring bacteria, and to some extent, alter the

composition and metabolism of the surrounding bacterial

community. Furthermore, studies have demonstrated that the

bacterium Alteromonas macleodii KS62 can release a large

quantity of MVs containing hydrolytic enzymes into the

surrounding seawater environment (35). These MVs facilitate cell

wall hydrolysis and the utilization of red algal biomass, thereby

increasing the concentration of nutrients available for absorption

and utilization by the bacterial community in the matrix

environment, consequently converting the carbon-rich red algal

biomass into bioethanol. These findings suggest that bacterial MVs

can optimize growth conditions and adapt to the environment by

altering biomass and nutrient availability. Additionally, the nutrient

acquisition function of bacterial MVs relies not only on their

internal components but also on surface substances or receptors.

These surface elements interact with the surrounding environment

to procure nutrients (36). The role of MVs in acquiring iron is

particularly important, especially for hydrophobic iron carriers,

which are released and dispersed in the environment via MVs.

For instance, Mycobacterium tuberculosis increases the production

of MVs under iron limitation, and these MVs contain mycobactin,

which serves as an iron donor, supporting the replication of iron-

limited Mycobacteria (37). The P. aeruginosa gene tseF

synergistically interacts with the iron acquisition system, leading

to the encapsulation of the iron-bound Pseudomonas quinolone

signal (PQS) within bacterial MVs via H3-T6SS secretion (38).

Additionally, the interaction between TseF and the iron receptors

FptA and porin protein OprF promotes the transport of iron-

related MVs to bacterial cells. Cupriavidus necator secretes the

lipopolysaccharide-binding effector protein TeoL via T6SS1, which

binds preferentially to MVs in the extracellular environment

through a mechanism mediated by lipopolysaccharide carried by
Frontiers in Immunology 05
MVs (39). This lipopolysaccharide-mediated mechanism allows

bacteria to utilize MVs from different species, providing them

with an advantage in iron acquisition, inter-bacterial competition,

and gene transfer. Similarly, research has shown that bacterial MVs

of Dietzia sp. are involved in capturing and transporting

extracellular heme, particularly the recovery of heme from

environmental heme proteins. Under iron-limiting conditions,

MVs are enriched with heme-binding proteins, and the heme

carried by MVs can be utilized by various species (40). These

findings underscore the significant role of bacterial MVs in the

acquisition and exchange of nutrients among bacteria.

Additionally, bacterial MVs are involved in the competitive

processes between bacterial populations by fusing with the outer

membrane of other microorganisms, thereby killing other microbes

in the environment to acquire and compete for nutritional

components. For example, Lysobacter spp and Myxococcus

xanthus can dissolve certain Gram-negative bacteria by releasing

MVs containing active proteases, hydrolases, bacteriolytic enzymes

and other secondary metabolites (41, 42). Interestingly, in the

human gut, some coexisting Bacteroides release polysaccharide

breakdown products (PBPs), which cannot be consumed by other

species (receivers) that rely solely on polysaccharides for growth.

However, when b-glucosidases encapsulated and transported by

bacterial MVs are provided, the receivers are able to grow on

polysaccharides, allowing for the production of PBPs and the

simultaneous spatial separation of the receptor from the

producer, promoting growth (43) (Figure 3). This modus

operandi allows the receiver to conditionally surpass the

producer, indicating significant potential utility and value in

bacterial MVs and their content components in the realm of

bacterial nutrient acquisition.
2.2 Inter-cell communication

Bacterial MVs play a critical intermediary role in the

communication among cells. These MVs contain functional

components such as proteins, lipids, and nucleic acids, allowing

them to transfer signaling molecules among cells, thereby

influencing the behavior and physiological state of bacterial

communities. Bacterial MVs can act as messengers between

bacterial cells, transmitting information through carrying specific

bioactive molecules such as genetic material, metabolites, and

signaling molecules. The protective membrane structure of MVs

maintains the stability of these molecules, allowing them to

influence the activities and responses between bacteria and cells

through long-distance transmission. For example, studies have

observed that in the process of molecular transfer in

Acinetobacter baylyi, MVs containing DNA first rupture upon

contact with the bacteria’s outer membrane, followed by DNA

import mediated by type IV pili (44).Bacterial MVs have the

capacity to transport RNA into eukaryotic cells. The transported

RNA within bacterial MVs is delivered to the host cell, by

membrane fusion with the host cell membrane, to modulate gene

expression by targeting and regulating the translation or stability of

host cell mRNA (Figure 4). It has been demonstrated that
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exogenous sRNAs detected in periodontal pathogens MVs can

inhibit the expression of certain cytokines in Jurkat T cells (45),

and these MVs’ sRNAs can identify potential target genes related to

human immunity (46).

Different vesicles produced by bacterial strains typically contain

common substances but also exhibit significant strain-specific

differences. These differences are reflected in the varied contents of

bacterial MVs due to the growth stages of the strain. Analysis has

revealed substantial differences in the protein composition of

Helicobacter pylori MVs during bacterial growth, with MVs

containing a greater variety of proteins compared to their parent

(47). The expression levels of IL-8 also exhibit significant variations

throughout bacterial growth, with a noticeable increase in

immunogenicity across the entire growth process (48).

Consequently, the size, protein composition, and immunogenicity of

MVs generated at different growth stages are incomparable. Overall,

these findings underscore the importance of considering the bacterial

growth stage in the isolation of MVs. As a major autolysin of P.

