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An inflammation-related subtype
classification for analyzing tumor
microenvironment and clinical
prognosis in colorectal cancer
Junpeng Pei †, Yuye Gao † and Aiwen Wu*

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key
Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center,
Peking University Cancer Hospital and Institute, Beijing, China
Background: The inflammatory response plays an essential role in the tumor

microenvironment (TME) of colorectal cancer (CRC) by modulating tumor

growth, progression, and response to therapy through the recruitment of

immune cells, production of cytokines, and activation of signaling pathways.

However, the molecular subtypes and risk score prognostic model based on

inflammatory response remain to be further explored.

Methods: Inflammation-related genes were collected from themolecular signature

database and molecular subtypes were identified using nonnegative matrix

factorization based on the TCGA cohort. We compared the clinicopathological

features, immune infiltration, somatic mutation profile, survival prognosis, and drug

sensitivity between the subtypes. The risk score model was developed using LASSO

and multivariate Cox regression in the TCGA cohort. The above results were

independently validated in the GEO cohort. Moreover, we explored the biological

functions of the hub gene, receptor interacting protein kinase 2 (RIPK2), leveraging

proteomics data, in vivo, and in vitro experiments.

Results: We identified two inflammation-related subtypes (inflammation-low and

inflammation-high) and have excellent internal consistency and stability.

Inflammation-high subtype showed higher immune cell infiltration and increased

sensitivity to common chemotherapeutic drugs, while inflammation-low subtype

may be more suitable for immunotherapy. Besides, the two subtypes differ

significantly in pathway enrichment and biological functions. In addition, the 11-

gene signature prognostic model constructed from inflammation-related genes

showed strong prognostic assessment power and could serve as a novel prognostic

marker to predict the survival of CRC patients. Finally, RIPK2 plays a crucial role in

promoting malignant proliferation of CRC cell validated by experiment.

Conclusions: This study provides new insights into the heterogeneity of CRC and

provides novel opportunities for treatment development and clinical

decision making.
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Introduction

Colorectal cancer (CRC) is the third most common cancer and

the second leading cause of cancer-related death worldwide (1).

Treatment of CRC includes radical surgery, supplementary

chemotherapy, and/or radiotherapy based on staging and clinico-

pathologic disease characteristics. Despite improved screening and

treatment over the past few decades, survival of CRC patients

remains very poor, with approximately half of patients trapped in

recurrence and metastases (2). Patient outcomes and treatment are

generally based on clinical stage, although stage-independent

factors are also associated with outcomes due to CRC genetic

heterogeneity (3). CRC is a heterogeneous disease that evolves

through genomic instability due to either microsatellite or

chromosomal modifications (4, 5). Inter- or intra-tumor genetic

heterogeneity contribute to drug resistance of CRC (6). Thus, the

inherent genetic heterogeneity between patients and the urgent

need for individualized patient therapy demands intensive

exploration of CRC molecular subtypes to ascertain novel

biomarkers that permit a more precise prognosis and

optimal therapy.

The diverse response to therapy by individual patients may also

relate to the tumor microenvironment (TME). Inflammation is a

biological process that combines innate and adaptive immune

responses with metabolism and various activities that affect cell

and organelle integrity and survival (7, 8). It has long been

recognized that inflammation has a paradoxical effect on tumors

(9–11). Studies have found that TME inflammation occurs either

early before tumor detection or remains silent until the late stage of

tumor development, supporting the concept that the inflammatory

response may function differently during various stages of tumor

progression. It is well-accepted that chronic or lingering

inflammation is an incubator of carcinoma (12, 13). However,

chemokines released during acute inflammation have antitumor

effects, with inflammation playing an essential role in the

modulation of tumor growth and the adaptive immune response

(14). The most representative evidence for a relationship between

CRC and inflammation is colitis-associated cancers, specifically

ulcerative colitis (UC) and Crohn’s disease (CD), characterized by
Abbreviations: 5-FU, 5-Fluorouracil; CAC, Colitis-associated colorectal cancer;

