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Hypoxia-inducible factor in
breast cancer: role and target
for breast cancer treatment
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Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest
Medical University, Luzhou, Sichuan, China
Globally, breast cancer stands as the most prevalent form of cancer among

women. The tumor microenvironment of breast cancer often exhibits hypoxia.

Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be

overexpressed and activated in breast cancer, playing a pivotal role in the

anoxic microenvironment by mediating a series of reactions. Hypoxia-

inducible factor 1-alpha is involved in regulating downstream pathways and

target genes, which are crucial in hypoxic conditions, including glycolysis,

angiogenesis, and metastasis. These processes significantly contribute to

breast cancer progression by managing cancer-related activities linked to

tumor invasion, metastasis, immune evasion, and drug resistance, resulting in

poor prognosis for patients. Consequently, there is a significant interest in

Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy.

Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is

predominantly in the preclinical phase, highlighting the need for an in-depth

understanding of HIF-1a and its regulatory pathway. It is anticipated that the

future will see the introduction of effective HIF-1a inhibitors into clinical trials,

offering new hope for breast cancer patients. Therefore, this review focuses on

the structure and function of HIF-1a, its role in advancing breast cancer, and

strategies to combat HIF-1a-dependent drug resistance, underlining its

therapeutic potential.
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GRAPHICAL ABSTRACT

Schematic overview of HIF-1a regulation in breast cancer. Under normoxic conditions, HIF-1a is unstable with a brief half-life. In hypoxic conditions,
the depletion of molecular oxygen during mitochondrial oxidative phosphorylation curtails the catalytic functions of PHD and FIH, limiting HIF-1a
hydroxylation and degradation, thereby activating the HIF pathway. Subsequently, HIF-1a is involved in angiogenesis, glucose metabolism, cancer
cell invasion and metastasis, and immune escape by regulating the expression of target genes.
1 Introduction

Breast cancer (BC) is the most common type of malignancy

among women and the second leading cause of cancer-related

deaths among women after lung cancer (1–3). The treatment of

breast cancer mainly includes surgery, endocrine therapy,

chemotherapy, radiotherapy, and targeted therapy, depending on

the classification of the tumor, with drug therapy playing an

important role. In earlier years, the mortality rate of breast cancer

patients has declined due to the reduced risk of the disease,

improved treatment methods, and the widespread use of early

screening (4). However, the emergence of drug resistance during

treatment in recent years has posed a severe challenge to the

survival of breast cancer patients (5). Hypoxia, caused by an

imbalance between oxygen consumption and supply due to

rapid tumor growth, is a common feature of the tumor

microenvironment in most solid tumors (4, 6). It promotes tumor

growth, metastasis, and treatment resistance by regulating the

expression of hypoxia-related genes, ultimately leading to more

aggressive and fatal cancers. Hypoxia is associated with enhanced

invasive behavior and poorer prognosis and has been identified as a

poor indicator of patient outcome (7). The hypoxia-inducible factor

(HIF) family, which plays a pivotal role in the cellular response to

hypoxic stress, consists of transcription factors that are crucial for

managing hypoxic stress at the cellular level (8, 9). Research has

consistently demonstrated that Hypoxia-inducible factor 1-alpha

(HIF-1a) is overexpressed in numerous types of cancer,

significantly influencing cancer progression (10–16). HIF-1a is
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responsible for activating genes associated with angiogenesis, cell

growth and survival, invasion and metastasis, glucose metabolism,

immune system evasion, and resistance to several cancer therapies.

Specifically, HIF-1a is involved in regulating tumor cell

metabolism, apoptosis, and autophagy, thereby impacting their

survival (8, 17–22). It represents a promising target for anticancer

therapy. Therefore, this article provides a detailed description of the

structure and function of HIF-1a as well as its mechanism of action

in the development of breast cancer. This review also summarizes

the reasons for the emergence of HIF-1a-dependent drug resistance
and strategies to overcome it, providing systematic information for

the development of targeted drugs against HIF-1a.
2 Structure and function of HIF-1a

Hypoxia significantly influences numerous pathophysiological

conditions in the human body (1). It is a defining characteristic of

the solid tumor microenvironment (TME), resulting from rapid

tumor growth and inadequate blood supply. An estimated 50%–

60% of tumors exhibit anoxic regions (23). Hypoxia is linked to

cancer spread and resistance to conventional therapies like

chemotherapy and radiotherapy, indicating a grim prognosis for

various cancers, including BC, hepatocellular carcinoma (HCC),

and cancers of the pancreas, stomach, and colorectum (24).

Therefore, targeting hypoxia is seen as a viable strategy in cancer

treatment. Cells have evolved sophisticated mechanisms to adapt to

anoxic conditions (25).
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Within the hypoxic TME, HIF plays a crucial role in tumor

adaptation (26). To date, mammals have been found to express

three HIF types. HIF is a heterodimer consisting of an oxygen-

sensitive a subunit (HIF-1a, HIF-2a, and HIF-3a) and an oxygen-

insensitive b subunit (HIF-1b), crucial for regulating gene

expression under hypoxic conditions (27–29). While oxygen

levels regulate all three HIF a subunits and they all bind to HIF-

1b, research has primarily focused on HIF-1a and HIF-2a (29–34).

HIF-1a and HIF-2a share structural similarities, yet their roles

differ across tumor and cell types (29, 35, 36). HIF-3a has been less

studied due to its multiple variants and complex functionality ( (37,

38). Recent research indicates that specific HIF-1a subtypes are

present in several solid tumors, potentially contributing to tumor

progression (1, 39).

HIF-1 consists of the HIF-1a subunit, composed of 826 amino

acids, and the HIF-1b subunit, which has 782 amino acids

(Figure 1) (40, 41). HIF-1a is the most extensively expressed

subunit of HIF-1 in mammalian tissues (8). This transcription

factor, encoded by the HIF-1a gene on chromosome 14q2124,

responds to hypoxic signals (42, 43). It is part of the basic helix–

loop–helix (bHLH)/Period Clock Protein (Per)–Aryl Hydrocarbon

Receptor Nuclear Translocator (ARNT)–Single-minded Protein

(Sim) (bHLH/PAS) family of transcription factors (44). The

bHLH and PAS domains, named after the proteins Per, ARNT,

and Sim (40) first identified in Drosophila, are essential for DNA

binding and the formation of heterodimers between HIF-1a and

HIF-1b, respectively (45). HIF-1a includes two transactivation

domains (TAD): N-TAD and C-TAD, enriched with acidic and

hydrophobic amino acids, linked by an inhibitory domain (ID) (42).