aeruginosa PAO1, the protease is associated with the natural release of

MVs from the cell surface during bacterial growth. Its expression is

linked to the growth stage of the bacteria; in batch cultures, it is

predominantly detected in the mid-exponential growth phase,

whereas in synchronized cultures, it is mainly detectable during cell

elongation and division phases (49). Consequently, the growth stage of

the strain can influence the size, protein composition, and cargo

packaging of its MVs. This heterogeneity of content causes MVs

formed at different growth stages to transmit varied information to

recipients, resulting in diverse regulatory effects.
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Numerous bacteria utilize extracellular signaling molecules to

coordinate group behaviors through a process termed quorum

sensing (QS). However, some hydrophobic QS molecules are

unable to diffuse across the bacterial outer membrane. Studies

have shown that Vibrio harveyi sequesters the hydrophobic QS

molecule CAI-1 long chain ketone into bacterial MVs, releasing it

into the environment. This enables the stable distribution of CAI-

1 in aqueous environments over long distances through the

assistance of MVs (50). Similarly, Paracoccus denitrificans

packages the hydrophobic molecule C16-HSL into MVs,

facilitating its release and transfer in water environments to

other bacteria with distinct tendencies (51). It has been

demonstrated that in the absence of MVs, inter-bacterial

communication within bacterial communities is likely to be

suppressed. For instance, P. aeruginosa utilizes MVs to package

and transfer signaling molecules such as the Pseudomonas

quinolone signal (PQS) for intracommunity communication

(18). PQS stimulates MV production by inserting into the outer

membrane (19), and the concentration of PQS in MVs is high. A

minimal fusion of MVs with bacterial cells is sufficient to trigger

quorum sensing. Hydrophobic signaling molecules associated

with quorum sensing serve as cargo transport in MVs, a process

commonly observed in other microorganisms (50). Removal of

these MVs from the bacterial community disrupts intercellular

communication and suppresses PQS-controlled group behaviors.

This underscores the significance of vesicle cargo contents in

microbial populations and emphasizes the crucial role of MVs

in mediating intercellular communication among bacterial cells.
FIGURE 3

The interaction between bacterial MVs and bacteroides. (1) Primary Utilizer can decompose polysaccharide into PBPs by carbohydrate hydrolysis. (2)
Primary Utilizer can release MVs containing Glycoside Hydrolase into the extracellular space. (3) Inducible Recipient depends on the growth of
polysaccharide and cannot use PBPs. (4) The MVs containing Glycoside Hydrolase accepted by Inducible Recipient. (5) Inducible Recipient acquires
the ability to decompose polysaccharides and is able to produce PBPs.
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2.3 Environmental adaptation

Bacterial MVs play a vital role in environmental stress response.

When bacteria are exposed to environmental pressures such as

changes in temperature, pH, or oxygen concentration, they produce

a higher abundance and different types of MVs. This may be a

bacterial adaptation and regulatory strategy to cope with

environmental changes. Under environmental stress conditions,

the production and cargo of functional molecules in bacterial

MVs significantly change, thereby modulating bacterial

physiological status and adaptability. For instance, Staphylococcus

aureus exhibits higher MV production under oxidative stress, iron-

limited conditions, or sub-inhibitory concentrations of ethanol.

Conversely, hyperosmotic stress or sub-inhibitory concentrations

of erythromycin significantly reduce the production of S. aureus

MVs (52). P. aeruginosa can increase the production of MVs when

exposed to certain environmental stressors, while also regulating the

activity of the periplasmic protease MucD expression factor AlgU.

Although overexpression of AlgU is sufficient to induce MVs

production, strains lacking AlgU still exhibit increased MV

generation under stress conditions, suggesting that stress-induced

MVs production does not depend on the activation of AlgU (53).

The generation of vesicles occurs in infected tissues and is easily

influenced by environmental factors (54), typically driven by

phospholipid accumulation in the outer membrane and regulated

by the phospholipid transporter protein VacJ/Yrb. In Haemophilus

influenzae and V. cholerae, the absence or inhibition of VacJ/Yrb

can increase MVs production, leading to the enrichment of
Frontiers in Immunology 07
phospholipids and certain fatty acids in these MVs, indicating

that MV production is related to the regulation of the VacJ/Yrb

ABC transport system and iron-deficiency status (16). Studies have

demonstrated that VacJ/Yrb is suppressed in the early stages of

mammalian infection, which stimulates the rapid formation of MVs

to facilitate bacterial surface exchange and adaptation to the host

environment (55).

Bacteria can also utilize MVs to exchange cell surface

components, enabling them to rapidly sense and respond to

environments with nutrient deficiencies. For example, the

Pseudomonas putida DOT-T1E strain releases MVs within ten

minutes after exposure to stressors, leading to a significant

increase in the hydrophobicity of the cell surface (56). This assists

in regulating bacterial adaptation to the host environment. Such

surface changes can also facilitate effective processing of

carbohydrates, reducing the loss of substrates and enzymes due to

diffusion (33). Furthermore, Vibrio fischeri, when grown under

acidic pH conditions, upregulates the transcription of its major

outer membrane protein OmpU, which is controlled in MVs based

on nutritional conditions. Upon encountering acidic pH in the host,

the MVs of Vibrio fischeri serve as effective stimulatory factors for

symbiotic host development in an OmpU-dependent manner (57).

In addition, the psychrophilic Gram-negative bacterium

Pseudoalteromonas antarctica NF3, isolated from Antarctica, can

amass substantial quantities of high-protein extracellular polymeric

substances (EPS), comprising capsule polymers and abundant MVs

with the capacity to transport proteins into the external

environment. This characteristic plays a crucial role in the
FIGURE 4

The interaction between bacterial MVs and RNA on gene expression in target cells. The RNA carried by MVs must enter the cytoplasm to exert an
influence on gene expression in target cells, a process achieved through fusion with the target cell membrane. The concerted action of exogenous
RNA carried by MVs and endogenous RNA within the nucleus involves interactions with target cell factors. This interaction operates at the levels of
messenger RNA and sRNA, impacting transcriptional regulation, translational regulation, target cell mRNA processing, and microbial protein
translation, so as to realize the process of exogenous RNA regulating host gene expression.
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bacterium’s survival under the extreme low-temperature conditions

prevalent in its habitat (58). Significantly, these studies underscore

the essential role of MVs in bacterial adaptation to

extreme conditions.
2.4 Antibiotic correlation

Numerous investigations have substantiated the integral role of

extracellular vesicles (MVs) in modulating bacterial physiological

processes, particularly in the context of antibiotics. This

involvement manifests predominantly in two facets: shielding

bacteria from antibiotic-induced damage and utilizing MVs as

vehicles for antibiotic secretion, thereby contributing to inter-

bacterial competitive dynamics. Bacterial MVs play a critical role

in mediating the resistance of bacterial communities to antibiotics.

