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Although most follicular-derived thyroid cancers are well differentiated and have

an overall excellent prognosis following treatment with surgery and radioiodine,

management of advanced thyroid cancers, including iodine refractory disease

and poorly differentiated/undifferentiated subtypes, is more challenging. Over

the past decade, better understanding of the genetic drivers and immune milieu

of advanced thyroid cancers has led to significant progress in themanagement of

these patients. Numerous targeted kinase inhibitors are now approved by the U.S

Food and Drug administration (FDA) for the treatment of advanced, radioiodine

refractory differentiated thyroid cancers (DTC) as well as anaplastic thyroid

cancer (ATC). Immunotherapy has also been thoroughly studied and has

shown promise in selected cases. In this review, we summarize the progress in

the understanding of the genetic landscape and the cellular and molecular basis

of radioiodine refractory-DTC and ATC, as well as discuss the current treatment

options and future therapeutic avenues.
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Introduction

Thyroid cancer (TC) subtypes vary according to originating cell,

histopathology, and clinical course. TCs arising from the

thyroglobulin-producing follicular cells of the thyroid gland are

classified based on their differentiation status, spanning from well-

differentiated TCs (DTCs) to poorly differentiated (PDTC) (5% of

TCs) or anaplastic (undifferentiated) (ATC) (1-2% of TCs) subtypes

(1, 2). DTCs include papillary (PTC), follicular (FTC), and

oncocytic carcinomas of the thyroid (OCA; formerly known as

Hürthle cell TC), which account for about 90%, 4%, and 2% of all

TCs respectively (3) (Figure 1). Aside from carcinomas originating

from the follicular cells of the thyroid, medullary TC (MTC),

derived from parafollicular cells (C-cells), accounts for 1-2% of

TCs (3).

In the United States, TC is the 12th most common cancer

diagnosis overall and the 7th most common for women, accounting

for an estimated 44,000 new cases in 2022 (4, 5). TC incidence is

nearly three times greater in women than men (4). In addition, the

incidence rate increases with age, with an average age at diagnosis of

52 for women and 69 for men (4). Although incidence of this cancer

has sharply increased over the last 3 decades, mortality rates have

remained relatively low and stable at around 0.5 per 100,000 cases
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(4). While DTCs have a promising prognosis with a 98.4% 5-year

relative survival, ATCs are more aggressive, with historical overall

survival of only four to six months, accounting for 40-50% of all

TC-related deaths in the United States (5, 6).

Although most DTCs have good overall outcomes and respond

well to conventional treatment strategies such as surgery and

radioactive iodine (RAI), 5-10% of patients will develop distant

metastatic disease, which is often refractory to RAI (7).

Additionally, ATC presents a unique clinical challenge to

diagnose and treat effectively due to its rapid growth, highly

metastatic nature, and relatively high mutational burden (6).

Recent advances in molecular biology techniques have enabled

deeper understanding of the genomic, cellular, and immunologic

characteristics of advanced DTC and ATC, leading to FDA

approval of several targeted therapies including sorafenib (DTC),

lenvatinib (DTC), cabozantinib (second-line DTC), selpercatinib

and pralsetinib (RET-alteredaltered TCs), as well as the

combination of dabrafenib/trametinib (BRAFV600E mutated

TCs) (8–13). Due to high expression of programmed death-1

(PD-1) and its ligand PD-L1 in more aggressive thyroid cancers,

these carcinomas may benefit from therapies with immune

checkpoint inhibitors (ICIs), especially ATC (14–16). Multiple

studies have shown immunotherapy to be a promising option for
FIGURE 1

Follicular-derived thyroid cancer evolution. Well-differentiated TC histotypes (PTC, FTC, and OCA) are characterized by driver mutations in BRAF,
RAS, RET, and mitochondrial DNA. It is thought that these DTCs, through the accumulation of various mutations, become less differentiated and
more aggressive, potentially leading to ATC. Created with BioRender.com.
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patients with ATC (17–19). While much progress has been made,

further study is needed to elucidate the mechanisms underlying

ATC development in order to delineate novel predictive biomarkers

and to improve treatment and survival outcomes for this fatal

disease. In this review, we will focus on follicular-derived thyroid

cancers, summarizing current understandings of their pathogenesis

and the role of the immune system, contemporary treatment

strategies, as well as future therapeutic perspectives.
Clinical characteristics of TC

TC types vary by severity and are classified based on the TNM

(Tumor, Node, Metastasis) staging system, which considers tumor

size, lymph node status, and metastatic stage (31). Each subtype

presents with unique clinical and cytomorphological features and

can be different ia l ly diagnosed via histopathological

examination (32).

Papillary Thyroid Cancer (PTC) is a slow growing malignancy

with the highest incidence of all TC subtypes, as it affects

approximately 90% of patients with TC. Despite relatively high

incidence, PTC generally has a better prognosis than any other

subtype with a 5-year relative survival of 99% (4). PTC cells display

larger, elongated nuclei with a clear appearance compared to the

normally round follicular cell. Histological subtypes include follicular,

tall cell, columnar, diffuse sclerosing and hobnail variants (33).

Patients with PTC may present with a slow growing thyroid nodule

and/or palpable cervical lymph nodes. In most cases, patients are

asymptomatic. PTC has been found to metastasize to the lymph

nodes primarily in the neck, as well as to the lungs (34, 35).

Follicular Thyroid Cancer (FTC) has a lower incidence than PTC

at 4-5% of all TC cases and a slightly lower 5-year survival rate of 91-

97.9% (3). FTC can be classified into minimally invasive, encapsulated

angioinvasive, and widely invasive subtypes (36). Histological

characteristics of FTC consist of enlarged and elongated nuclei,

fibrotic scarring of the tumoral tissue, and an abundance of

eosinophils in the lumen of the follicle (37, 38). Patients with FTC

have higher rates of distant metastases (e.g. lung, bone, liver) than PTC

and rarely metastasizes to the lymph nodes (39).

Oncocytic carcinoma of thyroid (OCA), previously known as

“Hürthle cell” carcinomas, make up 1-2% of all TCs and have an

average 5-year survival of 91% (40). OCAs usually present as an

encapsulated tumor and are subclassified by the degree of capsular

and/or vascular invasion into minimally invasive, encapsulated

angioinvasive, and widely invasive subtypes (40). OCA is

distinguished from other TC histotypes by an extensive presence

of oncocytic cells (>75%) with eosinophilic cytoplasm caused by an

abundance of dysfunctional mitochondria, a lack of nuclear features

indicative of PTC, and high-grade features such as high mitotic

activity and tumor necrosis (32, 41). OCA has been reported to be

more prone to recurrence and metastasis than the non-oncocytic

TCs (42). In fact, metastatic state has been reported to be an

independent prognostic factor in OCA with distant metastatic

disease significantly decreasing 5-year survival rates to 46% from

98.6% and 97.6% in local or regional disease, respectively (43).
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Poorly differentiated thyroid carcinoma
and differentiated high-grade
thyroid cancer

There has been much debate on how to classify carcinomas of

the thyroid with intermediate prognoses and histological features

falling between the classically differentiated TCs and the

undifferentiated ATC. However, in the most recent fifth edition of

the WHO classification, PDTC and DHGTC were recognized as

two distinct types of high-grade non-anaplastic follicular cell-

derived carcinomas. Tumors in both of these classes are known to

often be large and highly invasive (32). DHGTC is a new

intermediate entity where tumors retain the architectural and

cytologic properties of the well-differentiated TCs but have a high

mitotic rate and/or tumor necrosis is present. PDTCs are further on

the dedifferentiation spectrum, characterized by solid, trabecular or

insular growth in addition to tumor necrosis and/or high mitotic

activity (32). PDTC and DHGTC are relatively rare subtypes of

thyroid cancer, comprising about 1 to 6.7% of TCs and have a much

poorer prognosis than well-differentiated TCs (32). DHGTC and

PDTC have been reported to have similar 5-year disease specific

survival rates of 68% and 70%, respectively (54).