C-TAD plays a role in HIF-1a transcription regulation through

interaction with the transcriptional coactivator CREB-binding

protein (CBP)/p300 in hypoxic conditions, while N-TAD serves

as its stable regulator (46, 47). The ID, situated between the two

TAD sequences (amino acids 576–785), prevents transcriptional

activation by TADs (48). Furthermore, HIF-1a features an oxygen-

dependent degradation domain (ODDD) upstream of the N-TAD

region, including two hydroxylation sites, Pro-402 and Pro-564,

each bearing a conserved LXXLAP motif (49). This ODDD, located

centrally in HIF-1a, chiefly mediates the protein’s oxygen-regulated

stability and degradation through the ubiquitin-proteasome

pathway (50, 51). HIF-1a also possesses two nuclear localization

signals (NLS), NLSN (N-terminal, 17–33 amino acids) and NLSC

(C-terminal, 718–721 amino acids) (45). HIF-1b, also known as

ARNT, is expressed constitutively in all cell types and its expression

is not influenced by oxygen levels (52). It includes three domains:

bHLH, PAS, and C-TAD, but lacks the ODDD and N-TAD

domains (45, 53).

Within cells, the regulation of HIF-1a is stringently dependent

on oxygen availability, in contrast to HIF-1b, which is constantly

expressed irrespective of oxygen tension (40, 51). Under normoxic

conditions, HIF-1a is unstable with a brief half-life (Figures 1, 2)

(40). Pro-402 and Pro-564 in the ODDD and Asn-803 in the C-

TAD are hydroxylated by prolyl hydroxylases (PHD) and factor-

inhibiting HIF (FIH) using Fe2+ and 2-oxoglutaric acid as cofactors

(40, 51). Hydroxylation at Asn-803 inhibits CBP/p300 binding to

HIF-1a, while hydroxylation at proline residues allows the von
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Hippel-Lindau tumor suppressor protein (pVHL), with E3

ubiquitin ligase activity, to recognize hydroxylated HIF-1a (42,

54). Consequently, HIF-1a is ubiquitinated and swiftly degraded

through the pVHL-mediated ubiquitin-proteasome pathway. The

second regulation mechanism involves the hydroxylation of

asparaginyl residues by FIH (Figures 1, 2) (55), preventing the

association of HIF coactivators (CBP/p300) (55, 56). This

asparaginyl hydroxylation occurs in the C-TAD domain at N803

in HIF-1a and N851 in HIF-2a (57). Thus, under normoxic

conditions, PHD and FIH facilitate HIF degradation through a

dual mechanism, suppressing HIF transcriptional activity (58). In

hypoxic conditions, the depletion of molecular oxygen during

mitochondrial oxidative phosphorylation curtails the catalytic

functions of PHD and FIH (Figure 2) (57, 59), limiting HIF-1a
hydroxylation and degradation, thereby activating the HIF pathway

(60, 61). The stable HIF-1a then moves to the nucleus and forms a

transcriptionally active heterodimer with HIF-1b (29). The

interaction occurs between the heterodimeric complex of HIF-1a/
HIF-1b and CBP/p300, the steroid receptor coactivator-1 family of

coactivators, the nuclear redox regulator Ref-1, and the molecular

chaperone heat shock protein 90. This interaction facilitates the

binding of hypoxia response elements (HRE), leading to increased

transcriptional activity of target genes across various signaling

pathways and the regulation of cellular adaptive responses to

hypoxia (Table 1) (29, 78, 79). However, the degradation of

accumulated HIF-1a happens rapidly upon reoxygenation of

hypoxic cells, with the rate of degradation being dependent on

the duration of hypoxic stress (80).
3 The role of HIF-1a in breast cancer

3.1 Angiogenesis

BC cells necessitate a continual blood supply for oxygen and

essential nutrients (81). Initially, during tumor growth, nutrients

and oxygen are obtained via diffusion (82). However, as the tumor

mass reaches a certain size, diffusion becomes insufficient to sustain

growth, prompting the formation of new vasculature to support

tumor growth and metastasis (81, 83). Thus, angiogenesis is critical

for tumor advancement, proliferation, and metastasis. Tumor blood

vessels exhibit high tortuosity, increased vascular permeability, and

sluggish blood flow (62)compared to normal vessels, leading to

increased local hypoxia, which in turn stabilizes HIF-1a, fostering
tumor invasion and metastasis (84–87)

HIF plays a pivotal role in regulating angiogenesis (Figure 3)

(88, 89). BC cells exhibit elevated levels of HIF, stimulating gene

expression that facilitates proliferation, metastasis, angiogenesis,

and invasion (90, 91). HIF-1a is notably expressed in precursor

lesions and early stages of BC (92). Suppression of the HIF-1a gene

or inhibition of its transcription can hinder tumor cells from

secreting vascular endothelial growth factor (VEGF) and impede

tumor neovascularization (8, 93, 94).

HIF-1a shows increased expression particularly in triple-

negative BC (TNBC). The nuclear factor kappa B (NF-kB)
signaling pathway is activated in TNBC, promoting tumor cell
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proliferation, angiogenesis, and evasion of apoptosis (Figure 3) (95).

Tumor necrosis factor-alpha (TNF-a) or interleukin (IL)-1

activates inhibitory kappa B kinase (IKKB), leading to NF-Kb

activation (96). Additionally, under chronic hypoxia in TNBC cell

lines, reactive oxygen species (ROS) further activate NF-kB by

degrading inhibitor of kB-a (IkBa) (97). The NF-kB pathway

boosts HIF-1a mRNA expression by enhancing its transcription

(98, 99). TNF-a may elevate HIF-1a expression by activating NF-

kB signaling in TNBC cells and could be influenced by IL-17 (100).

In BC, HIF-1a primarily induces angiogenesis by regulating the

expression of VEGF, hepatocyte growth factor (HGF), vascular cell

adhesion molecule 1 (VCAM1), and VEGF receptor (VEGFR)

(Figure 3) (62, 101). VEGF, a critical downstream target of the

HIF pathway, drives angiogenesis by influencing endothelial cell

migration, proliferation, permeability, and survival (102–105).
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Under hypoxic conditions, HIF-1a binds to the VEGF promoter,

significantly increasing VEGF mRNA levels in TNBC compared to

other BC subtypes (106). HIF-1a also upregulates breast tumor

kinase mRNA and protein expression, which stimulates

angiogenesis via hepatocyte growth factor (107). Furthermore,

HIF-1a induces overexpression of C1q binding protein (C1QBP),

indirectly stimulating the NF-kB signaling cascade to upregulate

VCAM1 expression and promote TNBC angiogenesis (74). Short-

term hyperoxia induces ROS formation, leading to increased brain-

derived neurotrophic factor expression and VEGFR receptor

upregulation through HIF-1a, promoting angiogenesis (108).