For example, MVs of the Antarctic bacterium Pseudomonas

fluorescens offer protection to the producer from the effects of

membrane-active antibiotics, such as colistin and melittin, with

their membrane and protein packaging closely resembling those of

the parent bacteria (59). The protective mechanism employed by

MVs shields bacteria from the impact of membrane-active

antibiotics, albeit ineffective against erythromycin. MVs can

reduce the susceptibility of bacteria to antibiotics by secreting

antibiotic-degrading enzymes or by regulating the permeability of

bacterial membranes, thus providing bacteria with a certain level of

resistance to antibiotics. studies have shown that bacterial MVs of E.

coli can secrete membrane-anchored b-lactamase (NDM-1) (60).

Membrane anchoring facilitates the secretion of NDM-1 enzyme in

bacterial MVs and enhances its stability. MVs containing NDM-1

can provide protection to nearby bacterial populations, shielding

them from the effects of other lethal antibiotics. The complex

structure and composition of MVs enable them to modulate their

action on bacteria by adsorbing, encapsulating, or binding

antibiotics. However, the protective effects of bacterial MVs are

not universal for all antibiotics, such as ciprofloxacin, erythromycin,

and trimethoprim, among others. This suggests that MVs may only

protect bacteria from antibiotics targeting the bacterial membrane.

This process is likely achieved through membrane encapsulation

and sequestration of antibiotics, thereby reducing the damage

inflicted by antibiotics on bacteria (61).

When bacteria are challenged with low doses of antibiotics, the

production and transportation of MVs are significantly enhanced.

This enhanced vesicle movement is correlated with a decrease in the

density of surface appendages responsive to antibiotics, independently

of cell aggregation characteristics (62). Bacterial MVs can interact with

antibiotics through specific receptors on the membrane, thereby

reducing the antibiotic concentration and easing antibiotic pressure

on the bacteria (63). Research indicates that following short-term

exposure to antibiotics, the quantity of bacterial MVs increases,

suggesting potential sequestration of antibiotics within the MVs.

Subsequent investigations revealed that following co-incubation of

MVs with animal cells, antibiotics were detectable within the
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cytoplasm of the animal cells (64). Interestingly, some studies have

also found that there is antibiotic resistance transfer via MVs between

bacteria. In Acinetobacter baumannii, the TIG-R EV protein carried

by MVs plays a pivotal role in the transfer of tigecycline (TIG)

resistance. Outer membrane vesicles selectively transfer TIG

resistance to neighboring bacterial cells, resulting in neighboring

bacteria developing highly selective TIG resistance, with MVs being

more likely to induce TIG resistance compared to antibiotics (65)

(Figure 5). These findings are essential for comprehending the role of

MVs in the development and transmission of antibiotic resistance in

diverse bacterial strains. This not only suggests that released bacterial

MVs can serve as a mechanism for extruding antibiotics, but also as a

means for transmembrane transport, allowing antibiotics that are

typically impermeable to cell membranes to be delivered into cells,

thereby exerting their effects across cell membranes.

The role of MVs is also reflected in participating in the

competition among bacteria. It has been demonstrated that

bacteria are capable of secreting MVs carrying antimicrobial

components. For example, Chromobacterium violaceum utilizes

bacterial MVs to solubilize and transport violacein to other

microorganisms (66). Pyocyanin, as an active antibiotic

component within MVs, is a hydrophobic indole with known

antibacterial activity against other microorganisms. By carrying

antibiotics, MVs inhibit the growth of other microbial

communities in the environment, granting the bacterial

population a competitive edge and enhancing the inter-species

competitive ability of specific microbial populations. Additionally,

MVs of Burkholderia thailandensis contain hydroxy-alkyl

quinolines (HAQs) and long-chain rhamnolipids, among other

ant imicrobia l compounds . These compounds exhibi t

antimicrobial and anti-biofilm properties, capable of inhibiting

the growth of drug-resistant bacteria and fungi (67). Some

bacterial MVs also participate in bacterial antibiotic resistance

regulation through active substances such as hydrolytic enzymes.

For example, P. aeruginosa can secrete two types of MVs containing

peptidoglycan hydrolase (autolysin), the expression of which is

growth-phase dependent. These enzymes can hydrolyze and

separate both Gram-positive and Gram-negative cell capsules, as

well as several types of glycine peptides. Research has shown that n-

MVs can kill P. aeruginosa cultures with permeability-resistant to

gentamicin, indicating fusion of n-MVs with the outer membrane,

releasing autolysin into the periplasm, where they degrade

peptidoglycan and dissolve the cells. On the other hand, g-MVs

release gentamicin and autolysin into resistant cells, inhibiting the

growth of various strains including opportunistic pathogens, Gram-

positive and Gram-negative bacteria. This inhibitory effect is caused

by certain substances within the MVs, rather than just physical

contact (68). In summary, bacterial MVs is closely related to

antibiotics in the regulation of bacterial physiological activities

and plays a variety of functions in the interaction between

bacteria and antibiotics. These findings provide new insights for

the study of antibiotic resistance and the application of MVs in

antibiotic treatment.
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3 Function of bacterial MVs in
pathogenic process

Bacterial MVs have emerged as essential mediators in a variety

of pathogenic mechanisms, including the release of virulence

factors, invasion of host cells, formation of biofilms, and

modulation of host immune responses. Understanding the

multifaceted functions of bacterial MVs in pathogenesis is of

paramount importance in deciphering pathogenicity, host–

pathogen interactions, and the development of novel therapeutic

strategies. Thus, elucidating the intricate roles of MVs in bacterial

pathogenicity will undoubtedly provide valuable insights for both

fundamental research and clinical applications.
3.1 Release virulence factor

During the pathogenic infection process in bacteria, bacterial

MVs can transfer virulence factors, such as toxins, adhesins,

degradative enzymes, and effector molecules, to host cells,

encapsulating these factors within the MVs. For example, gingival

protease serves as the primary virulence factor in P. gingivalis,

leading to the impairment of host cell function (14). Vibrio

tasmaniensis LGP32’s virulence factor, the caseinase/gelatinase

(Vsp), is specifically secreted through enclosed MVs, participating

in delivering the virulent phenotype to host immune cells and

providing protection against antimicrobial peptides (69). MVs have

a highly protective effect on their contents, ensuring their protection
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from degradation. For instance, V. cholerae’s MVs can effectively

deliver biologically active cholera toxin to intestinal epithelial cells,

protecting the toxin from degradation by intestinal proteases and

delivering active cholera toxin to host cells (70). This indicates that

the protection provided by MVs allows these toxins to remain active

in the intestine for a longer period, increasing their stability and

prolonging their activity.