Anaplastic Thyroid Carcinoma (ATC) is known for being the

most aggressive form of TC with historically low survival and cure

rates (6). It affects 1-2% of all TC patients in the United States.

ATCs arise from previously well differentiated TC which acquire

additional mutations, ultimately leading to anaplastic

transformation (3, 55). Though ATCs are automatically classified

as stage IV regardless of tumor burden or metastatic state, they are

further subclassified according to locoregional and distant spread.

Tumors confined to the thyroid gland are stage IVA, tumors with

extrathyroidal extension and/or spread to regional lymph nodes are

stage IVB, and tumors that have spread to distant sites outside the

neck are stage IVC (56). Further highlighting ATCs’ aggressive

nature, distant metastatic disease is seen in about 50% of patients at

diagnosis (57). Common presenting symptoms of ATC include

dysphonia, dysphagia, neck or ear pain, dyspnea, and weight loss

(57). Morphological features of ATC include tissue invasion, high

mitotic activity and necrosis (58).
Mutational landscape of TC

During the last 10 years, major advances have been made in

genomic profiling of TCs, which has uncovered some fundamental

mutational schemes driving pathogenesis. Though TCs tend to have

lower mutational burdens than other tumors such as lung cancer

and melanoma, the mutational profi les heavily drive

clinicopathological course and treatment strategies (59)

(Figure 1). The main pathways that are highly implicated in

thyroid tumorigenesis are the mitogen-activated protein kinase

(MAPK) and phosphatidylinositol-3 kinase (PI3K)/AKT signaling

cascades (Figure 2) (60). RAS, RAF, MEK, and ERK are the main

protagonists of the MAPK pathway, which is involved in cell

differentiation, proliferation, and apoptosis. Signal transduction
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through the MAPK pathway occurs after extracellular growth

factors bind to a variety of receptor tyrosine kinases (RTKs)

which lead to RAS activation and binding to BRAF, that

subsequently leads to activation of MEK and ERK. TCs often

harbor mutually exclusive mutations in the BRAF (such as

BRAFV600E) or RAS (HRAS, NRAS, and KRAS isoforms)

components of the MAPK pathway (60, 61).

The PI3K/AKT pathway is the second most frequently

dysregulated pathway in TC. Although RAS is a classical dual

activator of both PI3K/Akt and MAPK signaling, RAS mutations

seem to preferentially activate the PI3K-AKT-mTOR pathway

which is involved in cell proliferation and survival (62). Point

mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit alpha (PIK3CA) and phosphatase and tensin

homolog (PTEN), a tumor suppressor and PI3K antagonist, also

lead to PIK3/AKT pathway activation and promote thyroid
Frontiers in Immunology 04
tumorigenesis (60). Other common TC mutations activating

MAPK and PI3K pathways include gene fusions of proto-

oncogenes, such as those occurring in the rearrangement during

transfection (RET) and neurotrophic-tropomyosin receptor kinase

(NTRK) genes, which encode RTKs (63). Various mutations in

genes involved in transduction and regulation of these pathways

lead to constitutive activation of MAPK and PI3K/Akt signaling

and ultimately to uncontrolled cell survival and proliferation (64).

Furthermore, genomic mutations have been found to be

correlated to responses to RAI treatment. Overactivation of the

MAPK pathway suppresses the expression of thyroid-specific genes

required for iodine uptake such as the sodium iodide symporter,

leading to RAI refractoriness (65, 66). Inhibition of BRAF or MEK

has been shown to reverse this effect and restore RAI avidity (65).

Further, exceptional responders to RAI were found to have an

enrichment of RAS, class 2 BRAF, or RTK fusion mutations, which
FIGURE 2

Signaling pathways and key mutations involved in thyroid cancer tumorigenesis and targeted therapies. Overview of the MAPK (left) and PI3K/AKT
(right) pathways which are aberrantly activated in TC. Common mutations resulting in a loss or gain of function are depicted in red and green,
respectively. Dashed arrows show targets of multi-kinase inhibitors (RET, PDGFR, and VEGFR) and single kinase inhibitors targeting BRAF, MEK, or
mTOR. Created with BioRender.com.
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act through RAF dimerization, leading to a low MAPK

transcriptional output. On the other hand, non-responders were

associated with the BRAFV600E mutation, which signals as a

monomer that is unresponsive to negative feedback, resulting in

high flux through the MAPK pathway. They were also found to be

enriched in mutations of genes regulating mRNA splicing and the

PI3K pathway (67).

PTC has a relatively low mutational burden compared to other

carcinomas, likely contributing to its slow growth and less aggressive

clinical nature (55, 68). Alterations in BRAF, mainly BRAFV600E

(61.7%), RAS (12.9%), and RET fusions (5%) are hallmark drivers in

PTC (64). Based on a BRAFV600E-RAS gene expression score, PTCs

may be grouped according to their molecular differences as

BRAFV600E-like and RAS-like PTC. BRAFV600E mutation is

linked to enhanced MAPK activation and is more frequent in

classic and tall-cell variant PTC (64). Several studies have reported

an association between the V600E variant and aggressive disease

features such as RAI refractoriness, lymph node metastases,

locoregional invasion, and recurrence (64, 67, 69). Interestingly,

PTCs with coexisting mutations in BRAF and the telomerase reverse

transcriptase (TERT) promoter are associated with aggressive

clinicopathological characteristics, more so than either mutation

alone (70, 71). On the other hand, RAS mutations occur mostly in

follicular-variant PTC and non-invasive follicular thyroid neoplasm,

which have a genomic profile more similar to FTC. RAS-like PTCs

are associated with a decreased risk of recurrence, RAI uptake, and

less aggressive phenotypes (64, 67, 69). Aside from alterations of the

MAPK pathway, some well-differentiated PTCs have been reported

to harbor mutations in EIF1AX as well as fusions within PPAR-g,
NTRK1/3, and THADA (72). Genomic analyses reveal that PTC

bears a relatively stable genome, which could explain the usually

indolent course of this disease. Nonetheless, transformation of PTC

to ATC may occur and, therefore, continued study is necessary for

identification of those PTCs early that will dedifferentiate and

become aggressive and life-threatening.

In FTC, the most common mutations are in the RAS gene

family (HRAS, KRAS, and NRAS), especially in the NRAS isoform,

which has been found to be mutated in as many as 57% of RAS-

mutant FTC cases (2). Although RAS mutations were proposed to

be negative prognostic markers, they do not appear to be predictors

of disease-specific mortality (73). Another standout genetic

alteration in FTC is the PAX8-PPARg gene rearrangement, which

has been reported in multiple studies to occur at differing incidences

(12-53%) but appears to have little correlation with survival,

invasiveness, or prognosis (2, 74). TERT promoter mutations

have been described in about 15% of FTCs and are associated

with worse clinical and prognostic features (75). In fact, in a

genomic analysis of advanced DTCs and ATC, TERT mutations

were more commonly reported in widely invasive FTCs (91.67%)

than any other subtype (75). Furthermore, point mutations of

driver genes EIF1AX and DICER1 as well as somatic arm-level

copy changes (loss of 22q) have been described in FTC, although

their clinical significance still needs to be clarified (69). In FTC the

total mutational burden has been reported to be a positively

correlated predictor of mortality and recurrence, independent of

histopathological classification (76).
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Uniquely, OCAs harbor numerous mutations affecting the

mitochondrial DNA (mtDNA) (71%), which is likely linked to

the abundant mitochondrial load characterizing these cells. Sixty-

seven percent of the mtDNA mutations observed occur in the genes

encoding complex I of the electron transport chain. However, no

significant correlation was observed between mitochondrial

mutations and tumor aggressiveness, implicating mtDNA

mutations in the tumorigenesis rather than progression of OCA

(77). Like other DTCs, OCAs have significant dysfunction in the

MAPK and PI3K/AKT/mTOR pathways caused by numerous

somatic mutations in their components. Interestingly,

overexpression of BRAF (12%) has been detected due to whole

chromosome duplication of chromosome 7 in OCA tumors (77). At

least one RTK was found to be mutated in 20% of OCAs such as

RET (4%), MET (4%), EGFR (2%), and PDGFR (2%) (77). RAS

mutations (15%) are also common with NRAS (9%) being the most

commonly mutated isoform (77). Along with that, EIF1AX, NF1,

TP53, CDKN1A mutations were detected in 11%, 9%, 7%, and 4%

of OCAs, respectively (77). Further, they have also been reported to

harbor mutations in TERT (22%), which are more common in the

widely invasive (32%) than the minimally invasive subtype

(5%) (77).