Although HIF-1a predominates in BC, the HIF-2a isoform is

equally crucial as a key regulator of pathophysiological angiogenesis

(109). RAB11B-AS1, a long noncoding RNA (lncRNA), enhances

VEGFA and angiopoietin-like 4 (ANGPTL4) expression in hypoxic
FIGURE 2

Schema of regulation of HIF-a degradation and transcriptional activity. Under normoxic conditions, HIF-1a is continuously degraded through the key
oxygen sensor PHD, which enables HIF-1a to bind to VHL. Under hypoxic conditions, the hydroxylation of HIF - 1a is inhibited, leading to
stabilization of HIF-1a. Next, HIF-1a dimerizes with HIF-1b to form a transcriptional activation complex, which binds to HRE and stimulates the
transactivation of target genes.
FIGURE 1

Schematic of hypoxia-inducible factor HIF-1a protein structure and hydroxylation sites at proline and asparagine residues. The basic submotif and
the helix-loop-helix domain (bHLH) are located near the N terminus, followed by the Per-ARNT-Sim (PAS) domain. The PAS domain comprises
repetitive amino acid sequences PAS-A and PAS-B. The oxygen-dependent degradation domain (ODDD) overlaps with the N-terminal
transactivation domain (N-TAD), followed by the C-terminal transactivation domain (C-TAD). Hydroxylation of proline residues within the ODDD and
of asparagine residues within the C-TAD of HIF-1a are highlighted. The non-equilibrium hydroxylation by the prolylhydroxylases (PHD) and the
asparagine hydroxylase factor inhibiting HIF-1 including substrates and products is depicted exemplarily for two of the three hydroxylation sites of
HIF-1a.
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BC cells in a HIF-2a-dependent manner, promoting tumor

angiogenesis and metastasis (110). In conclusion, angiogenesis is

a multifaceted process, and HIF-1a significantly contributes to

angiogenesis in BC (62, 111).
3.2 Glucose metabolism

Enhanced glucose metabolism plays a vital role in the growth and

division of cancer cells, which require significant amounts of biomass

and alternate energy sources to offset the diminished oxidative

phosphorylation. The activity of HIF is believed to be intimately

associated with glucose metabolism. Genes activated by HIF

transcription include crucial components of glucose metabolism,

such as glucose transporters (GLUT1 and GLUT3), enzymes

involved in the glycolytic pathway (hexokinase, phosphofructokinase,

a ldolase , g lyceraldehyde 3-phosphate dehydrogenase ,
Frontiers in Immunology 05
phosphoglycerate kinase, enolase, pyruvate kinase, and lactate

dehydrogenase [LDH]), and pyruvate dehydrogenase (PDH) kinase

(PDK) (Figure 4) (28, 55, 112, 113). Du et al. investigated the potential

roles and mechanisms of the hypoxic MIR210HG axis, finding that

MIR210HG increases HIF-1a protein levels by directly interacting with

the 5’-UTR of HIF1a mRNA. This elevation in HIF-1a protein

enhances the expression of enzymes related to glycolysis (pyruvate

kinase M2, LDHA) and GLUT1 (114). In hypoxic conditions, HIF-1a
facilitates the shift of tumor cells from oxidative to glycolytic

metabolism by triggering genes that encode glucose transporters and

glycolytic enzymes (115). In particular, the overexpression of HIF-1a
in glucose augments glucose absorption in tumor cells through the

elevation of glucose transporter levels. The modification of proteins by

O-linked b-N-acetylglucosamine (O-GlcNAc) (O-GlcNAcylation)

influences glycolysis in BC cells via the HIF-1a/GLUT1 signaling

pathway (81, 116). Glucose is processed through the glycolytic

pathway in tumor cells, generating substantial amounts of pyruvate

(117). Hexokinase 2 (HK2) serves as both the initial and rate-limiting

enzyme in the glycolysis pathway (81). CircRNF20 is found to

accelerate tumor progression by targeting miR-487a/HIF-1a/HK2 in

BC (73). HIF-1a enhances PDK activity and blocks the transformation

of pyruvate to acetyl-CoA by inhibiting PDH; thus, reducing the entry

of pyruvate into the tricarboxylic acid cycle (55, 118). LDHA converts

pyruvate into lactic acid, which is then transported out of the cell by the

monocarboxylate transporter (MCT) (62). As cancer cell metabolism

shifts to aerobic glycolysis, lactate supplants pyruvate and is expelled

into the tumor microenvironment (TME), thereby fostering an

immunosuppressive milieu that supports tumor cell proliferation,

metastasis, and invasion (119, 120).

Glycolysis can lead to an increase in HIF-1a levels, which in

turn raises VEGF expression (121). Aerobic glycolysis stimulates

angiogenesis by producing lactate, which acidifies the extracellular

environment and enhances VEGF expression (122). Additionally,

the end products of glycolysis, lactate and pyruvate, influence VEGF

expression through the augmentation of HIF-1a levels (123–125).

Hence, it is postulated that the transition to glycolysis precedes

angiogenesis. In summary, HIF-1a plays a crucial role in regulating

glucose metabolism in BC.
3.3 Invasion and metastasis

Invasion and metastasis involve the spread of cancer cells from

the primary tumor site to distant organs, leading to the formation of

secondary tumors (81). Early estimates indicate that nearly two-

thirds of cancer-related deaths and three-quarters of BC-related

deaths result from metastasis (126). EMT, a process in which

epithelial cells convert into mesenchymal cells through specific

mechanisms, is a key aspect of tumor metastasis (127, 128).

Cancer cells that undergo EMT exhibit enhanced invasive

capabilities and resistance to apoptosis. Often, EMT is induced by

hypoxia, with HIF-1a overexpression linked to various molecules

and pathways (Figure 5) (76, 129–132). Research has shown that

hypoxia-induced HIF-1a expression leads to the activation of major

transcription factors such as TWIST, Snail, Slug, SIP1, STAT3, and

ZEB. This activation results in E-cadherin suppression and
TABLE 1 Target genes of the HIF-1a and their function.