MVs are typically released into the immediate environment of

bacteria or into host cells to exert their effects. For example, it has

been confirmed that all C-terminal domain (CTD) proteins and

other virulence factors are enriched in MVs, demonstrating that P.

gingivalis can selectively concentrate numerous virulence factors

within MVs and release them into the environment (71). The

secretion of virulence factors by bacteria does not involve the

release of naked proteins into the surrounding environment.

Instead, it relies on the interaction of specific substances or

receptors on MVs or host cell surfaces, selectively targeting the

delivery of virulence factors to host cells. For instance, the

cholesterol-dependent fusion of Staphylococcus aureus MVs with

the host cell membrane is a pathway for the targeted delivery of the

key virulence factor alpha-toxin to human cells (72). a-Toxin is a

protein associated with MVs responsible for red blood cell lysis and

is closely related to MVs isolated from the Staphylococcus aureus

strain 8325-4. Enterotoxigenic E. coli (ETEC strains), which

produce enterotoxins, are commonly associated with diarrheal

diseases. Acting as specific targeted transporters, MVs mediate

the entry of active enterotoxins and other bacterial envelope

components into host cells (73). Several secreted toxins, including

heat-labile enterotoxin and cytotoxic protein cytolysin A (ClyA),
FIGURE 5

The interaction between MVs and antibiotic resistance. TIG-R EV protein is the main factor of antibiotic resistance transfer of TIG. The TIG-R EV
protein carried by the MVs of the TIG-resistant carrier can be selectively transferred to the non-resistant recipient, and the non-resistant recipient
produces TIG resistance after receiving the TIG-R EV protein carried by the MVs. TIG-resistant bacteria became TIG-susceptible bacteria under the
induction of MVs carrying TIG-R EV protein.
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have been detected in their MVs (74, 75). Additionally, their MVs

contain a biologically active substance capable of calcium-

dependent binding to red blood cells, forming a biologically

potent form of RTX toxin associated with MVs, thereby

enhancing their potential against target cells (76). P. aeruginosa

secretes MVs that, through fusion with lipid rafts in the host

membrane, directly transport various virulence factors (including

b-lactamase, alkaline phosphatase, hemolytic phospholipase C, and

Cif) into the host cell cytoplasm via N-WASP-mediated actin

transport. These factors rapidly distribute within the host to

specific target cell locations, exerting their effects on the host (77).

This suggests a possible mechanism for the release of virulence

factors by P. aeruginosa, Legionella pneumophila, and Streptomyces

through MVs (77–79).

In the course of bacterial pathogenic infections, MVs serve as

carriers to transport a diverse and intricate set of virulence factors,

exerting a multitude of functions that can directly or indirectly

modulate various complex physiological processes within host cells.

For example, protein group analysis of M. tuberculosis MVs

revealed the presence of various virulence factors, including FadA,

MORN2, and YadA (80). Acinetobacter baumannii exploits MVs,

which contain outer membrane proteins, to enhance bacterial

pathogenesis and dissemination. Specifically, MVs carrying

OmpA, upon internalization by host cells, trigger activation of the

host GTPase dynamin-related protein 1 (DRP1). This OmpA-

induced activation of DRP1 leads to increased accumulation on

mitochondria, resulting in mitochondrial fragmentation,

heightened reactive oxygen species (ROS) production, and

ultimately, cell death (81). Furthermore, MVs from P. gingivalis

carrying proteins with OmpA peptidoglycan-binding motifs and

TonB-dependent receptors preferentially adhere to the cell

membrane surface. These findings underscore the diverse and

profound impact of MVs on bacterial pathogenesis and host

interactions (71). During the infection process, Yersinia pestis

releases membrane vesicles (MVs) which increase in response to

membrane stress and mutations in RseA, Hfq, and the major Braun

lipoprotein (Lpp). These MVs contain the catalytically active Pla,

which promotes plasminogen activation and a2-antiplasmin

degradation (82). Moreover, MVs can bind to extracellular matrix

components such as fibronectin and laminin, and it is hypothesized

that the diffusion process of Pla through MVs may influence

infection outcomes through interactions with Pla substrates such

as plasminogen and Fas ligand. These findings highlight the

important role of bacterial MVs in the delivery of virulence

factors and provide a new perspective for understanding the

mechanisms of pathogenic microbe-host interactions.
3.2 Host cell invasion

Bacterial secreted MVs contain a variety of factors that can

assist in bacterial invasion of the host and participate in the

infection process, serving as carriers that enter host cells to exert

their effects. For example, the MVs of Edwardsiella piscicida, acting

as carriers for hemolysins, can induce caspase-dependent apoptotic-

like cell death in fish non-phagocytic cells during infection,
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ultimately inducing intestinal inflammation to promote bacterial

colonization within the host (83). The hemolysin primarily binds to

bacterial MVs and is internalized into fish cells through dynamin-

dependent endocytosis, subsequently inducing pyroptotic cell

death. Additionally, MVs secreted by Pseudoalteromonas sp.

strain KS62 carry active K-carrageenase, which can successfully

degrade the main polysaccharides of red algae cell walls such as

kappa-carrageenan, enabling bacteria to invade and colonize algal

hosts and thereby establish a saprophytic mode of life (35). The

MVs harbor invasive protein antigens, such as IpaB, IpaC, and

IpaD, which have been identified in Acinetobacter baumannii MVs

(65). Their double-layered surface is comprised of LPS and Ipa

proteins, which are instrumental in facilitating MVs’ invasion of

host cells through membrane fusion. These MVs are readily

internalized by non-phagocytic membranes and subsequently

deliver their contents into the cytoplasm of host tissues.

Additionally, MVs released by B. subtilis have been shown to

transfer the virus receptor YueB through membrane fusion,

thereby enhancing the invasion and adsorption of the

bacteriophage SPP1 onto non-host species (84). Studies have

demonstrated that this molecular exchange is mediated by MVs, a

phenomenon known as Acquiring Sensitivity to Exogenous DNA

(ASEN). MVs secreted by the Antarctic halophilic archaeon

Halorubrum lacusprofundi are capable of infecting plasmid-free

strains and subsequently acquiring the capacity to produce vesicles

containing plasmids (85). Moreover, proteins encoded by the

archaeal plasmid pR1SE have been detected within regularly-

shaped membrane vesicles that encapsulate plasmid DNA,

potentially integrating and replicating as part of the host genome.