PDTC and DHGTC harbor driver mutations in BRAF and RAS.

As DHGTC derives from PTC, it is more associated with

BRAFV600E mutations (53%) and RAI refractoriness (54). On

the other hand, PDTC more commonly harbors RAS mutations

(48%) and has a higher rate of RAI avidity (54). As seen in other

TCs, the driver mutation of either subtype is predictive of clinical

behavior. RAS mutations are more correlated with enhanced tumor

growth and risk of distant metastases while BRAF-mutants tend to

be smaller and more prone to nodal metastases than distant disease

(54, 68). Aside from BRAF/RAS mutations, high grade non-

anaplastic TCs acquire additional genomic alterations which are

responsible for their dedifferentiation. For instance, TERT

mutations, which are known to be associated with more

aggressive tumor behavior, were reported in 59% and 52% of

DHGTCs and PDTCs, respectively (54). Although TP53, PTEN,

and EIF1AX mutations were detected in both types, PDTC had

significant enrichment in these mutations (54). Additionally, TERT,

TP53 and PTEN mutations were associated with decreased distant-

metastasis free survival (54). Gene fusions such as those involving

RET, PAX8-PPARg, ALK, and NTRK were detected in only 10% of

either DHGTC or PDTC.

Similar to PTC and FTC, ATC has driver mutations in BRAF

(19-45%) and RAS (9.5-27%); however, their frequencies are lower

than in DTC (55, 68, 75). Due to the availability of effective targeted

therapy, ATCs harboring BRAFV600E mutations have been

reported to be associated with significantly enhanced overall

survival (OS) compared to RAS-mutated ATC. On the other

hand, tumors that are wild-type for both BRAF and RAS

mutations have been found to be enriched in NF1 mutations and

carry an intermediate OS (78). The two most frequent mutations

occurring in ATC are TP53 and TERT promoter mutations, both

reported to occur in about 65-73% of cases (55, 68). Interestingly,

both mutations often coexist with BRAF and RAS mutations (78).

Also, activating mutations in the PI3K/AKT pathway such as PTEN
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and PI3KCA occur more frequently in ATC (37%) than DTC (18%)

(55). Further, ATC harbors mutations less typical for thyroid

tumors in genes associated with the SW1/SNF chromatin

remodeling complex (18%-36%), histone modification (19%), cell

cycle regulation such as CDKN2A, CDKN2B, and CCNE1 (29%),

and tumor immune regulation (PDL1, PDL2, and JAK2) (55, 68).

Additionally, some fusions involving RET, ALK, and NTRK 1-3

genes have been reported at low incidences in ATC (63).

Interestingly, in this panorama of mutations, four distinct

subtypes of molecular patterns of ATC have been proposed: (1)

type 1 ATC, BRAF-positive ATC, likely evolving from PTC; (2) type

2 ATC, NRAS-positive ATC, which may originate from FTC; (3)

type 3 ATC, which carries RAS mutations or more atypical ones

(PTEN, NF1 and RB1) and is likely to originate from FTC or from

OCA; and (4) mixed ATC, which harbor loss-of-function mutations

in the genes of cell-cycle regulators, such as CDKN2A and

CDKN2B, and do not seem to derive from a pre-existing DTC

(55, 68, 75, 79).
Thyroid cancer
cellular microenvironment

Understanding interactions between tumor cells and other

components of the TME is crucial to effectively direct

immunotherapeutic approaches in the treatment of TC,

particularly for those not responsive to conventional therapies. In

TCs, the TME is composed of cancer associated fibroblasts (CAFs)

and various immune cells categorized as tumor associated myeloid

(TAMC) or lymphoid (TALC) cells (80). TAMCs include

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs),

neutrophils (TANs), and dendritic cells (TADCs), while TALCs

include T cells and NK cells (69). Based on recent genomic analyses,

in contrast to DTC and PDTC, ATC has higher number of immune

infiltrates in TME, particularly of type 2 TAMs and dysfunctional/

exhausted T cells and NK cells (81–83). In addition, ATC is

characterized by high expression of PD-L1 compared to other TC

subtypes (16). Based on this altered immune profile, ATC tumors

may potentially benefit from ICI therapy, adoptive T and NK cell

therapies as well as therapeutic strategies targeting TAM

populations. Moreover, due to ATC’s relatively high tumor

burden, neoantigen vaccines also offer a promising therapeutic

scheme. For each TC subtype, the TME composition is unique

with distinct interplay between the immune, stromal, and tumor

cells. Understanding these interactions not only provides multiple

targets for therapies but also allows for personalized approaches to

potentially enhance outcomes for patients. Here, we detail the

different cell subsets involved in conferring the pro-tumorigenic

nature of the TME in ATC and other TCs (Figure 3).

Cancer-Associated Fibroblasts (CAFs) are involved in the

development and progression of TC through cell proliferation

and extracellular matrix (ECM) remodeling (84). CAFs are

derived from various sources including resident tissue fibroblasts,

mesenchymal stem cells, bone-marrow derived fibroblasts,

adipocytes, endothelial, and epithelial cells and are activated in

response to the secretion of soluble factors such as TGF-b,
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epidermal growth factor (EGF), reactive oxygen species (ROS),

platelet-derived growth factor (PDGF), and interleukin (IL)-6

from thyroid tumor cells (85). In turn, CAFs promote cancer cell

growth, invasion, angiogenesis, and metastasis through production

of various growth factors (vascular endothelial growth factor

(VEGF), EGF, connective tissue growth factor (CTGF), insulin-

like growth factor (IGF), and hepatocyte growth factor (HGF)),

cytokines (IL-6, IL-11, and IL-17), chemokines (CCL7, CCL5,

CXCL12, and CXCL7), and the extracellular matrix (ECM)

molecules (collagen, fibronectin, elastin, laminin) (84, 85). CAFs

are recruited in the stroma at the tumor invasive front where they

synthesize and deposit collagen, which is then cross-linked by the

thyroid tumor-cell derived enzyme LOX. Collectively, this

coordinated action leads to matrix stiffness and progression from

PTC to the less differentiated PDTC and ultimately ATC (86).