CD, Crohn’s disease; C-index, Harrell’s Concordance index; CRC, colorectal

cancer; DCA, decision curve analysis; DE-IRGs, differentially expressed

inflammation-related genes; DSS, disease-specific survival; ESTIMATE, The

Estimation of Stromal and Immune cells in Malignant Tumor tissues using

Expression data; GEO, Gene Expression Omnibus; GO, Gene Ontology; IBD,

inflammatory bowel disease;IC50, semi-inhibitory concentration; ICI, immune

checkpoint inhibitor; INF-high, inflammation-high; INF-low, inflammation-low;

IRG, inflammation-related gene; IRRS, inflammation related risk score; LASSO,

Least absolute shrinkage and selection operator; MSI, microsatellite instability;

MSS, microsatellite stable; OS, overall survival; PCA, Principal component

analysis; PPI, protein-protein interaction; SCNA, somatic copy number

alterations; ssGSEA, single sample Gene Set Enrichment Analysis; TCGA, The

Cancer Genome Atlas; TIDE, tumor immune dysfunction and exclusion; TISCH,

tumor immune single-cell hub; TMB, tumor mutation burden; TME, tumor

microenvironment; UC, ulcerative colitis.
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inflammatory symptoms. However, this relationship accounts for

only 1%-2% of all CRCs (15). Colitis-associated colorectal cancer

(CAC) is an ‘inflammation-dysplasia-carcinoma’ with DNA

mutations induced by an inflammatory response and the release

of cytokines by immune cells. While the majority of CRCs are

sporadic and formed prior to chronic inflammation. The bioactive

molecules produced by cells infiltrating the TME include cytokines,

growth factors, and chemokines that contribute to genome

instability and immune evasion, promoting tumor progression

(16). Thus, understanding inflammation and inflammatory TMEs

is essential to the elucidation of the mechanisms of CRC

development and improved treatment of CRC. Although many

studies have focused on the molecular subtypes of CRC based on

gene expression patterns, the study described herein is the first to

identify inflammation-related molecular subtypes and to then apply

that identification to development of a CRC risk score model.

Multiple molecular subtypes of CRC have been identified, the

most notable being a consensus molecular subtype (17). The

objectives of this study were to identify clinically relevant

subtypes of colorectal cancer based on inflammation-related

genes. These subtypes were characterized by their clinical

prognosis, tumor microenvironment, immune cell infiltration,

chemotherapeutic drug sensitivity, and underlying functional

mechanisms. Additionally, we aimed to develop a prognostic risk

score model and further validate the pivotal signature both in vivo

and in vitro. The workflow of the study is presented in Figure 1.
Materials and methods

Publicly available cohort data acquisition
and preprocessing

Inflammation-related gene sets were collected from the gene-set

enrichment analysis (HALLMARK_INFLAMMATORY_

RESPONSE). A total of 200 genes served as inflammation-related

genes (IRGs) which was shown in Supplementary Table 1. Retrieved

from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/), 647 CRC samples and 51 non-cancer

samples were evaluated including related TPM RNA-seq data,

somatic mutations, and relevant clinical information. Non-cancer

refers to the adjacent tissue surrounding colorectal cancer lesions in

patients. Microarray data sets of 232 CRC (GSE17538) patients with

corresponding clinical information served as an external validation

set, acquired from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo) (18).
Identification and mutation landscape of
differentially expressed inflammation-
related genes

Differentially expressed genes (DEGs) were filtered using the

‘limma’ R package with a |log2fold change (FC)| of > 1 and an

adjusted P-value of < 0.05. By intersecting the DEGs in the TCGA

dataset, differentially expressed inflammation-related genes (DE-
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IRGs) were further filtered. The mutation and somatic copy number

alterations (SCNA) data of TCGA-COAD and TCGA-READ were

downloaded from the Genomic Data Commons using the

TCGAbiolinks R package in the MAF format. Using the

‘maftools’ R package, we plotted a waterfall diagram to visualize

the mutation landscape of CRC patients. We visualized alteration

data with the c-bioportal online tool (https://www.cbioportal.org)