Target
Gene

Expression
under
hypoxia

Function Reference

GLUT1 Up Glycolysis (62)

LDHA Up Glycolysis (62)

PKM2 Up Glycolysis (62)

LOX Up Invasion (63)

SOD2 Up
Enrichment of braest
cancer stem cell

(64)

A2BR Up Invasion, and metastasis (65)

MDR1 Up
Enrichment of braest
cancer stem cell

(62)

VEGF Up Angiogenesis (66)

Bcl-2 Up Apoptosis (67)

GLUT Up Glycolysis (68)

NANOG Up Invasion (69)

PDK 1 Up Glycolysis (68)

IL-6 Up Invasion (70)

IL-8 Up Invasion (71)

MMPs Up Invasion (71)

NF-kB, Up Invasion (72)

HK2 Up Glycolysis (73)

C1QBP Up Angiogenesis (74)

P4HA2 Up Invasion and metastasis. (75)

SLUG Up
Plays a key role in the
control of epithelial to
mesenchymal transition

(76)

TWIST Up
Plays a key role in the
control of epithelial to
mesenchymal transition

(77)
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vimentin induction in BC, with HIF-1a inhibition markedly

increasing E-cadherin levels (133). While E-cadherin encourages

collective migration of mixed E/M phenotypes by inhibiting TGF-b,
TGF-b activation promotes single-cell migration (134). CSF-1, a

regulator of EMT, is influenced by hypoxia. HIF-1a induces a

mixed E/M phenotype via its target gene CSF-1, facilitating
Frontiers in Immunology 06
collective migration (135). Additionally, hypoxia has been shown

to increase Slug and Snail expression and decrease E-cadherin levels

during HIF1-induced EMT through the Notch pathway (136). HIF-

1a activates matrix metalloproteinases 1, 2, 9, and 14, aiding in the

breakdown of extracellular matrix components and basement

membrane degradation, thereby easing cancer cell migration and
FIGURE 3

The mechanisms and pathways of HIF-1a overexpression effects on the induction of angiogenesis genes. HIF-1a translation is amplified by PI3K,
RAS, and NF-kb pathways in the cytoplasm, and then it can pass into the nucleus with coactivator (P300) as a transcription factor and enhances the
expression of some essential angiogenesis genes like FLT1, MMP9, VEGF, VEGFR, and PAI-1 in the angiogenesis process.
FIGURE 4

The involved procedure of HIF-1a in cancer glucose metabolism. HIF-1 enhances the expression of glucose transporters GLUT1 and GLUT3 and
activates glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase (PFK-L), pyruvate kinase isozymes M2 (PKM2) to generate an
increasing amount of pyruvate. After this process, pyruvate is largely converted to lactate by lactate dehydrogenase A (LDHA) and removed from the
cancer cell by monocarboxylate transporter (MCT). HIF-1 also inhibits the TCA cycle and oxidative phosphorylation process by activating the
expression of HIF-1-dependent pyruvate dehydrogenase kinase (PDK), resulting in the decrease of mitochondrial activities and the oxygen
consumption in hypoxia.
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spread (75, 113, 130, 137, 138). Chemokine receptors 4 (CXCR4)

and 3 (CXCR3), associated with invasion, angiogenesis, metastasis,

and prognosis, are upregulated by HIF-1-dependent expression,

enhancing cell migration and survival during cycling (139, 140).

HIF signaling impacts cell extravasation by modulating genes

encoding L1 cell adhesion molecules and ANGPTL4, which

reduces endothelial cell adhesion (141). He et al. (2020) showed

that hypoxia-induced HIF-1a regulates BC cell migration and EMT

through the MiR3383p/ZEB2 axis (142). Moon et al. identified

MRPL52 as a transcriptional target of HIF-1a, with MRPL52

promoting EMT, migration, and invasion in hypoxic BC cells via

the ROS-Notch1-Snail pathway (143).

Recent research indicates that HIF-dependent lncRNAs may

contribute to the metastatic phenotype of BC cells. Under hypoxia,

lncRNA BCRT1, regulated by HIF-1a transcriptionally, promotes

EMT (144). Liu et al. identified HIF-1a as a potential transcription

factor for lncRNA HLA complex group 18 (HCG18), with a

positive correlation between HCG18 and HIF-1a expression in

BC tissue. Knockdown of HIF-1a reduced HCG18 levels in BC

cells, and HIF-1a binding to specific HREs in the HCG18

promoter stimulates HCG18 expression. In vivo assays showed

that decreasing HCG18 expression in MDA-MB-231 cells curbed

tumor growth and lung metastasis in xenograft mouse models,

highlighting HIF1a’s role as a critical regulator of hypoxia-

induced EMT and metastasis (145). Metastasis poses a

significant prognostic challenge in BC, and targeting HIF-1a to

inhibit BC metastasis presents a viable strategy.
Frontiers in Immunology 07
3.4 Apoptosis and autophagy

Apoptosis, a genetically controlled form of cell death, is crucial

for normal cellular regulation. Cancer cells, however, often evade

apoptosis, contributing to chemotherapy resistance or tumor

relapse. This evasion involves a complex interplay of proteins and

cytokines. Research indicates that HIF-1a exhibits a dual role in

apoptosis, capable of both inducing and counteracting it (1). HIF-

1a can induce and antagonize apoptosis (Figure 5). The

proapoptotic effects of HIF-1a involve the regulation of genes

such as BNIP, Bid, Bax, Bak, Bad, BNIP3, NIX, and NOXA (146),

whereas its antiapoptotic effects are seen in the modulation of Bcl-2,

Bcl-xL, and myeloid cell leukemia (Mcl-1) expression (1). In MDA-

MB-231 cells treated with paclitaxel, a HIF-1a-dependent alteration
in the expression of various pro- and antiapoptotic genes was

observed. Under hypoxic conditions, compared to normoxic

conditions with paclitaxel, a reduction in proapoptotic gene

expression (BAK1, CASP3, CASP8, CASP10, and TNFRSF10A)

was noted (147).

HIFs also play a significant role in autophagy, another

programmed cell death mechanism (Figure 5). In MCF7 cells

subjected to radiation, HIF-1a induces autophagy by inhibiting

the PI3K/AKT/mTOR/p70 pathway and increases the expression of

Mcl-1 and BNIP-3 (148). Mcl-1 participates in the neutralization of

proapoptotic proteins, inhibiting cytochrome c release from

mitochondria (149), while BNIP-3, a mitochondrial protein in the

Bcl-2 family, triggers selective mitophagy by releasing Beclin-1 to
FIGURE 5

Target genes regulated by HIF-1a. HIF-1a can regulate the expression level of lncRNA and form a mutual activation pathway with lncRNA, thereby
promoting the production of EMT-TFs and promoting the process of tumor EMT. HIF-1a plays a key role in inducing the transcription of genes
involved in invasion, metastasis, apoptosis, autophagy, and immune escape.
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initiate autophagy (150, 151). The interplay between autophagy and

apoptosis is crucial, especially for inducing cell death in

antiapoptotic BC cell lines (152).
3.5 HIF-1a in cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) interact with tumor cells to

promote tumor cell growth and metastasis. CAFs, mainly normal

interstitial fibroblasts (NFs), are the most abundant cell type in the

stroma of breast cancer (153, 154). In breast cancer tumors, only a

small fraction of fibroblasts are quiescent; these fibroblasts are

responsible for the structural integrity of the extracellular

matrix (ECM) and its nutrient supply and contribute to wound

healing (155). However, most fibroblasts exhibit an activated

phenotype characterized by producing various extracellular matrix

components and paracrine mediators (156). Among the many

mechanisms involved in transforming NFs to CAFs, local hypoxia

has been proven to drive the differentiation of NFs into activated

myofibroblasts by triggering the formation of reactive oxygen species

(ROS) (157, 158). Additionally, CAF activation is reversible: chronic

hypoxia inactivates CAFs, leading to the loss of contractility,

reduction of surrounding extracellular matrix remodeling, and

ultimately damage CAF-mediated cancer cell invasion (159).