These plasmids bind to host DNA fragments or undergo partial

degradation to form MVs, ultimately transferring to new hosts.

MVs can also interact with specific host cells through the

substances or receptors on their membrane surface, participating

in the process of host invasion. For example, MVs from

oligodendrocytes have been found to play a functional role in the

transport of endocannabinoids. The MVs’ surface carries N-

acylethanolamine (N-AEA), which can stimulate the type 1

cannabinoid receptor (CB1) and inhibit presynaptic transmission

to GABAergic neurons (86). Furthermore, symbiotic gut bacteria

have evolved to transfer secreted effector molecules in the form of

MVs, selectively targeting parasites. Under strong induction by host

serum, the Serratia marcescens Su_YN1 releases MVs and the anti-

malarial protein AmLip into the mosquito gut (87). AmLip is first

secreted through T1SS into the extracellular space, then

preferentially attaches to MVs selectively targeting malaria

parasites, ultimately invading and killing them. Research has

shown that the invasion of MVs significantly affects the induction

of organ pathological changes, inflammatory infiltration, the

expression of inflammatory cytokines, and serum organ damage

biomarkers. During severe heatstroke, MVs can induce acute organ

damage, with a significant increase in the MVs produced by the gut

microbiota of heatstroke mice. These MVs massively invade various

organs in the mice, particularly accumulating significantly in the

liver and lungs, leading to significant organ pathology changes,

increased infiltration of inflammatory cells (macrophages and

neutrophils), expression of inflammatory cytokines (TNF-a, IL-
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1b, IL-6), and serum biomarkers of organ damage. Conversely,

inhibiting endogenous MVs can alleviate the organ damage caused

by heatstroke (88) (Figure 6). Bacterial MVs can also achieve cell-

specific targeting and kill cancer cells by releasing small interfering

RNA (siRNA) targeted at tubulin-associated proteins. Using

modified E. coli strains with reduced endotoxin effects on human

cells, MVs displaying human epidermal growth factor receptor 2

(HER2)-specific core-structured proteins were produced as

targeting ligands in their membrane. These ligands, delivered

through systemically injected MV-packaged siRNA, resulted in

targeted gene silencing, successfully invading tumor cells in

animal models, leading to a significant reversal of tumor growth

(89). These findings reveal the complex role of bacterial MVs in

regulating the infection process, indicating the potential value of

MVs in the invasion of host cells and providing a novel perspective

for understanding the pathogenic mechanisms of microorganisms.
3.3 Biofilm formation

Bacteria can thrive in natural environments through their

ability to grow in an attached manner. The formation of a biofilm

- a community of bacterial cells enveloped in a self-produced

extracellular matrix - serves to protect the cells from external

factors such as antibiotics and host immune responses. Bacterial

MVs can provide essential components required to build the

biofilm by carrying bioactive molecules such as proteins,

phospholipids, and polysaccharides, directly contributing to the

formation and modification of bacterial biofilms. Biofilms are well-
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structured communities, and their formation process includes

initial bacterial adhesion, biofilm development, and mature

diffusion. Bacterial MVs can serve as scaffolds for bacterial

adhesion and aggregation and can deliver key molecules such as

bacterial surface structure proteins and outer membrane vesicles to

the external surface of bacterial cells. Early studies have shown that

specific proteins in the MVs released by the Helicobacter pylori

strain TK1402 can participate in bacterial aggregation and biofilm

formation, and the addition of these MVs can significantly increase

the formation of the biofilm in a dose-dependent manner (90).

Furthermore, a similar trend has been observed in P. aeruginosa

strains. The components of the biofilm formed by P. aeruginosa

strains include polysaccharides containing GlcNAc, extracellular

nucleic acids, and proteins. Experimental evidence has shown that

the amount of biofilm formation increases with the addition of

purified MVs, particularly in the case of an increase in the amounts

of eDNAs and GlcNAc, which are believed to constitute the

polysaccharides of the biofilm, following the addition of purified

MVs (91). This suggests that the formation of biofilms in P.

aeruginosa strains is significantly influenced by the release of

MVs. The secretion of MVs by bacteria is closely related to the

physiological status and environmental stimuli affecting biofilm

formation. The generation of MVs has been established as an

independent bacterial stress response pathway. When bacteria

encounter environmental stress, such as changes in the

environment experienced during the colonization of host tissues,

this pathway may be activated (92). For instance, in conditions

where the toxic levels of long-chain alcohols are present, induced

osmotic pressure changes brought about by NaCl, the presence of
FIGURE 6

The interaction between MVs and organ injury in mice. MVs derived from mouse Intestine microorganisms of Suffer Heatstroke, after injected into
mice, caused pathological changes of multiple organs, including the damage of liver, kidney, lungs, heart and intent, increased inflammatory cell
infiltration and increased inflammatory cytokines such as IL-1b, IL-6 and TNF-a.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1371317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiu et al. 10.3389/fimmu.2024.1371317
EDTA, and subsequent heat shock, cells of the P. aeruginosa strain

DOT-T1E release MVs within ten minutes under stress conditions,

leading to a significantly enhanced biofilm formation in this

scenario (56). In the initial stages of biofilm formation, the

extracellular matrix plays a crucial role in bacterial adhesion to

surfaces and cell-to-cell interactions (93). Studies have indicated

that MVs are only detected within the matrix of the biofilm formed

by Helicobacter pylori strain TK1402 (90), suggesting that MVs play

a significant role in the formation of the extracellular matrix in the

biofilm of this bacterial strain. The biofilm matrix serves as the

chemical, structural, and functional foundation of the biofilm, and

matrix components derived from biofilm such as MVs and DNA

exhibit concentration, pH, and cation-dependent interactions (94).

The binding of MVs to DNA impacts the surface properties of MVs,

thus influencing the reactivity and efficacy of the interactions of the

matrix polymers and other components.