(19). Genetic loci was analyzed with the “RCircos”.
Non-negative matrix factorization,
clustering analysis of CRC

Patients with CRC were divided based on the expression of DE-

IRGs using the “NMF” R package, considering both survival status

and time (20). After selecting the optimum cluster number k, the

procedure was iterated 1000 times to allow the construction of a
Frontiers in Immunology 03
stable and reliable consensus matrix. Silhouette width values varied

between −1 and 1. The greater the trend to 1, the greater the degree

of separation and cohesion. Principal component analysis (PCA)

and t-Distributed Stochastic Neighbor (t-SNE) were performed to

show the distribution difference in various inflammation subtypes.

The analysis was constructed using the ‘limm’ package and the

‘ggplot2’ package was extensively used to visualize the findings.
Clinico-pathologic differences of
inflammation subtypes

The inflammatory response score of each CRC sample was

calculated using single sample Gene Set Enrichment Analysis

(ssGSEA) with the aid of the “GSVA” and “GSEABase” packages

in R. We subsequently compared the inflammation response scores

of Cluster1 and Cluster2 to stratify patient samples into high and
FIGURE 1

The workflow of designed analysis.
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low groups. Kaplan–Meier analysis was conducted to compare

survival variation between different clusters of different datasets

(TCGA and GSE17538) with the aid of the ‘Survminer’ and

‘survival’ packages. For evaluation of the clinical value of the

inflammation subtypes, we explored the relationships among

inflammation subtypes, prognosis, and other clinico-pathologic

features such as age, gender, stage, status, cancer type, and

microsatellite instability (MSI) status. The mutual relationships of

inflammation subtype and other clinical variables were

demonstrated by Sankey diagram using the ‘ggalluvial’ R package.

A bar plot was produced to illustrate relationships between

clinical traits and biological characteristics of the subtypes. Chi-

square tests were performed, and P-values less than 0.05 were

considered significant.
Immune landscape and inflammation
subtype mechanisms

The Estimation of Stromal and Immune cells in Malignant

Tumor tissues using Expression data (ESTIMATE) method was

obtained from the public source website (https://sourceforge.net/

projects/estimateproject/) to estimate the stromal score, immune

score, tumor purity, and ESTIMATE scores based on specific

biomarkers associated with the infiltration of stromal and

immune cells in tumor samples (21). ssGSEA was used to

measure infiltration levels of immune cell and immune function

between different inflammation-related subtypes for each CRC

cancer sample.

To assess the biologic basis for immune-related clusters, we

conducted Gene Ontology (GO) and Gene Set Enrichment Analysis

(GSEA) analyses. GO and GSEA enrichment analyses were

implemented using the ‘clusterProfiler’ R package (22). With the

use of the reference gene set ‘c2.cp.kegg.v7.5.1.symbols.gmt’ from

the MSigDB database (23), we conducted GSEA to identify

variations in corresponding pathways among different risk groups

(P < 0.05, FDR < 0.25) (24).
Analysis of drug sensitivity between
different inflammation-related groups

We applied a series of predicted indices for response to immune

checkpoint inhibitors (ICIs), including immune checkpoints, tumor

immune dysfunction and exclusion (TIDE) score, MSI score, tumor

mutation burden (TMB), and dysfunction. In this manner

relationships among inflammation subtype and the effect of

immune therapy were evaluated. RNAss based on mRNA

expression and DNAss based on DNA methylation were utilized

to measure tumor stemness. The range of scores was from 0 to 1.0,

with 1 indicating no differentiation. The ‘pRRophetic’ R package

was used to assess semi-inhibitory concentration (IC50) values for

chemotherapeutic drugs used for every CRC patient from the

TCGA cohort, as a means by which to compare effectiveness for

different inflammation subtypes (25).
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Creation and validation of the
inflammation-related risk score

The Least absolute shrinkage and selection operator (LASSO)

method in the glmnet R package was applied to shrink the scope of

gene screening (26). The Cox proportional hazards analysis was

used to identify highly inflammation-related genes. Then, the

inflammation related risk score (IRRS) was built using the

regression coefficients derived from multivariable Cox regression

analysis for signatures based on the training set. The risk score

formula was calculated as follows:

Risk score = S Coefficient of (i)×Expression level of the gene (i).