Studies have shown that hypoxia-dependent deletion of PHD2

suppresses tumor growth and reduces the metastatic activity of

CAFs (160, 161). Hypoxia inhibited prolyl hydroxylase domain

protein 2 (PHD2), resulting in the stabilization of HIF-1a, reduced
expression of aSMA and periostin, and decreased myosin II activity.

Treatment with the PHD inhibitor DMOG in an orthotopic breast

cancer model significantly reduced spontaneous metastasis to the

lungs and liver, which correlated with decreased tumor stiffness and

fibroblast activation (159). Another study revealed that the loss of

PHD2 is associated with normalization of the vasculature, reduced

CAF activation, and decreased intravascular invasion of metastases

(161). These findings suggest that blocking PHD2 in CAFs may be a

novel strategy for inhibiting prometastatic signals in the breast cancer

tumor microenvironment.

In fact, CAFs have been shown to regulate metabolic

interdependency between cancer cells and their surrounding

microenvironment through the action of HIF (162). HIF-1a is

involved in regulating biventricular metabolic symbiosis between

synthetic metabolic cancer cells and catabolic stromal fibroblasts

(163). The enhanced glycolytic rate shown by CAFs is partially

dependent on HIF signaling (164). Furthermore, the high-energy

metabolic byproducts produced by catabolic CAFs are taken up by

tumor cells to support their high anabolic demands. The increased

metabolic flux in cancer cells generates ROS, which then propagate

throughout the tumor microenvironment and through CAFs to

promote HIF-dependent metabolic reprogramming (165).
3.6 Immune escape

Tumor immune escape, where cancer cells avoid detection and

destruction by the host immune system (166), is facilitated under
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hypoxic conditions through HIF-1a overexpression(Figure 5)

(167). HIFs increase CD47 immunoglobulin expression and

hinder T cell proliferation and activation by attracting myeloid-

derived suppressor cells (28). Changes in the expression of CD47,

CD73, and PDL1 in TNBC cells treated with chemotherapy agents

like carboplatin, doxorubicin, gemcitabine, or paclitaxel enhance

cancer cells’ ability to evade both innate and adaptive immune

responses (168). Increased PDL1 mRNA expression in human

TNBC cell lines was linked to elevated HIF-1a expression due to

endoplasmic reticulum oxidoreductase 1-a (ERO1-a), with ERO1-

a knockdown significantly reducing PDL1-mediated T-cell

apoptosis, suggesting avenues for therapeutic intervention in

hypoxia-mediated immune resistance (169).

Regulatory T cells (Tregs), which suppress immune responses

through cytokines and metabolites, play a role in tumor development

(170–173). In TNBC, HIF-1a modulates Tregs’ immunosuppressive

functions and aggregation by regulating forkhead box P3 (FoxP3) and

C-X-C motif CXCR4. HIF-1a enhances FoxP3 expression by binding

to HREs and indirectly increases CXCR4 expression; thus, supporting

immunosuppression (174). Moreover, M2 macrophages, known for

their immunosuppressive capabilities through IL-10 and TGF-b
release, are influenced by HIF-1a (175). This factor drives the

polarization of tumor-associated macrophages (TAMs) towards an

M2 phenotype, creating an immunosuppressive microenvironment. It

has been shown that TAMs in TNBC are more likely to adopt an M2

phenotype compared to other BC subtypes (176, 177). HIF-1a, present
in BRCA1-IRIS overexpressing TNBC cells, secretes high levels of

granulocyte-macrophage colony-stimulating factor (GM-CSF),

recruiting and polarizing macrophages towards an M2 phenotype;

thus, facilitating immune escape (178, 179). HIF-1a’s ability to polarize
TAM to M2 by regulating GM-CSF and macrophage CSF-1 in TNBC

underscores its role in promoting immune evasion. HIF can also lead

to extracellular acidification by regulating the expression of MCT4,

which not only diminishes immune response efficiency but also

impacts the efficacy of anticancer drugs (180).
3.7 Noncoding RNA regulates HIF-1a

Based on their genomic locations, long noncoding RNAs

(lncRNAs) are categorized into five types: antisense, sense,

intergenic, intronic, or bidirectional. The location of lncRNAs can be

specific to the nucleus, the cytoplasm, or both (25, 181). The expression

of lncRNAs is regulated similarly to that of protein-coding RNAs,

through mechanisms such as epigenetic modification, gene

transcription, and post-transcriptional regulation (182). In tumors,

lncRNAs are often abnormally expressed and play roles in the

regulation of tumor proliferation, invasion, metastasis, metabolism,

angiogenesis, and survival (183, 184). Certain noncoding RNAs can

influence tumor-related biological processes by regulating HIF-1a
(Figure 6) (25, 185, 186). For instance, LINC00649 enhances the

stability of HIF-1a mRNA and protein expression by interacting

with the nuclear factor 90 (NF90)/NF45 complex (187). MIR210HG

specifically impacts triple-negative breast cancer (TNBC) by regulating

HIF-1a at the translation level, thereby increasing HIF-1a protein

expression and influencing the expression of glycolysis genes (114).
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MicroRNAs (miRNAs) exert a dual regulatory effect on HIF-1a, both
promoting and inhibiting its expression. Saatci et al. identified eight

common miRNAs that target HIF-1a, lysyl oxidase (LOX), and

ITGA5, with miR-142–3p and miR-128–3p showing negative

correlation with the expression of HIF-1a, LOX, and ITGA5.

Hypoxia can inhibit miR-142–3p, leading to increased HIF-1a
mRNA and protein expression, activating the FAK/Src signaling

pathway, and triggering chemotherapy resistance in TNBC (188).