CAFs are classified into two major subsets: myofibroblasts

(myoCAF), highly expressing genes such as ACTA2, MCAM,

MYH11, and TAGLN, and inflammatory fibroblasts (iCAFs),

which overexpress genes involved in inflammation regulation

such as CXCL1, CXCL6, CXCL8, IL-32, C1S, and C1R (83). The

ATC-derived CAFs are mostly iCAFs, whereas the PTC-derived

CAFs are mostly myoCAFs (83). In addition, ATC-derived CAFs

are characterized by high expression of cytokines and chemokines,

including CXCL1, CXCL3, CXCL6, CXCL8, IL6, IL-24, and IFI27

(83). Thyroid CAFs promote TC growth and progression by

increasing the expression of immune checkpoints such as CTLA4,

PDL1/2 and IDO1 and downregulation of CD8+ T cells and

endothelial cells (87). Patients with a high CAF score had

remarkably increased risk of aggressive outcomes in both ATC

and PTC. Additionally, a high CAF score in TC patients was shown

to be positively correlated with an increased expression of immune

checkpoint markers, such as PD-L1, PD-L2, CD86, CD80 and

CTLA4, and an increased expression of markers of activated

TAMs, including EMR1, CSF1R, CD163 and ITGM in ATC and

PTCs (88). Consequently, further studies are required to identify

molecular signaling pathways regulating the immune modulating

role of CAFs in order to design potential novel therapeutic

approaches able to abolish the pro-tumorigenic immunity seen

in TC.
Tumor infiltrating immune cells

Tumor-associated macrophages (TAMs) are the largest

component of infiltrating immune cells, representing more than

50% of the total cells, and are generally associated with poor survival

in TC (15, 89, 90). They are subdivided into the pro-inflammatory/

anti-tumor M1 (CD64, IDO, SOCS1, CXCL10, TNF-a and IL-1)

and the anti-inflammatory/pro-tumor M2 (MRC1, TGM2, CD23,

CCL22, IL-10 and IL-13) macrophages. While TAMs compose a

smaller percentage of the total cells in PTC, they tend to be

positively associated with more aggressive pathologies such as

larger tumor sizes and lymph node metastasis (91). Compared to

PTCs, the ATC TME is characterized by a polarization toward M2

macrophages (SELENOP+, SPP1+MARCO+, and SPP1+TGFBI+)

and a decrease in M1 macrophages (IL-1B+, FCGBP+, and TXNIP
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+) (68, 83, 92–94). Soluble factors produced by ATC cells induce

pro-tumor M2-like polarization of monocytes through T-cell

immunoglobulin and mucin-domain containing protein-3

(TIM3). TIM3 and CSF1R expression as well as several pathways,

such as E2F targets, IL-6-JAK-STAT3, and G2M checkpoint are

positively correlated with the TAM-related prognostic index and T

cell dysfunction in ATC (94). FZD6, RBBP8, PREX1 and HSD3B7

expressed by M2 macrophages are prognostic factors that are

correlated with proliferation and invasion of ATC (95, 96).

Recently, IL2RA+VSIG4+ TAMs have been identified as an ATC-

specific subset with bifunctional M1 and M2 phenotype signatures

that correlate with high lymphocyte infiltration and better

prognosis (79). TCs could benefit from therapies that will deplete

M2 TAMs or reprogram M2 towards an M1 phenotype; thus,

further preclinical research and clinical trials need to be

conducted to assess its potential application.

Myeloid derived suppressor cells (MDSCs) are a subtype of

myeloid cells known to have an immunosuppressive function in

cancer through ROS, arg-1, nitric oxide (NO), IL-10, TGFb,
cyclooxygenase 2 (COX-2) and PD-L1 and are usually associated

with a poor prognosis (97). Peroxynitrite (PNT), the product of the

interaction between superoxide and NO, could cause nitration of T

cell receptor-CD8 complex, reducing its binding to the peptide

MHC class I complex and rendering T cells unresponsive to

antigen-specific stimulation (98). PNT has also been shown to

hamper the recognition of cancer cells by cytotoxic T

lymphocytes (98). Further, accelerated depletion of L-arginine
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and cysteine in the TME caused by MDSCs results in decreased

CD3 chain expression, diminished production of IL-2 and IFN-g,
and inhibited T cell proliferation (98). MDSCs have also been

shown to alter immune activity by promoting Foxp3+ T regulatory

(Treg) cell differentiation via IL-10 and TGFb secretion as well as

enhancing Treg trafficking to tumor sites through CCR5 (98).

MDSCs can also activate Th17 cells by secretion of IL-6 and

TGF-b (99). IL-17 increased the immuno-suppressive function of

MDSCs through the upregu la t ion o f a rg -1 , mat r ix

metalloproteinase 9 (MMP-9), indoleamine 2,3-dioxygenase

(IDO), and COX-2 (99). Circulating MDSCs are significantly

higher in ATC patients compared to healthy controls and

correlated with increased serum levels of IL-10 (97). Along with

that, long-term survivor (LTS) ATC patients, who have survived

longer than two years, display lower numbers of tumor-infiltrating

MDSCs compared to ATC control patients (100).

Tumor-associated dendritic cells (TADCs) display an immature

phenotype characterized by low levels of co-stimulatory molecules,

high levels of inhibitory molecules and the production of

immunosuppressive cytokines (IL-10 and TGF-b), which lead to

poor T and NK cell-mediated immune responses (101, 102).

Further, it has been suggested that TADCs also contribute to

tumorigenesis through crosstalk with Tregs (101). Interruption of

the DC and Treg axis could be a promising therapeutic strategy to

quell the immunosuppressive TME in TC. The function of TADCs

can be restored by blocking immunosuppressive pathways, such as

those associated with PD-1, IL-10 secretion, and lactic acid
FIGURE 3

Schematic representation of the tumor microenvironment in thyroid cancer. Thyroid cancer (TC) is characterized by a complex tumor
microenvironment (TME) with multiple interactions between tumor cells and various immune and stromal cells. Tumor cells induce activation and
differentiation of fibroblasts into myCAFs or iCAFs by releasing multiple factors such as TGFb, EGF, PDGF, HGF, IGF, etc. In return, myCAFs promote
tumor progression and angiogenesis. The iCAF subset attracts and induces suppressive functions of myeloid cells by releasing inflammatory
cytokines. ATC tumor cells induce M2 macrophage polarization through TIM3 expression. M2 macrophages and MDSCs play a key role in inhibiting
T cell effector function in TC. Immature DCs also suppress the cytolytic functions of T cells and CD56dimCD16+ NK cells in ATC. Tumor cells also
recruit neutrophils which act to promote cancer cell proliferation and invasiveness. The TME in ATC is characterized by an expansion of exhausted
CD8+ T cells expressing PD1, CTLA4, and TIM3 and of an immunosuppressive NK subset (CD56bright CD16low). Dashed arrows show immune
checkpoint inhibitors targeting PD-1 and CTLA-4. Created with BioRender.
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production (101). While TADCs infiltration has been reported in

PTCs, further studies are required to determine DC involvement in

ATC (103, 104). To combat the immunosuppressive effects of

TADCs, neoantigen-based DC vaccine therapy has been explored

as a treatment option in TC. A phase I clinical study demonstrated

that mature DC vaccination combined with low-dose IL-2 was well

tolerated when administered to advanced PTC and FTC patients

(105). Presently, there is not a recognized ATC-specific antigen.

However, as ATC has a relatively high mutation burden, the

application of a DC vaccine has potential as a treatment in ATC,

with need for further exploration and development of tumor-

specific antigens and neoantigens.

Tumor-associated neutrophils (TANs) have a controversial role

in cancer despite their inflammatory function. On one hand, TANs

are able to kill tumor cells, stimulate the T cell-dependent anti-

tumor response, and inhibit angiogenesis (106–108). On the other

hand, TANs can favor genetic instability in cancer cells and release

cytokines (oncostatin-M, VEGF-A) or granule proteins (neutrophil

elastase) that are involved in the promotion of cancer cell

proliferation, invasiveness, and angiogenesis (109–111). In fact,

for TCs, the neutrophil-to-lymphocyte ratio (NLR) has been

explored as a prognostic indicator, in which a high NLR has been

associated with aggressive forms of TCs such as PDTC and ATC

and/or poor treatment responses (112, 113). TC-cell released factors

such as CXCL8/IL-8 and GM-CSF recruit neutrophils and

significantly improve their survival. Furthermore, TCs induced

the production of factors by TANs (ROS, the expression of

proinflammatory and angiogenic mediators (CXCL8/IL-8, VEGF-

A, and TNF-a), and the release of MMP-9) that can retain the

ability to promote tumor progression. ATCs induce neutrophil

extracellular DNA trap (NET) release, whereas PTCs or normal

thyroid cells did not. ATCs-induced NET production occurred in a

ROS-dependent and cell death-independent manner and was

associated with mitochondrial reactive oxygen species production,

mitochondrial DNA release, and ATC cell growth (114). Further

research is needed to understand the mechanisms by which

neutrophils influence TC development and progression.