(gene i indicated the identified genes).

The coefficient of gene (i) is the regression coefficient of gene (i),

and the expression of gene (i) is the expression value of each

candidate IRG (i) for each patient.

The risk score of each patient was determined using the survival

R package with the ‘predict’ function. Based on the median value, all

patients were divided into high- and low-risk groups. The accuracy

of the regression model was commonly tested by Harrell’s

Concordance index (C-index). We examined the clinical utility of

IRRS through risk score plots and survival curves of the TCGA

cohort. We validated the predictive prognosis of IRRS using

GEO cohort.
Establishment of an inflammation-
related nomogram

Independent prognostic characteristics, identified by multivariate

and univariate Cox analysis of signature, and clinical factors were

combined to produce a nomogram using the ‘rms’ R package.

Calibration curves of survival probability for different years were

plotted using the Hosmer-Lemeshow test. We evaluated the

nomogram’s net benefit and clinical utility compared with risk score

model based on decision curve analysis (DCA).
Single-cell RNA sequence analysis

To examine single-cell RNA sequence (scRNA-seq) data

collected from GSE146771, tumor immune single-cell hub

(TISCH) analysis was employed (27). TISCH is a single-cell

RNA-seq data source that puts an emphasis on the TME and

provides specific annotation of cell types at the single-cell level,

allowing for TME investigation across diverse malignancies (28).
Validation of hub gene expression patterns

Using TRIzol reagent (#15596018, Invitrogen, Carlsbad, CA,

USA) to isolate and extract total RNA, reverse transcription was

conducted using a PrimeScript™ RT Reagent Kit (Cat#: E096-01A,

Novoprotein, Shanghai, China). Based on the TB Green Premix Ex

Taq (Novoprotein, Inc.) protocol, specific primers were used to
frontiersin.org
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perform quantitative real-time PCR. GAPDH was used as an

internal control, and the 2-DDCt method was used to calculate

relative mRNA levels. Technical and biological replicates of each

gene were performed at least three times during RT-qPCR analysis.

Supplementary Table 2 contains the RNA molecules evaluated on

cell lines and their corresponding primers.
Cell culture, immunohistochemistry and
stable transfection of shRNA

Detailed information on cell culture, IHC and transfection are

described in the article/Supplementary Material.
Cell proliferation and plate clone
formation assays

A total of 5000 transplanted cells per well were cultured in 96-

well plates, with each well incubated in 100 ml of culture media. Six

parallel wells were maintained for each experimental group. At

specified intervals, 90 ml of culture medium and 10 ml of CCK8
solution (Biosharp, China) were introduced to replace the existing

media. Following a 1.5-hour incubation period, absorbance at 450

nm was determined using a microplate reader.

For the colony formation assay, 500 cells per well were

inoculated into 6-well plates and cultured for a duration of 10

days. After fixing the colonies with 4% formaldehyde and staining

them with a 0.5% crystal violet solution, images were captured.
Wound healing assay

Various cell groups, including the RIPK2-NC and sh-RIPK2

groups, were collected and seeded in 6-well plates at a density of

1×106 cells/well. The cells were cultured in antibiotic-free medium until

they reached 90% confluence. Subsequently, a linear wound was

meticulously created in the confluent monolayer using a pipette tip

and ruler. After the removal of floating cells with PBS, serum-free

medium was introduced. The wounds were promptly photographed at

time 0 hours and subsequently at the 48-hour mark. The cells were

cultivated in a 37°C, 5% CO2 incubator throughout the experiment.