Additionally, research has shown that MVs secreted by certain

bacteria can inhibit the biofilm formation of other bacteria,

displaying a competitive mechanism. For instance, MVs produced

by P. aeruginosa contain a quorum-sensing signal, the Pseudomonas

quinolone signal (PQS), which significantly inhibits the biofilm

formation of Streptococcus pneumoniae, without affecting its cell

growth (95). In some bacteria, MVs also have a function in

regulating intracellular and extracellular enzymes and biofilm

assembly. Under the mediation of MVs, the structure and

composition of extracellular polymeric substances in P.

aeruginosa undergo significant changes due to PQS regulation

mediated by MVs. MV-mediated PQS promotes the growth of

the biofilm, causing cells in the biofilm to elongate, deform, and
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make contact with surrounding cells in a bridging manner, with

extracellular proteins rather than polysaccharides playing a primary

role in this process. In composite biofilms formed by P. aeruginosa

and Staphylococcus aureus, the mediating role of MVs enhances the

inhibitory effect of PQS on the growth of S. aureus, resulting in

reduced production of extracellular polysaccharides by both

bacteria (96) (Figure 7). These changes also lead to variations in

the richness, diversity, and structure of microbial communities in

biofilms formed by activated sludge. Therefore, MVs provide

components of the extracellular matrix and signaling molecules

that promote biofilm formation and maturation in the process of

bacterial biofilm formation, playing a crucial role in mediating

interactions between bacterial cells and demonstrating their key

function in the formation of bacterial biofilms.
3.4 Immunoregulation

MVs are rich in various bioactive molecules, that regulate host

immune responses. For instance, the MVs of P. aeruginosa PA14

contain abundant sRNA that is differentially packaged and can

dampen host immune responses. Specifically, the sRNA52320

significantly reduced the LPS-induced and MVs-induced IL-8

secretion in primary human airway epithelial cells after transfer,

and also markedly attenuated the MVs-induced KC cytokine

secretion and neutrophil infiltration in mouse lungs (97).

Furthermore, MVs can spread through blood flow and the

lymphatic system to other tissues and organs, interacting with the

host’s immune cells such as lymphocytes and macrophages, and
FIGURE 7

The interaction between MVs and biofilm formation. PQS mediated by Pseudomonas aeruginosa MVs causes the cells in the biofilm to be stretched,
deformed and contacted with the surrounding cells, which promotes the formation of its own biofilm. In the composite biofilm formed by
Pseudomonas aeruginosa and Staphylococcus aureus, the mediation of MVs enhanced the inhibitory effect of PQS on the growth and biofilm
formation of Staphylococcus aureus.
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regulating the host’s immune response, cell activation, and

inflammatory reaction. The MVs of Burkholderia cepacia ATCC

7966TM can induce the overexpression of proinflammatory

cytokines, promoting the activation and apoptosis of

mononuclear lymphocytes (98). On the other hand, MVs from

Fusobacterium nucleatum can polarize macrophages toward an M1-

like phenotype in a murine model of periodontal disease, promoting

the development of periodontitis (99). During its growth,

pathogenic bacteria continuously release MVs containing toxic

bacterial components, which regulate the degree of inflammatory

response by controlling the functions of immune and non-immune

cells in the tissue (100). MVs derived from Helicobacter pylori

carries virulence factors such as cytotoxin-related gene A (CagA)

and vacuolated cytotoxin A (VacA), and it has been proved that

gastric administration of MVs from Helicobacter pylori can

promote atherosclerosis by inducing pro-inflammatory reaction

and plaque formation (101).

Furthermore, Neisseria gonorrhoeae depends on the bacterial

outer membrane porin protein (PorB) to evade innate immunity

and colonize the mucosa of the reproductive tract. This process

involves Neisseria gonorrhoeae using MVs to target PorB to the host

mitochondria, promoting infection and modulating the cell

apoptosis pathway to induce macrophage apoptosis, thus affecting

innate immunity (102). Research also confirms that macrophage

responses to the protein composition of MVs require adjuvant-like

activity from LPS to trigger strain-specific responses (103). Protease

treatment that removes proteins from the vesicle surface leads to

reduced production of interleukin-6 and tumor necrosis factor-a,
indicating that the production of these specific cytokines is related

to macrophage recognition of MV-associated proteins.

Research has shown that MVs can induce innate immune

responses in cells and promote the production of pro-

inflammatory cytokines, thereby enhancing the immune response.

For example, the MVs of Klebsiella pneumoniae ATCC 13883 are

capable of inducing the expression of pro-inflammatory cytokine

genes such as interleukin (IL)-1b and IL-8 in epithelial cells during

in vitro cultivation, without inhibiting cell growth or inducing cell

death (104). MVs can also influence the signal transduction

pathways and immune responses of recipient cells, affecting their

function and expression. Furthermore, MVs from P. gingivalis can

induce strong TLR2 and TLR4-specific responses as well as

moderate responses in recipient cells, reflecting their action on

different pattern recognition receptor responses (105). MVs from

Burkholderia cenocepacia stimulate the production of IL-8 and

TNF, and their lipopolysaccharides can further activate immune

cells to trigger an inflammatory response by binding to immune

receptors such as Toll-like receptor-4 (TLR-4) (106). It has been

demonstrated that bacterial MVs have a significant ability to

effectively induce long-term anti-tumor immune responses.

Modified MVs from E. coli W3110 can specifically target

accumulation in tumor tissues, subsequently inducing the

production of the anti-tumor cytokines CXCL10 and interferon-g,
completely eradicating established tumors without significant

adverse reactions. This anti-tumor effect depends on interferon-g,
as interferon-g-deficient mice do not induce this MV-mediated

immune response (107). These findings demonstrate the potential
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value of MVs in modulating the immune regulation process

through their transport to recipient cells and targeted regulation

of various physiological processes. Therefore, the study of the

mechanisms underlying MV regulation in immunomodulation

provides new insights for the development of novel MV-based

immunotherapeutic strategies.
4 Methods for bacterial MVs
extraction and analysis

The isolation, quantification, and characterization of bacterial

MVs are essential for understanding their role in environmental

adaptation and pathogenic processes. Various methods have been

established for the extraction and analysis of bacterial MVs, each

with its advantages and limitations.