Natural killer (NK) cells are known to have an anti-tumor

function by directly killing tumor cells via granzyme B and

perforins (115). Two NK subgroups have been identified: 1)

CD56dimCD16+ NK cells with typical cytotoxic functions and 2)

CD56brightCD16-/low NK cells which are only weakly cytotoxic and

have a more immunoregulatory role, mediated through the

secretion of IL-13 (116, 117). Compared to healthy individuals,

patients with PTC have a significant enrichment of the

dysfunctional CD56brightCD16-/low NK cells (117). Further, ATC

patients have been characterized by an increased frequency of the

CD56hiCD16hi/lo NK subset with significantly reduced cytotoxicity

and high expression of exhaustion markers such as PD-1 and TIM3

(14, 115). PD-1 and TIM3 blockade reinvigorated cytotoxicity of

both the dysfunctional CD56hiCD16hi/lo and the more functional

CD56loCD16hi NK cell subsets from ATC patients, suggesting that

NK cells might be potential treatment targets in advanced thyroid

cancers (115). Moreover, patients with ATC may benefit from NK

cell-based immunotherapy as ATC tumor-derived NK cells display

a suppressed phenotype due to downregulated expression of natural
Frontiers in Immunology 08
killer group 2, member D (NKG2D), a constitutively expressed NK

cell receptor which is critical for cancer immunosurveillance (118).

In fact, in a preclinical pulmonary metastasis model of ATC, NK

cells were able to target metastatic ATC; highlighting that NK cell-

based immunotherapy may serve as an effective therapeutic

approach for ATC (82).

Tumor-infiltrating T cells are the heterogeneous population

that include both the antitumoral CD8+ cytotoxic T cells (CTLs)

and T helper (Th1) cells and the pro-tumoral Th2 and Treg cells

(119–123). In PTC patients, the CD8+ CTL, CD4+ T cells and B cell

infiltration is associated with better outcomes and enhanced

survival rate (124). Tregs are involved in the suppression of

immune responses, favoring disease progression and lymph node

metastases in various cancers (14). A high infiltration of Treg has

been reported in PTC tumors and metastatic lymph node tissues

when compared to multinodular goiter patients and it was

associated with the aggressiveness and recurrence of the PTC

(124). Moreover, CD4+ and CD8+ T cells displayed functional

exhaustion in patients with metastatic DTC (125, 126). While

ATC displays enhanced immune infiltration compared to PTC,

TILs characterized by expression of T-cell exhaustion markers such

as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PDL-1/

PDL-2, PD-1, PVR, TIGIT, LAG3, and TIM-3 (14). The role of

other major CD4+ T cell subsets such as Th17 cells and follicular

helper T (Tfh) cells in TC have not been studied thoroughly (14).

Moreover, follicular CD8+ T cells (CD8+CXCR5+) are significantly

increased in ATC tumors compared to healthy PBMCs; however,

their function is still unclear (127). Collectively, enhancement of

exhausted T cells in ATC warrants clinical trials of immune-based

cancer therapy including immune checkpoint inhibitors, adoptive T

cell, and CAR-T (ICAM-1 CAR-T) cell therapies.
Current treatments and
future directions

Neck surgery and selected use of RAI have been the mainstay of

therapy in differentiated thyroid cancers for many years. However,

historically, therapeutic options for patients with metastatic disease

refractory to RAI were limited. In the past decade, treatment of

advanced DTCs has undergone major advancements. Broader

access to next generation sequencing of tumors and better

understanding of tumor biology has opened the horizons to novel

targeted therapies which have led to significant improvements in

the prognosis of these patients. The molecular profile of tumors,

disease burden and rate of progression, as well as patient

comorbidities should all be taken into account when considering

the optimal drug and timing for initiation of systemic therapy, as

will be discussed in the following sections.
Differentiated thyroid cancer

The vast majority of DTCs can be treated with surgery, followed

by RAI in selected cases. The decision regarding type of surgery is

based on the extent of disease, presence of lymph node metastases,
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as well as the patient’s comorbidities and preference (128).

Lobectomy should be considered for small tumors measuring less

than 4 cm with no evidence of gross extrathyroidal extension. When

carefully selected, patients undergoing a lobectomy have

comparable overall survival as those treated with a total

thyroidectomy (129, 130). Additionally, with adequate follow-up,

the rare cases of disease recurrence after an initial lobectomy can be

readily detected and treated. Following total thyroidectomy, RAI

should be considered in patients at intermediate or high risk of

disease recurrence per the American Thyroid Association (ATA)

risk classification (128). TSH suppression should also be

considered, based on recurrence risk (128).

Although DTC has an excellent prognosis, a minority of

patients will develop distant metastases, most frequently to the

lungs and bones (131). As long as these metastases remain RAI-

avid, prognosis remains favorable (132). However, half of metastatic

DTCs become refractory to RAI, which is associated with a poor

prognosis and a 10-year overall survival of barely 10% (133). Yet,

given the indolent, slowly progressive course of disease in most of

these patients, they can be initially watched under TSH suppression

alone, with regular imaging, laboratory workups and clinical follow-

ups (7, 72, 128). Locoregional therapy to oligo-progressive disease,

such as stereotactic radiation or surgery, can be considered during

this observation period (7, 72, 131, 132, 134). If localized therapy is

not feasible, disease becomes symptomatic, and/or there is

significant progression in multiple sites of disease, then initiation

of systemic therapy becomes warranted (7, 72, 131, 132, 134). As

genetic-informed targeted therapy is FDA approved for TCs with

certain mutations or fusions, it is important to obtain molecular

profiling of the tumor when faced with a patient with metastatic

DTC needing systemic therapy.

There are multiple drugs or drug combinations that are

approved for DTC, of which 5 require a particular mutation or

fusion to be present in the tumor (Table 1). The remaining drugs are

all anti-angiogenics which do not require this information. The

optimal sequencing of anti-angiogenics and genetic-informed

therapies is currently an area of debate.

The multikinase-inhibitors (MKIs) sorafenib and lenvatinib are

approved as a first-line therapy for locally advanced or metastatic

RAI-refractory DTC and PDTC. These drugs are potent inhibitors

of the vascular endothelial growth factor receptors (VEGF-R) 1 -3

and have variable inhibitory action on other tyrosine kinases,

including the fibroblast growth factor (FGF) and platelet-derived

growth factor (PDGF) receptors. In the phase III randomized,

double-blind, placebo-controlled DECISION trial, sorafenib led to

a significant 5-month prolongation of progression-free survival

(PFS) compared to placebo (10.8 vs 5.8 months) in patients with

progressive RAI-refractory DTC (27). The following year, the

SELECT phase III double-blind, placebo-controlled trial of

lenvatinib in a similar patient population was published. In this

study, median PFS with lenvatinib was significantly longer than in

the placebo group, at 18.3 months versus 3.6 months (24). Given

this significant prolongation in PFS, lenvatinib has become the

treatment of choice in advanced RAI-refractory DTC with no

actionable mutation, since its FDA approval in 2015. More

recently, in 2021, cabozantinib, another MKI, was approved as a
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second-line therapy for patients with locally advanced or metastatic

RAI-refractory DTC that have progressed on prior antiangiogenic

therapy. Cabozantinib inhibits the VEGF-R, but also has activity

against other tyrosine kinases involved in tumor growth and

angiogenesis including AXL and c-MET, which have been

implicated in resistance to antiangiogenics (135, 136). The

COSMIC-311 trial, which led to the FDA approval of

cabozantinib, is a double-blind phase III placebo-controlled trial

in patients with RAI-refractory DTC who have progressed on ≤ 2

prior anti-VEGF-R MKIs. This trial showed significant

prolongation of PFS with cabozantinib, with a median of 11.0

months compared to 1.9 months with placebo (20). Nevertheless,

despite their efficacy, MKIs are associated with significant toxicity

related to their VEGF-R inhibition, including hypertension,

palmar-plantar erythrodysaesthesia syndrome, stomatitis and

weight loss.