However, the regulatory mechanism of miR-142–3p on HIF-1a
remains unclear. Overexpression of miR-101 decreases VHL levels,

stabilizing HIF-1a and inducing VEGFA expression, ultimately

enhancing TNBC invasiveness (189). Thus, noncoding RNA

regulates HIF-1a expression in TNBC by maintaining the stability of

the HIF-1a protein and regulating the stability and translation level of

HIF-1a mRNA.
3.8 HIF-1a and drug resistance of
breast cancer

In BC treatment options vary by subtype and include surgery,

endocrine therapy, chemotherapy, radiotherapy, and targeted therapy,

with drug therapy playing a crucial role depending on the tumor

classification. However, drug resistance presents a significant challenge

in BC treatment (190–192), often due to inherent or acquired

resistance over time (193). Hypoxia is a common characteristic of

both primary and metastatic BC (194), with HIF-1a expression in

tumor tissues associated with poor prognosis and drug resistance

(Figure 7) (132). Research indicates that HIF-1a may contribute to

resistance against conventional therapies via various signaling

pathways, including drug efflux, tumor stem cell enrichment,

autophagy, and apoptosis (192, 195), necessitating further

investigation into HIF-1a-induced drug resistance mechanisms in BC.
3.9 Increased expression of drug
outflow pump

Drug efflux transporters such as MDR1, multidrug resistance-

associated protein 1 (MRP1), and breast cancer resistance protein
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(BCRP) are directly regulated by HIF-1a (Figure 7), encoded by the

ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and

ABCG2, respectively. Their promoters contain HREs sensitive to

HIF-1a transcriptional regulation (196). The link between these

transporters and drug resistance in BC has been extensively studied

(197–199), with all three proteins inducing drug resistance by

facilitating drug efflux from tumor cells. Studies have shown that

hypoxia-induced MDR1 expression can be significantly reduced by

inhibiting HIF-1 expression with antisense oligonucleotides

(200).In a separate investigation, 41% of BC tumors exhibited

increased levels of MDR1, leading to a threefold higher likelihood

of chemotherapy failure (201). Taxanes and anthracyclines

represent the primary chemotherapy agents for BC treatment.

The upregulation of MDR1, also referred to as P-glycoprotein or

Pgp, contributes to resistance against taxanes and anthracyclines

(202). The activation of HIF-1a enhances the resistance of BC cells

to these drugs (147, 203, 204). The genes ABCC1 and ABCG2,

which encode MRP1 and BCRP, respectively, possess hypoxia

response elements (HREs) upstream of their coding sequences.

The deletion of these elements can prevent hypoxia-induced

activation (196, 205). MRP1 is elevated in cells with activated

HIF-1a, and this effect can be reversed by HIF-1a siRNA,

indicating that ABCC1 is a direct target of HIF-1a. Another
investigation discovered that HIF-1a binds to the HRE region of

the BCRP promoter in LTLTCa cells, with significantly increased

binding observed in the presence of CoCl2 (206). The expression of

BCRP correlated with the degree of drug resistance to irinotecan

and topotecan (207). Hence, it is proposed that the expression and

stability of HIF-1a can enhance the mRNA and protein levels of

MDR1, MRP1, and BRCP, thereby contributing to HIF-1a-
mediated drug resistance.
3.10 Upregulation of autophagy

Autophagy has been shown to increase resistance to endocrine

and cytotoxic drugs in BC (208–210). HIF-1a can activate various

molecular mechanisms, such as inducing PTP-PEST expression and

activating AMPK, which in turn increases BNIP3 expression. This

disrupts the interaction between Beclin-1 and Bcl-2 and induces
FIGURE 6

Mechanisms of hypoxia-responsive ncRNA-mediated modulation of HIF-1a activity.
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autophagy, thereby increasing BC cells’ resistance to drugs like

adriamycin (211, 212). Additionally, endocrine therapies, including

tamoxifen and flurvist, have been found to increase autophagy

markers in drug-resistant BC cells (213, 214). Thus, HIF-1a plays a

role in inducing BC resistance to both endocrine and cytotoxic

drugs by upregulating autophagy.
3.11 Inhibition of apoptosis

Apoptosis, leading to cell death, is a crucial outcome of most

cancer treatments. Cancer cells, however, have developed

mechanisms to evade apoptosis, contributing to resistance to

chemotherapy or recurrence of tumors (215). This evasion

involves various proteins and cytokines, including the Bcl-2

family, apoptosis inhibitor proteins, and the caspase family, along

with cytochrome c and proteases (146). HIF-1a plays a direct role

in the regulation of apoptosis, exhibiting both proapoptotic and

antiapoptotic effects (146). The proapoptotic actions of HIF-1a
include the downregulation of proapoptotic members of the Bcl-2

family, such as BNIP3, NIX, and NOXA, while its antiapoptotic

effects involve increasing the levels of antiapoptotic proteins like

Bcl-2, Bcl-xL, and Mcl-1, and decreasing the levels of proapoptotic

proteins such as Bid, Bax, and Bak (216–218). In breast cancer (BC)

cells, alterations in apoptotic activity following HIF-1a activation

are associated with increased drug resistance (147, 219, 220),

though the precise mechanisms warrant further investigation.
3.12 Maintenance of the dryness of
cancer cells

Stem cells play a significant role in BC, driving tumor

progression and metastasis, and displaying inherent resistance to
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chemotherapy and radiotherapy (221, 222). These cells can enhance

drug efflux, increase drug metabolism in the tumor, activate survival

pathways like Notch and Hedgehog, and dampen apoptosis

signaling, all contributing to chemoresistance (223). HIF-1a
directly upregulates genes such as NANOG, SOX2, KLF4, and

OCT4, which inhibit differentiation and maintain a stem cell-like

phenotype (203, 224). Furthermore, HIF-1a supports the survival

of breast cancer stem cells (BCSC) by inducing ROS-dependent

expression of HIF-1a and HIF-2a, leading to HIF-mediated

expression of IL-6, IL-8, and MDR1. Exposure of MDA-MB-231,

SUM-149, and SUM-159 cells to paclitaxel increased the percentage

of ALDH+ cells, indicative of stem cell characteristics, by twelvefold

in vitro and in vivo (203). Therefore, HIF-1a activation promotes

the proliferation and enrichment of tumor stem cells, contributing

to drug resistance.
3.13 Strategies to overcome HIF-1a-
dependent drug resistance

To overcome HIF-1a-dependent drug resistance, strategies

involve directly or indirectly targeting HIF-1a with inhibitors

(225). Direct inhibitors of HIF-1a target protein-protein/DNA

interactions, impacting DNA binding, transcriptional activity of

HIF-1a, heterodimerization with HIF-1b, and interactions with

transcriptional coactivators (226–230). Indirect inhibitors aim to

downregulate HIF-1a transcription or translation, reduce HIF-1a
stability, or prevent its degradation, offering potential pathways to

mitigate drug resistance in cancer treatment.
3.14 Breast cancer therapy targeting
HIF-1a