Ultracentrifugation stands as the most widely used method for

isolating bacterial MVs. By subjecting bacterial culture supernatant

or vesicle-rich fractions to high-speed centrifugation, MVs are

precipitated. However, ultracentrifugation does not completely

separate membrane fragments from protein aggregates. To

address this issue, a combination of density gradient with

ultracentrifugation is commonly employed for more effective MV

extraction (21, 108, 109). The filtration method involves the use of

filters with varying pore sizes to separate bacterial MVs from the

cells based on their size and charge. Typically, the upper layer of the

bacterial culture is filtered through membranes with pore sizes

ranging from 0.22 to 0.45 mm to extract MVs. Subsequently, the

bacterial supernatant is passed through a membrane with a specific

molecular weight cutoff, typically 50–100 kDa, to remove most of

the proteins unrelated to MVs (110, 111). The precipitation method

involves the addition of various salts, polymers, or solvents to the

bacterial culture supernatant or vesicle-rich fractions to induce the

precipitation of bacterial MVs, providing an alternative to the

ultracentrifugation and filtration methods. Electron microscopy is

utilized to observe the morphology and structure of bacterial MVs,

and MVs labeled with fluorescent dyes used to study its biological

distribution (73), facilitating analysis of their size distribution and

cargo composition at a visual level. Proteomics and Lipidomics

methods provide insights into the biogenesis and composition

classification of bacterial MVs by describing their protein and

lipid content, shedding light on the mechanisms underlying their

roles in environmental adaptation and pathogenic processes.

Although significant progress has been made in the study of

bacterial MVs, research in this area presents potential challenges

due to the complexity of bacterial MVs. Addressing factors such as

heterogeneity, contamination, standardization, and functionality is

crucial to ensure the reliability and applicability of findings from

bacterial MV studies. Firstly, regarding heterogeneity, bacterial

membrane vesicles represent a highly heterogeneous population,

varying greatly in diameter, content, and membrane composition,

requiring complex experimental analyses and theoretical

interpretation. Secondly, concerning contamination, bacterial

MVs are susceptible to contamination from other extracellular

structures such as exosomes, outer membrane vesicles, and

protein aggregates, significantly affecting their purity and
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specificity. Next, concerning standardization, the lack of

standardized protocols for the isolation, quantification, and

characterization of bacterial MVs may lead to variability and

inconsistency in results. Finally, regarding functionality, the

functional relevance of bacterial MVs in bacterial physiology and

pathogenic mechanisms requires better scientific understanding

and explanation, as well as more comprehensive characterization

of their effects on host cells and tissues. While it is inevitable to

explore the role of MVs in the virulence mechanisms of bacteria, the

potential obstacles and limitations of the methods and techniques

employed in MV-related functional studies have a significant

impact on the interpretation of related results (112).

In current research, most MVs are cultured under standard

laboratory conditions, including optimal temperature, air

conditions, and abundant nutrient components, and then isolated

and purified from large volumes of bacterial culture. Prior to

experimental investigations, MVs are typically subjected to

thorough concentration and purification validation. However,

these methods and steps may overlook the specificity of MV

production under microbial stress or stimuli in the natural

microbial environment. In the natural environment, bacteria may

experience environmental stimuli and stress, differing from bacteria

under standard laboratory conditions. Therefore, there may be

significant differences in the secretion concentration and

composition of MVs produced under laboratory standard culture

conditions compared to those produced under microbial stress in

the natural environment. Consequently, adopting additional

purification methods or appropriate parameter controls to

consciously exclude the impact of contaminants other than MVs

is crucial for the functional analysis of MVs.
5 Summary and prospect

This article provides an overview of the crucial role and current

research status of bacterial membrane vesicles (MVs) in

environmental adaptation and pathogenic processes (Table 1).

Recent studies have clearly indicated that many pathogenic

microorganisms release significant amounts of virulence factors

through MVs, allowing sustained effects without direct contact with

host cells (113–116). This characteristic signifies the importance of

bacterial MVs in the environmental adaptation and pathogenic

processes of pathogenic microorganisms. Bacterial MVs constitute a

widely distributed secretion system in Gram-negative bacteria.

Research on MVs reveals how bacteria interact with host cells

through this secretion pathway, introducing new mechanisms for

enhancing bacterial pathogenicity (117). Several studies suggest that

the components constituting MVs align with the membrane from

which they originate. Mutations in bacterial membrane structure

may affect stability and regulate the biological processes of MVs,

although mutant strains incapable of producing MVs have not been

discovered to date.

We review various established methods for extracting and

analyzing bacterial MVs, emphasizing the indispensability of

isolating, quantifying, and characterizing MVs for studying bacterial

virulence. Despite significant progress in MV research, challenges
Frontiers in Immunology 14
TABLE 1 Function of bacteria MVs in environmental adaptation and
pathogenic process.

Bacteria
MVs-
related

Substances

Function
of MVs

Refs

Acinetobacter
baumannii

•TIG-R EV protein
•Tigecycline
resistance transfer

(65)•Invasive protein
antigens:IpaB/
IpaC/IpaD

•Invade the host
by
membrane fusion

•Outer membrane
proteins: OmpA

•Trigger
activation of the
host GTPase
dynamin-related
protein 1 (DRP1)

(81)

Acinetobacter baylyi
•Anti-double-
stranded DNA
(anti-dsDNA)

•Horizontal gene
transfer (HGT)

(44)

Alteromonas macleodii •Hydrolytic enzymes
•Facilitate cell
wall hydrolysis

(36)

Bacillus subtilis
•Virus
receptor YueB

•Enhancing the
invasion and
adsorption of the
bacteriophage
SPP1

(84)

Burkholderia
cenocepacia

•Lipopolysaccharides
•Trigger
inflammatory
response

(106)

Burkholderia cepacia

•211 unique
proteins
•Haemolysin Ahh1
•RtxA toxin
•Extracellular lipase
•HcpA protein

•Induce the
overexpression of
proinflammatory
cytokines

(98)

Burkholderia
thailandensis

•Hydroxy-alkyl
quinolines (HAQs)
•Long-
chain rhamnolipids

•Exhibit
antimicrobial and
anti-biofilm
properties
•Inhibiting the
growth of drug-
resistant bacteria
and fungi

(67)

Chromobacterium
violaceum

•Violacein •Antibiotic action (66)

Cupriavidus necator
•Lipopolysaccharide
(LPS)

•Binding effector
protein TeoL

(39)

Dietzia sp.
•Heme-
binding proteins

•Capture and
transport heme

(40)

Edwardsiella piscicida •Hemolysins

•Induce caspase-
dependent
apoptotic-like
cell death

(83)