As previously mentioned, BRAFV600E is the most frequent

driver mutation in PTCs. The BRAF inhibitor dabrafenib with or

without the MEK inhibitor trametinib, showed encouraging overall

survival (OS) and PFS outcomes in metastatic BRAFV600E-

mutated PTC and should be considered in these patients (21).

Moreover, although less frequent, thyroid cancers can be driven by

chromosomal rearrangements, including RET, NTRK, ALK and

BRAF fusions (137). Specific kinase inhibitors targeting each of

these fusions are available and have shown notable efficacy in TC.

The LIBRETTO-001 trial looking at the RET-inhibitor

selpercatinib, which included 19 patients with RET fusion-

positive DTC previously treated with at least one systemic

therapy, showed an overall response rate (ORR) of 79% and a

median PFS of 20.1 months (26). Similarly, the selective RET-

inhibitor pralsetinib showed an ORR of 84% and a median PFS of

25.4 months in previously treated RET fusion-positive DTC (25). In

NTRK fusion-positive DTC, the selective TRK inhibitors

larotrectinib and entrectinib have also shown prolonged OS and

PFS, with a 24-month PFS of 84% with larotrectinib and a median

PFS of 19.9 months with entrectinib (22, 23). Moreover, selective

ALK inhibitors have been successfully used in case reports of ALK

fusion-positive DTCs (138, 139). Due to minimal off-target activity,

these selective kinase inhibitors have more acceptable toxicity

profiles compared to antiangiogenic kinase inhibitors, justifying

their choice as first-line therapies when possible.

Another therapeutic avenue that is being increasingly

recognized for RAI-refractory advanced TC is redifferentiation

therapy. This strategy aims to restore RAI uptake through

inhibition of MAPK signaling. In fact, increased MAPK pathway

activation, such as in the presence of a BRAFV600E mutation, leads

to decreased NIS expression and tumor dedifferentiation, ultimately

rendering RAI ineffective (140). Several studies have shown that by

inhibiting MAPK signaling with mutation-specific kinase

inhibitors, RAI uptake can be restored, allowing subsequent I131

therapy in a tumor which was previously non-RAI avid.

Redifferentiation therapy has been attempted using MEK

inhibitors in RAS-mutant tumors (141–145), BRAF ± MEK

inhibitors in BRAFV600E-mutant tumors (142, 143, 146–149),

and even NTRK or RET inhibitors in patients harboring

corresponding fusions (150–153). Data thus far show promising
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results with this strategy, allowing disease control in many patients

and potentially delaying the need for systemic therapy with kinase

inhibitors. For instance, in the recently published prospective

multicentric phase II MERAIODE trial, Leboulleux and colleagues

treated patients with RAI-refractory progressive DTC with an

empiric dose of 150 millicuries of RAI after a short course of

kinase inhibitors. Patients with a BRAFV600E mutation were

treated with dabrafenib + trametinib, while those with a RAS

mutation were treated with trametinib alone. At 6 months, 90%

of patients had either stable disease (18/31) or a partial response

(10/31) in both BRAF and RAS mutated cohorts. Nevertheless,

available trials are very heterogenous such that many questions

remain unanswered, including ideal candidates for redifferentiation,

duration of targeted therapy prior to RAI administration and

optimal dose of RAI. Therefore, more studies are needed to

further determine how to best use this approach, which patients

are most likely to benefit from it and potential long-term risks (154).

Some data suggest that RAS mutation, higher thyroglobulin levels,

smaller tumor diameter and lower 18FDG uptake on PET/CT could

predict success of redifferentiation therapy (149, 155). An ongoing

phase 2 clinical trial investigating the efficacy of selpercatinib in

restoring RAI uptake in RET fusion-positive RAI-refractory TC

may help answer some of these questions (NCT05668962).

One major gap in the currently available therapies is related to

the lack of specific kinase inhibitors targeting RAS, which is the

second most frequent driver mutation in TC. BRAF inhibitors,

which target the MAPK pathway downstream of RAS, are

ineffective in RAS-mutant tumors because they lead to a

paradoxical activation of MAPK signaling through dimerization

of nonmutant RAF isoforms in the presence of active RAS (156–

158). Thus, several new drug classes are currently under

investigation for the treatment of RAS-altered tumors. These

include pan-RAF and RAF dimer inhibitors, which have high

biding potencies to all RAF isoforms, therefore overcoming the

paradoxical MAPK activation that occurs with first generation

BRAF inhibitors (157, 158). Multiple new RAF inhibitors have

shown efficacy in vitro and are currently being investigated in phase

I cl inical tr ia ls : ERAS-254 (NCT05907304) , DAY101

(NCT04985604), BGB-3245 (NCT04249843), KIN-2787

(NCT04913285), JZP815 (NCT05557045). Small molecules

directly inhibiting ERK1/2, which target the MAPK pathway

signaling downstream of both BRAF and RAS kinases, are also

being studied in clinical trials, including BVD-523 (NCT04488003)

and LY3214996 (NCT04534283) (159–161).

Pan-RAF, RAF dimer and ERK kinase inhibitors also represent

potential therapeutic options for patients harboring class II/III

BRAF alterations. While the class I BRAF V600x mutations allow

BRAF to act as a constitutively active monomer, class II/III

mutations signal through BRAF homo- or heterodimers (162).

Yet, first generation RAF inhibitors selectively target BRAF

monomers, making then ineffective against class II/III mutations,

Pan-RAF kinase inhibitors suppress the activity of both monomeric

and dimeric forms of BRAF and therefore can target all BRAF

mutations and oncogenic fusions. Similarly, the mechanism of

action of RAF dimer and ERK inhibitors make them also effective

against class II/III BRAF mutations.
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Although showing good initial responses to kinase inhibitors,

both selective agents and MKIs, many patients with advanced

DTC will eventually progress due to acquired resistance to therapy

(7, 163). For instance, acquired secondary RAS mutations have

been described as a mechanism of resistance to BRAF inhibitors

(163). These could potentially respond to RAF or ERK inhibitors if

these drugs were proven to be clinically effective in RAS-mutant

TC. Paradoxical BRAF dimerization can also lead to resistance to

BRAF inhibitors. Paradox-breaker BRAF inhibitors, such as

PLX8394 and CFT1946, are potent, highly selective drugs that

inhibit BRAF dimerization and do not lead to paradoxical

pathway reactivation (164). These drugs have shown promising

in vitro efficacy (165, 166). A phase I/II trial of CFT1946, a

bifunctional degradation activating compound degrader, is

currently underway in BRAFV600E-mutant solid tumors

(NCT05668585). Next generation small molecule BRAF

inhibitors, which offer a more potent BRAF blockade, are also

under investigation in patients who failed first-generation drugs.

Preliminary results from the phase I trial looking at the new BRAF

inhibitor ABM-1310 in patients with BRAFV600E-mutated solid

tumors showed favorable safety and efficacy, including in patients

previously refractory to BRAF/MEK inhibitors (NCT04190628)

(167). Finally, novel combinations with BRAF inhibitors are also

being explored to overcome treatment resistance. Notably, Serum

Glucocorticoid-Regulated Kinase 1 (SGK1) signaling has been

found to maintain MAPK and PI3K activation in patients on

BRAF + MEK inhibitors, leading to resistance to therapy. A novel

SGK1 inhibitor (THRV-1257) has shown promising efficacy in

vitro in ATC cell lines and will soon be investigated in a phase I

clinical trial (168). Increased expression and activation of HER2/

HER3 tyrosine kinase receptors was also suggested to play a role in

resistance to BRAF inhibitors (169). Thus, the HER kinase

inhibitor lapatinib is currently being invest igated in

combination with dabrafenib in refractory BRAFV600E/K

mutated thyroid cancers (NCT01947023).