Numerous studies have highlighted the potential of HIF-1a
inhibitors and compounds targeting the HIF-1a pathway,

demonstrating their effectiveness in vitro (62, 81)(Table 2). For

instance, treatment of MDA-MB-231 cells with the PHD inhibitor

molidustat, which stabilizes HIF, resulted in reduced viability,

growth, clone formation, cell cycle arrest, and increased

chemosensitivity, indicating potential anticancer activity of HIF

(249) Among 68 newly synthesized arylformamide compounds,

compound 30 m showed the most potent inhibitory activity against

HIF-1a with minimal cytotoxicity, effectively reducing hypoxia-

induced HIF-1a protein accumulation (81, 250). However, clinical

trials have failed to show the effect of HIF-1a inhibitors in BC

treatment (81, 251)(Table 3). Preliminary data published in 2013

showed some clinical efficacy of digoxin in patients with stages I–III

BC. However, the treatment window of the drug is narrow; serum

levels exceeding 1–2 nM produce significant side effects. So far, no

follow-up data are available (192, 252). The differential expression

of HIF-1a and HIF-1a inhibitor monotherapy may be the factors

limiting the efficacy of anti-HIF-1a therapy (1). Yu et al. discussed

the lack of clinical effectiveness of HIF-1a inhibitors (230). First,

although both HIF-1a and HIF-2a are involved in cancer

progression, most inhibitors have targeted only HIF-1a.
FIGURE 7

HIF-1a-mediated stemness and drug resistance. On the one hand,
HIF-1a can induce drug resistance by regulating stem cell surface
markers. On the other hand, HIF-1a promotes chemotherapy
resistance through drug resistance-related proteins.
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TABLE 2 HIF-1a inhibitors under investigation in BC.

Compound Mechanism Type
of
study

Model References

KC7F2 Decrease HIF-1a protein accumulation In vitro MCF-7 (231)

Quercetin Inhibiting HIF-1a protein accumulation In vitro SkBr3 (232)

LXY6006 Inhibit HIF-1a nuclear accumulation In vitro T47D,
MDMBA-
231,
MX-1

(233)

Aminoflavone AF inhibits HIF-1a expression In vitro Mouse
model
(MCF-7)

(234)

7-Hydroxyneolamellarin A Inhibit HIF-1a protein accumulation In vivo Mouse
model
(4T1)

(235)

Methylalpinumisoflavone Inhibits HIF-1 activation by blocking the induction of nuclear HIF-1a protein In vitro T47D,
MDAMB-
231

(236)

Cardenolides Inhibited HIF-1 transcriptional activity dose-dependentl In vivo MCF-7 (237)

PX-478 Suppresses HIF-1a levels In vitro Mouse
model
(MCF-7)

(238)

DJ12 Decrease HIF-1a transactivation and DNA binding In vitro MDA-
468, ZR-
75,
MD435

(239)

Isoliquiritigenin Isoliquiritigenin inhibits the expression of HIF-1a by inhibiting the PI3K/Akt and NF-
kB signaling pathways, thereby inhibiting the expression of VEGF and the metastasis
of TNBC

In vitro MDA-
MB-
231 cells

(240)

Cardamonin Cardamonin inhibits the transcriptional level of HIF-1a by inhibiting the mTOR/p70S6K
pathway, reducing the level of
HIF-1a protein, thereby enhancing
mitochondrial oxidative phosphorylation and reducing glucose uptake and lactate
production.

In vitro MDA-
MB-
231 cells

(241)

Nanoliposomalechinomycin The activity of HIF-1 can be inhibited by directly inhibiting the transcriptional activity of
HIF-1a and effectively blocking the binding between HIF-1 and HRE.

In vivo MDA-
MB-231
breast
cancer
mice
and
SUM-159
breast
cancer
mice

(242)

Melittin Melitin inhibits HIF-1a expression at the transcriptional level mainly by inhibiting NF-
kB expression

In vitro MDA-
MB-
231 cells

(243)

As4S4
nanoparticles

As4S4 nanoparticles reduce the
transcription level of HIF-1a by
scavenging ROS and inhibit the metastasis of TNBC.

In vivo 4T1
breast
cancer
mice

(244)

Sanguinarine Sanguinarine promotes proteasomal degradation of HIF-1a by inactivating STAT3 under
hypoxia and hinders breast
cancer growth in vivo

In vitro MDA-
MB-
231 cells

(245)

Ganetespib Ganetespib promotes the degradation of HIF-1a protein, reduces the levels of HIF-
1a protein and target gene proteins and controls angiogenesis, metabolism, invasion and
metastasis in TNBC mice.

In vitro MDA-
MB-
231 cells

(246)

(Continued)
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Therefore, the role of HIF-2a in drug resistance needs to be

understood. Second, patient selection contributes to the success of

clinical trials. Accuracy in the measurement of tumor HIF-1a may

help to better distinguish responders from non-responders.

Finally, although hypoxia varies between and within different BC

subtypes, evidence suggests that the hypoxia of the patient’s tumor

itself is different (253). This heterogeneity may be the main

determinant of the overall drug response. Considering the

limitations of HIF-1a inhibitors, a combination of HIF-1a
inhibitors with chemotherapeutic drugs or other agents may

improve outcomes. A preclinical study indicated that digoxin

enhances the sensitivity of triple-negative breast cancer cell lines

to paclitaxel and gemcitabine in vivo (203). Interestingly, molidustat

has been found to enhance the cytotoxicity of gemcitabine in MDA-

MB-231 cells (249). However, currently, the related combination

therapy of BC is in the preclinical stage, and thus, a clear conclusion

cannot be drawn. The latest HIF-1a drug delivery system is based

on nanocarriers that can improve targeting specificity, overcome

solubility problems, reduce drug toxicity, and maintain safe drug

concentrations. Furthermore, the mode of drug administration also

affects the efficacy of HIF-1a-related drugs and should be

investigated in future research (81). In conclusion, the results on

BC cell lines show that aspects, such as comparison of HIF-1a and

HIF-2a inhibition, double vs. single isomer inhibition, different

statuses of hormone receptors, metastasis, and other unexplored

issues, should be considered. Thus, we need to understand the role

of HIFs in BC before targeting them for clinical application (55).
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4 Prospect

HIF-1a, an important transcription factor under hypoxic

conditions, plays a crucial role in the growth and development of the

body as well as various physiological and pathological processes. HIF-

1a induces the expression of numerous genes related to angiogenesis,

growth and survival, invasion and metastasis, glucose metabolism,

epithelial–mesenchymal transition (EMT), immune evasion, and

resistance to various cancer treatments. The overexpression of

hypoxia-inducible factor-1a (HIF-1a) is also closely related to drug

resistance and prognosis in breast cancer patients. Therefore, regulating

the activity of HIF-1a may be a breakthrough in treating many

diseases. Upregulating the activity of HIF-1a can increase cell

survival under hypoxic conditions and enhance angiogenesis in

hypoxic tissues. Conversely, HIF-1a inhibitors can block

angiogenesis and reduce the survival rate of hypoxic or inflammatory

tissues. This article elaborates on the structure and function of HIF-1a,
its mechanism of action in developing breast cancer, and drug

resistance mechanisms. This review also summarizes strategies to

overcome HIF-1a-dependent drug resistance and the current status

of targeted HIF-1a therapy for breast cancer.