Escherichia coli

•b-lactamase
(NDM-1)

•Provide
protection to
nearby
bacterial
populations

(60)

•Heat‐
labile Enterotoxins

•Mediate entry of
active enterotoxin

(72)

(Continued)
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TABLE 1 Continued

Bacteria
MVs-
related

Substances

Function
of MVs

Refs

and other
bacterial
envelope
components

•Cytotoxic protein
cytolysin A (ClyA)

•Secreted toxins
(74,
75)

•RTX toxin

•Calcium-
dependent
binding to red
blood cells

(76)

•Anti-tumor
cytokines CXCL10
•Interferon-g

•Antitumor effect (107)

Fusobacterium
nucleatum

•Toxic
bacterial
components

•Polarize
macrophages
toward an M1-
like phenotype

(99)

Halorubrum
lacusprofundi

•PR1SE
encodes proteins

•Infecting
plasmid-free
strains
•Quiring the
capacity to
produce plasmids

(85)

Helicobacter pylori

•Protein Formation
•The difference is
significant with
the growth stage.

(47)

•Specific proteins
•Bacterial
aggregation and
biofilm formation

(90)

•Cytotoxin-related
gene A (CagA)
•Vacuolated
cytotoxin A (VacA)

•Promote
atherosclerosis by
inducing pro-
inflammatory
reaction
and
plaque formation

(101)

Klebsiella pneumoniae
•159
different proteins

•Inducing the
expression of pro-
inflammatory
cytokine genes

(104)

Lysobacter spp
•Bacteriolytic
enzymes

•Degrade Gram‐

positive bacteria
(41)

Mycobacterium
tuberculosis

•Mycobactin
•Assist in
iron intake

(37)

•FadA
•MORN2
•YadA

•Transport
virulence factors

(80)

Myxococcus xanthus

•Active proteases
•Phosphatases
•Hydrolases
secondary
metabolites.

•Kill Escherichia
coli cells

(42)

Neisseria gonorrhoeae
•Outer membrane
porin protein:PorB

•Promoting
infection and
modulating the

(102)

(Continued)
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TABLE 1 Continued

Bacteria
MVs-
related

Substances

Function
of MVs

Refs

cell
apoptosis pathway

Paracoccus denitrificans
•N-Hexadecanoyl-L-
hoMoserine lactone
(C16-HSL)

•Inter-
bacterial
communication

(51)

Porphyromonas
gingivalis

•Gingival protease
•Cause damage to
the function of
host cells

(14)

•C-terminal domain
(CTD) proteins
•OmpA
peptidoglycan-
binding motifs
•TonB-
dependent receptors

•Transport
virulence factors

(71)

•Proteinfatty acids
•Lipopolysaccharide
•Peptidoglycan
fragments
•Nucleic acids

•Induce strong
TLR2 and TLR4-
specific responses

(105)

Pseudoalteromonas
antarctica

•Extracellu lar
polymeric
substance (EPS)

•Deliver proteins
to the
external media

(58)

Pseudoalteromonas
distincta

•g-protein
•Polysaccharide
degradation

(33)

Pseudoalteromonas sp. •K-carrageenase

•Degrade the
main
polysaccharides of
red algae
cell walls

(35)

Pseudomonas
aeruginosa

•Pseudomonas
quinolone
signal (PQS)

•Promote
iron bonding

(18,
38)

•Inhibit biofilm
formation of
Streptococcus
pneumoniae

(95)

•Inhibit the
growth of
Staphylococcus
aureus

(96)

•Expression
factor:AlgU

•Induce
MVs production

(53)

•Pyocyanin

•Inhibit the
growth of other
microbial
communities

(66)

•Peptidoglycan
hydrolase
(autolysin)

•Hydrolyze cell
capsule and
glycine peptide

(68)

•b-lactamase
•Alkaline
phosphatase
•Hemolytic
phospholipase C
•Cif

•Transport
virulence factors

(77)

(Continued)
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persist due to the heterogeneity in size, content, and membrane

composition of bacterial MVs, necessitating complex experimental

analysis and interpretation. Studies indicate that MVs produced at

different growth stages vary in size, protein composition, and

immunogenicity, highlighting the importance of considering the
Frontiers in Immunology 16
bacterial growth stage during MV isolation, as it affects their size,

protein composition, and ultimately their biological function. Bacterial

MVs can follow different formation mechanisms and cargo sorting

mechanisms, resulting in different MV types with distinct biological

functions (118). Some published literature may present idealized

views, posing significant challenges to the purity and specificity of

bacterial MVs due to contamination from extraneous structures such

as external bodies and protein aggregates. The lack of standardized

protocols for the isolation, quantification, and characterization of

bacterial MVs may lead to variability and inconsistency in results.

Furthermore, a better scientific understanding of the functional

relevance of bacterial MVs in bacterial physiology and pathogenic

mechanisms, as well as a thorough characterization of their impact on

host cells and tissues, is needed.

Looking ahead, there are several potential applications and future

research directions worthy of exploration. Further elucidating the

molecular mechanisms of bacterial MVs biogenesis and cargo

classification may yield novel targets and strategies for

manipulation and regulation. Additionally, understanding the

functional relevance and mechanisms of action of bacterial MVs in

bacterial physiology and pathogenicity will broaden our

understanding of microbial interactions and evolution. Moreover,

bacterial membrane vesicles hold broad prospects for

biotechnological applications, such as drug delivery, vaccine

adjuvants, and diagnostic markers. MVs derived from pathogenic

microorganisms can serve as therapeutic targets. Targeting the

production or activity of MVs may provide a novel therapeutic

strategy for addressing bacterial infections and related diseases

(119–121). For instance, inhibiting the biogenesis pathway of MVs

has been shown to reduce the transmission of toxic components

(122). Based on research into the immunomodulatory effects of MVs,

vaccines expressing small non-coding ribonucleic acids could be

designed (123), presenting a safe and effective option for cancer

treatment with wide-ranging applications. This has significant

implications for human health and biotechnology. In conclusion,

research on bacterial MVs has expanded our understanding of

microbial physiology and pathogenic mechanisms, opening new

possibilities for biotechnological and medical applications. Future

studies in this field are expected to further unveil the secrets of

bacterial MV biogenesis, function, and regulation, with important

implications for microbiology, biotechnology, and medicine.
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