Immune checkpoint inhibition has also been studied in DTC as

one of the potential strategies to delay progression or as a salvage

therapy at progression (Table 2). As previously mentioned, some

advanced DTCs have an immunosuppressive TME and high PD-L1

expression, making them suitable for immune checkpoint

inhibition (126, 170, 171). However, results with single-agent

immunotherapy in DTC have not been promising. In the

KEYNOTE-028 phase Ib trial, 22 patients with PD-L1 positive,

locally advanced or metastatic DTC, treated with single agent

pembrolizumab for 24 months or until progression or

unacceptable toxicity, had a with a median PFS of 7 months and

an ORR of 9% (46). Combination of immunotherapy with kinase

inhibitors was then explored. Addition of pembrolizumab to the

MKI lenvatinib was studied in a phase II clinical trial

(NCT02973997). Preliminary results reported in a poster at the

2020 American Society of Clinical Oncology (ASCO) meeting

showed a 12-months PFS of 74%, which may be attributable to

the lenvatinib alone (47). Another ongoing trial is looking at the

combination of cabozantinib with the anti-PD-L1 atezolizumab in

advanced solid tumors, including DTC (NCT03170960). Results in

31 patients with metastatic and/or progressive RAI-refractory DTC
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were presented in a highlighted poster at the 2022 ATA meeting,

showing a promising median PFS of 15.2 months (44). Multiple

other clinical trials of immunotherapy in advanced DTC are

ongoing, including a phase II trial of the combination of the anti-

CTLA4 ipilimumab with the anti-PD1 nivolumab (NCT03246958),

a phase II trial of cabozantinib + ipilimumab/nivolumab

(NCT03914300), a phase II trial of the BRAF inhibitor

encorafenib + MEK inhibitor binimetinib with or without

nivolumab in metastatic BRAFV600E-mutated RAI-refractory

DTC (NCT04061980), and a phase II trial of the anti-PD-L1

durvalumab with the anti-CTLA4 tremelimumab (NCT03753919).

Beyond immune checkpoint inhibition, other immune-

targeting therapies are under investigation in advanced TC,

including chimeric antigen receptor modified T-cells (CAR-Ts).

These are genetically engineered T-cells reprogramed to recognize

and eliminate tumor cells expressing specific antigens (172). CAR-

Ts have demonstrated remarkable efficacy in hematological

malignancies but are more challenging to develop for solid

tumors, due to more difficult tumor-specific antigen selection and

an immunosuppressive TME that impedes access of CAR-Ts into

the tumor (173). The TSH-receptor, a well-known thyroid specific

antigen, seems to be a promising target for CAR-Ts in advanced

DTCs in in-vitro and mouse models (174).
Anaplastic thyroid cancer

While ATC was historically been known as a highly lethal

malignancy with a median OS of only 5 months, kinase inhibitors

and immunotherapy have revolutionized the management of this

disease over the past few years (175) (Tables 1, 2). Treatment of

patients with ATC differs significantly from those with DTC. Given

that ATC is a rapidly progressive malignancy which often presents

with locoregional advanced disease and distant metastases,

expedited initiation of the appropriate treatment is crucial. In

patients with stage IVB disease, surgical resection of the primary

tumor, when feasible, followed by high-dose external beam

radiation therapy to the neck with concomitant radiosensitizing

chemotherapy, remains the mainstay of therapy (56). In patients

with stage IVB inoperable tumors or stage IVC disease, systemic

therapy should be considered. Since 2017, the combination of

dabrafenib + trametinib has been FDA approved for the

treatment of BRAFV600E-mutated ATC and has revolutionized

the management of these patients (176). Approval was based on

results from the phase II ROAR basket trial, which showed an ORR

of 56%, a median PFS of 6.7 months and a median OS of 14.5

months (28). However, real-life data showed far shorter OS with

dabrafenib + trametinib alone (177, 178). One approach to

potentially prolong duration of response in initially inoperable

tumors has been to proceed with surgery after initial BRAF-

directed therapy to make the tumor operable (57). In a

retrospective study, this treatment strategy, known as the

neoadjuvant approach, led to a 2-year OS of 80.3% in a

population comprised of 63% stage IVC patients (179). In non-

BRAF-mutated ATC, single agent kinase inhibitors have shorter
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responses, with a median PFS of 2.6 months with lenvatinib and 1.9

months with sorafenib (29, 30). In fact, under selective pressure,

inherent genomic instability of ATC cells allows them to rapidly

acquire escape mechanisms (163). Various potential mechanisms of

resistance to therapy have been described in ATC, including

activation of parallel pro-angiogenic signaling pathways, and

acquisition of wildtype copy number amplification or secondary

mutations in oncogenes such as RAS, NF1 and NF2 (180–185).

As previously detailed, ATC is suitable for immunotherapy with

PD-1/PD-L1 inhibitors. Therefore, immune checkpoint inhibitors have

been studied in this malignancy. However, once again, single-agent

immunotherapy has shown limited efficacy. In a small retrospective

study of 13 patients with ATC treated with anti-PD-1 monotherapy

(pembrolizumab or nivolumab), ORR was 16% and median PFS 1.9

months (51). Similarly, in a prospective phase II trial, single-agent anti-

PD-1 spartalizumab showed an ORR of 19% and a median PFS of 1.7

months (53). A phase I study combining durvalumab with

tremelimumab and stereotactic body radiotherapy (SBRT) for

metastatic ATC showed a median OS of only 14.5 weeks (49).

Although single-agent immunotherapy showed modest efficacy

in ATC, combination of immune checkpoint inhibitors with kinase

inhibitors had more promising results, owing to a synergistic effect

between these two drug classes (186–188). In a murine model of

BRAFV600E-mutant ATC, combination of a BRAF inhibitor with

an anti-PD-L1 antibody led to significantly more tumor shrinkage

compared to either agent alone (186). Similarly, in another murine

model, anti-PD-1/PD-L1 immunotherapy was shown to enhance

efficacy of lenvatinib in ATC (187). These observations were then

supported by clinical data, showing prolonged responses to

combinations of kinase inhibitors and immunotherapy in patients

with ATC. In a retrospective study of 12 ATC patients who had

progressed on prior kinase inhibitors, addition of pembrolizumab at

time of progression led to further prolongation of survival, with a

median OS of 6.9 months from the addition of immunotherapy

(50). In BRAFV600E-mutated ATC, a retrospective study of 71

patients comparing dabrafenib/trametinib alone to dabrafenib/

trametinib + pembrolizumab added either at baseline or at time

of progression showed significant improvement in survival with the

addition of anti-PD1 immunotherapy, with a median OS of 17

months with the triplet as opposed to 9 months with BRAF/MEK

inhibitors alone (p=0.037) (189). PFS was also significantly

improved when an anti-PD1 was added to the initial treatment

regimen (Median PFS 11 vs 4 months; p=0.049). Similarly, a phase

II clinical trial of the BRAF inhibitor vemurafenib + MEK

inhibitor cobimetinib combined with the anti-PD-L1

atezolizumab in patients with BRAFV600E-mutated ATC showed

remarkable response rates (ORR 72%) and a 24-month OS of 67%

(median OS not reached) (48). Moreover, in non-BRAF mutated

ATC, combination of lenvatinib with pembrolizumab in a

prospective phase II trial of 27 patients showed an ORR of 52%

and a median OS of 11 months, as opposed to a median OS of

only 3.2 months with lenvatinib monotherapy (29, 52). The

significant improvement in survival outcomes shown with the

addition of anti-PD1 immunotherapy to kinase inhibitors in ATC

led to the incorporation of pembrolizumab, as monotherapy or in
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TABLE 1 Summary of clinical trials for kinase inhibitors in differentiated and anaplastic thyroid cancers.