However, the complex interactions among multiple pathways

involving HIF-1a pose greater challenges for its clinical application

as an inhibitor. A deeper understanding of the intricate interactions

between oxygen tension, the microenvironment, receptor expression,

and HIF-1a expression is needed. This not only facilitates the

development of new drug combinations but also aids in the
TABLE 2 Continued

Compound Mechanism Type
of
study

Model References

Acriflavine Inhibition of TNBC premetastatic niche formation by targeting HIF-1a In vitro MDA-
MB-
232 cells

(247)

Diallyl Trisulfides DATS inhibits the synthesis of HIF-1a protein by inhibiting the translation level of HIF-1a,
thereby reducing the transcriptional activation of downstream target genes L1CAM, snail,
slug, VEGF and MMP-2, thereby inhibiting the metastasis of TNBC.

In vitro MDA-
MB-
233 cells

(248)
TABLE 3 HIF-1a related clinical studies in BC.

Drug Main Outcomes Conditions Clinical
Phase

Study
Type

Status NCT
Number

Digoxin There was not enough data to analyze HIF-1alpha expression
because of the limited tumor samples

Breast Cancer II Interventional Completed NCT01763931

Bevacizumab,
docetaxel

The rate of serious adverse events is about 18.06% and the rate of
other adverse events is 98.61% in total

Breast Cancer II Interventional Completed NCT00559754

Paclitaxel
plus
bevacizumab

There was no significant difference between HIF-1alpha
polymorphism and longer PFS in patients
treated with paclitaxel and bevacizumab

Metastatic
Breast Cancer

I Observational Completed NCT01935102

Vinorelbine Metronomic dosing of oral vinorelbine in HR+/HER2- MBC as
first-line CT after failure of endocrine therapies showed only
limited benefit in patients

Metastatic
Breast Cancer

II Interventional Completed NCT03007992
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1370800
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhi et al. 10.3389/fimmu.2024.1370800
discovery of novel drug targets for breast cancer treatment. Currently,

drugs targeting HIF-1a are mainly focused on preclinical research,

and their actual clinical effects, patient tolerance, dosing regimens, and

other factors require further evaluation and validation. Additionally,

drug delivery and efficacy are limited by factors such as tumor

acidosis, hypoxic microenvironments, and elevated interstitial fluid

pressure within tumors. Therefore, there is a need to develop more

suitable drug carriers and delivery systems to enhance therapeutic

outcomes. In conclusion, more comprehensive and in-depth research

is required on HIF-1a and the pathways it mediates. Although current

clinical trials have not yet demonstrated satisfactory results for HIF-1a
inhibitors as monotherapy in breast cancer treatment, with

continuous and in-depth research on the role of HIF-1a in cancer

development, it is believed that targeted HIF-1a therapeutics will

bring new hope to breast cancer patients in the near future.
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BC Breast cancer

EMT Epithelial-mesenchymal transition

HIF Hypoxia-inducible factor

HIF-1a Hypoxia-inducible factor-1a

HIF-2a Hypoxia-inducible factor-2a

HIF-3a Hypoxia-inducible factor-3a

HIF-1b Hypoxia-inducible factor-1b

bHLH- PAS Basic helix-loop-helix/Per-ARNT-Sim

TADs Transactivation domains

C-TAD C-terminal transactivation domain

N-TAD N-terminal transactivation domain

CBP/p300 cAMP response element-binding protein and p300 protein

ODDD Oxygen-dependent degradation domain

NLS Nuclear localization signals

PHDs Prolyl hydroxylase domain-containing proteins

FIH Factor inhibiting HIF-1a

VHL Von Hippel–Lindau protein

Ub Ubiquitin

HRE Hypoxia response element

TNBC Triple negative breast cancer

NF-kB Nuclear factor-kB

IKK Inhibitor of NF-kB kinase

TNF Tumor necrosis factor

IL1 Interleukin 1

VEGF Vascular endothelial growth factor

VEGFR Vascular endothelial growth factor receptor

HGF Hepatocyte growth factor

VCAM1 Vascular cell adhesion molecule 1

BRK Breast tumor kinase

C1QBP Complement C1q binding protein

BDNF Brain-derived neurotrophic factor

ROS Reactive oxygen species

ANGPTL4 Angiopoetin-like 4

OXPHOS Oxidative phosphorylation

GLUT Glucose transporter

HK2 Hexokinase 2

PFK1 6-phosphofructokinase1

ALD Aldolase
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ENO Enolase

GAPD Glyceraldehyde-3-phosphate dehydrogenase

PGK Phosphoglycerate kinase

PK Pyruvate kinase

LDHA Lactate Dehydrogenase A

PKM2 Pyruvate kinase isozymes M2

PDK1 Pyruvate dehydrogenase kinase 1

PDH Pyruvate dehydrogenase kinase

MCT Monocarboxy latetransporter

TCA Tricar boxylic acid

Twist1 Twist-related protein 1

STAT3 Signal transducer and activator of transcription 3

ZEB Zinc finger E-box binding homeobox

TGF-b Transforming growth factor-b

CSF-1 Colony-stimulating factor 1

MMP Matrix metalloproteinase

CXCR4 C-X-C chemokine receptor type4

CXCR3 C-X-C chemokine receptor type3

BNIP BCL2/adenovirus E1B 19 kDa interacting protein

Bid BH3 interacting domain death agonist

BAX Bcl-2-associated X protein

BAK BCL2 antagonist/killer

Bad BCL2 associated agonist of cell death

BNIP3 B cell lymphoma 2 interacting protein 3

NIX NIP3-like protein X

BCL2 B-cell lymphoma 2

Bcl-XL B-cell lymphoma 2-extra-large protein

BNIP3L BNIP3-like protein

PI3K Phosphoinositide 3-kinase

AKT Protein kinase B

mTOR Mechanistic target of rapamycin

BIM BCL2 like 11

Tregs Regulatory T cells

PDL1 Programmed cell death ligand 1

ERO1 Endoplasmic reticulum oxidoreductin 1

FOXP3 Forkhead box protein 3

IL10 Interleukin 10

GM-CSF Granulocyte-macrophage colony-stimulating factor

NF45 Nuclear factor 45

NF90 Nuclear factor 90
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LOX Lysyl oxidase

ITGA5 Integrin alpha 5

MDR1 Multidrug resistance gene 1

MRP1 Recombinant multidrug resistance associated protein 1

BCRP Breast cancer resistance protein

ELP3 Elongator complex protein 3

PAK1 P21-activated protein kinase

AMPK AMP-activated protein kinase

ATG5 Autophagy-related gene 5

CSC Cancer stem cell

Oct4 Octamer transcription factor 4

SOX2 SRY-box transcription factor 2

NANOG Nanog homeobox

KLF4 Kruppel-like transcription factor 4.
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