Thyroid
cancer
subtype

Drug Target
Number

of
subjects

Study population
Efficacy
results

Reference

DTC

Cabozantinib
VEGFR2, AXL,
MET, RET, C-KIT

170

RR-DTC with prior progression on sorafenib and/
or lenvatinib

ORR: 11%
Median
PFS:
11.0
months

Brose
et al. (20)

Dabrafenib
(Single
agent)

BRAF V600E 26

BRAF V600E-mutated RR-DTC with progressive disease ORR: 35%
Median
PFS:
10.7
months

Busaidy
et al. (21)

Dabrafenib
+ trametinib

Dabrafenib: BRAF
V600E
Trametinib: MEK

27

BRAF V600E-mutated RR-DTC with progressive disease ORR: 30%
Median
PFS:
15.1
months

Busaidy
et al. (21)

Entrectinib
NTRK fusions,
ALK, ROS1

13

NTRK fusion-positive TC with locally advanced or
metastatic disease

ORR: 53.8%
Median
PFS:
19.9
months

Demetri
et al. (22)

Larotrectinib NTRK fusions 22
NTRK fusion-positive TC with locally advanced or
metastatic disease

ORR: 71%
24-month
PFS: 84%

Waguespack
et al. (23)

Lenvatinib
VEGFR1-3, RET,
FGFR1-4,
PDGFR, KIT

261

RR-DTC with progressive disease ORR: 64.8%
Median
PFS:
18.3
months

Schlumberger
et al. (24)

Pralsetinib
RET fusions
and mutations

21

Previously treated RET fusion-positive TC with locally
advanced or metastatic disease

ORR: 84%
Median
PFS:
25.4
months

Subbiah at
al (25)

Selpercatinib
RET fusions
and mutations

19

Previously treated RET fusion-positive TC with
advanced or metastatic disease and indication for
systemic therapy

ORR: 79%
Median
PFS:
20.1
months

Wirth
et al. (26)

Sorafenib
VEGFR1-3, RET,
RAF, PDGFR-b

207

Locally advanced or metastatic RR-DTC with
progressive disease

ORR: 12.2%
Median
PFS:
10.8
months

Brose
et al. (27)

ATC

Dabrafenib
+ trametinib

Dabrafenib: BRAF
V600E
Trametinib: MEK

36

Unresectable or metastatic BRAF V600E-mutated ATC ORR: 56%
Median
PFS:
6.7 months

Subbiah
et al. (28)

Lenvatinib
VEGFR1-3, RET,
FGFR1-4,
PDGFR, KIT

34

TKI-naïve ATC (regardless of mutation) ORR 2.9%
Median
PFS:
2.6 months

Wirth
et al. (29)

Sorafenib
VEGFR1-3, RET,
RAF, PDGFR-b

20

ATC which previously progressed on ≤ 2 lines of
cytotoxic chemotherapy not amenable to curative
surgery or radiation

ORR: 10%
Median
PFS:
1.9 months

Savvides
et al. (30)
F
rontiers in Immun
ology
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DTC, differentiated thyroid cancer; ATC, anaplastic thyroid cancer; VEGFR1-3, VEGF receptors 1-3; FGFR1-4, FGF receptors 1-4; RR-DTC, radioiodine refractory DTC; TC, thyroid cancer;
TKI, tyrosine kinase inhibitor; ORR, overall response rate; PFS, progression-free survival.
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combination with lenvatinib, to the 2024 National Comprehensive

Cancer Network (NCCN) guidelines as a potential treatment option

in selected patients with ATC (190).

Multiple clinical trials looking at various other immunotherapy

combinations in ATC are currently underway, including the

combination of cabozantinib + atezolizumab (NCT04400474) and

pembrolizumab + docetaxel (NCT03360890), among others. In an

ongoing phase II trial (NCT03246958) of the combination of

ipilimumab + nivolumab, 3/10 enrolled ATC patients had

profound partial responses, two of which lasted more than one

year (13 and 26 months) (191). Pembrolizumab is also being

studied in the adjuvant setting in patients with stage IVB disease

after intensity-modulated radiation therapy (NCT05059470).

Finally, like in advanced DTC, CAR-Ts are also under

investigation in ATC. A trial assessing the safety and tolerability

of autologous CAR-Ts targeting intracellular adhesion molecular-1

(ICAM-1) in advanced refractory PDTC and ATC is currently

ongoing (NCT04420754).
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Conclusion

Despite the favorable prognosis for DTCs, treatment of most

advanced/metastatic DTC and ATC patients remain a challenge, as

none of the available targeted therapies are curative. In the last

decade, the enhanced understanding of TC-specific molecular

drivers has led to the development and FDA-approval of targeted

therapies for advanced TCs. Although these treatment options have

had promising outcomes, many advanced TC patients will

eventually progress due to acquired resistance to therapy.

Recently, ICIs have been explored as treatment modality in TCs

to reinvigorate anti-tumor T cell function. While ICIs have shown

enhancement in survival rates especially when used in conjunction

with other treatment strategies, it is often accompanied by toxicities

that can preclude patients from further therapy and ultimately lead

to tumor progression and mortality. In addition to T cells, multiple

immune components which have been implicated in thyroid

tumorigenesis offer novel potential approaches for TC treatment
TABLE 2 Summary of available clinical data with immunotherapy in differentiated and anaplastic thyroid cancers.

Thyroid
cancer
subtype

Drug
Number

of
subjects

Study Study population Efficacy results Reference

DTC

Atezolizumab +
cabozantinib

31
COSMIC-021
(NCT03170960),
Phase Ib

Treatment-naïve, locally advanced,
metastatic and/or progressive RR-DTCs

ORR: 42%
Median PFS:
15.2 months

Taylor
et al. (44)

Ipilimumab/
nivolumab
+ cabozantinib

11
NCT03914300,
Phase II

Locally advanced or metastatic RR-DTCs
that have progressed on one previous anti-
VEGFR therapy

Interim results
ORR: 18%
Median PFS: 9 months

Konda
et al. (45)

Pembrolizumab 22
KEYNOTE-028
(NCT02054806),
Phase Ib

Locally advanced or metastatic DTC
ORR: 9%
Median PFS: 7 months

Mehnert
et al. (46)

Pembrolizumab
+ lenvatinib

30
NCT02973997,
Phase II

Treatment-naïve, RR-DTC with
progression ≤ 14 months prior
to enrollment

ORR: 62%
12-month PFS: 74%

Haugen
et al. (47)

ATC

Atezolizumab +
vemurafenib/
cobimetinib

18
NCT03181100,
Phase II

Locally advanced and/or metastatic ATC
ORR: 72%
24-month OS: 67%

Cabanillas
et al. (48)

Durvalumab +
tremelimumab
+ SBRT

13 Phase I
Metastatic ATC incurable by surgery or
radiation therapy

ORR: 0%
Median OS: 104 days

Lee et al. (49)

Pembrolizumab +
kinase inhibitor

12
Retrospective
cohort study

ATC patients in whom pembrolizumab was
added at progression on a kinase inhibitor

ORR: 42%
Median PFS from
addition of
pembrolizumab:
3.0 months

Iyer et al. (50)

Pembrolizumab
or nivolumab

13 Case series
Locally advanced and/or metastatic ATC
treated with a PD-1 inhibitor

ORR: 16%
Median PFS: 1.9 months

Hatashima
et al. (51)

Pembrolizumab
+ lenvatinib

35

ATELP
(EudraCT No.
2017-004570-3),
Phase II

Metastatic ATC
ORR: 51.9%
Median PFS: 10 months

Dierks
et al. (52)

Spartalizumab 42 Phase II Locally advanced and/or metastatic ATC
ORR: 19%
Median PFS: 1.7 months

Capdevila
et al. (53)
RR-DTC, radioiodine refractory differentiated thyroid cancer; ATC, anaplastic thyroid cancer; ORR, overall response rate; PFS, progression-free survival; OS, overall survival; SBRT, stereotactic
body radiation therapy.
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such as NK cell-based immunotherapy, DC vaccines, and M2 TAM

blockade, for example. Deeper knowledge of the immune milieu of

thyroid cancer, strong predictive and prognostic biomarkers, and

effective mechanism-rooted clinical trial strategies are needed to

improve prognosis of aggressive thyroid cancers.
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