Wound size was assessed at 5 random sites perpendicular to the

wound. The wound healing rate (%) was calculated as (0 h scratch area

- 48 h scratch area)/0 h scratch area. Each experiment was meticulously

replicated a minimum of 3 times.
Transwell assay

Cell migration and invasion were assessed using a sterile 6.5

mm Transwell equipped with an 8.0 mm pore polycarbonate

membrane insert (#3422, Corning, Cambridge, MA, USA). For

the migration experiment, 200 µl of cell suspension containing

3×104 cells were introduced into the upper chamber, while 700 µl of

medium containing 20% FBS was added to the lower chamber. Each
Frontiers in Immunology 05
experimental group was cultured in an incubator with 3 wells.

Following 36 hours of incubation at 37°C and 5% CO2, cells were

carefully extracted from the chamber. The medium in the upper

chamber was discarded, and the upper chamber cells were gently

wiped off using a cotton swab. Cells that migrated to the lower

surface of the filter were fixed with 4% paraformaldehyde for 15

minutes and subsequently stained with a 0.1% crystal violet solution

for 10 minutes. After washing the cells with PBS three times, cell

counts were conducted in 5 random visual fields per insert under a

20-fold inverted microscope, and photographs were taken. For the

invasion experiment, a 50 mg/L Matrigel solution was diluted 1:4 in

serum-free medium. The bottom membrane of the Transwell

chamber was coated with the Matrigel mixture, air-dried at 4°C,

and hydrated. The subsequent steps mirrored those in the

migration experiment.
In vivo animal studies

BALB/c nude mice (6-8 weeks of age, male, 24-28 g) were

procured from Beijing HFK Bio-technology Co. Ltd. (Beijing,

China). The mice were housed in a specific pathogen-free barrier

facility and were utilized in strict accordance with protocols

approved by the Institutional Animal Care and Use Committee

(IACUC) at the Peking University Cancer Hospital. The BALB/c

nude mice were randomly allocated into 2 groups (n = 5/group).

SW620 cells, transfected with RNA lentivirus (Genomeditech,

Shanghai, China), were collected, washed, and resuspended in

serum-free medium at a concentration of 5×107 cells/ml. For

tumorigenesis studies, each mouse (5 in each group) was injected

with 5×106 SW620 cells stably transfected with the indicated

expression vectors, suspended in 100mL PBS, in the left axilla.

Tumor measurements were conducted every 3 days using the

formula: volume =1/2 × width2 × length. After a 4-week period,

the mice were humanely sacrificed, tumors were harvested,

weighed, and sent for subsequent analysis.
Statistical analysis

Bioinformatics analyses were completed using R software

(version 4.2.1). A two-sided P-value was used, with results

considered statistically significant when the P-values were less

than 0.05. Survival disparities between groups were examined by

drawing Kaplan-Meier curves, with differences in survival estimated

by the two-sided log-rank test. Divergence between two groups was

evaluated by the Wilcox test.
Results

Somatic alteration landscape of
inflammation-related genes

We extracted the SCNA and mutation spectrum of the 647 CRC

patients from the TCGA cohort. Inflammation genes of the 647
frontiersin.org
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CRC samples and 51 non-cancer samples were evaluated.

Differential analysis of IRGs between CRC and normal non-

cancer tissue yielded 65 DE-IRGs. Among these, 25 were found to

have poor expression in tumor tissue and 40 were found to have

high expression in tumor tissue (Figures 2A, B). We analyzed the

genetic variation of CRC-related inflammation genes, including the

top 20 mutated genes. Of the 615 (32.2%) samples, 198 were

mutations, of which missense mutations were the most common.
Frontiers in Immunology 06
DE-IRGs with the highest mutation frequency were STAB1 (7%),

PCDH7 (5%), NOD2 (4%), INHBA (4%), and MET (4%)

(Figure 2C). We identified the locus of SCNA hotspots on

chromosomes in Figure 2D. Based on Figure 2E, genes were

altered in 50.5% of 220 cases. SCNA accounted for most DNA

alterations. As shown in Figure 2F, among CRC patients, 30.2% had

at least one SCNA of IRGs. Figure 2G shows the gene alteration

frequency of CRC patients. Figure 2H shows the SCNA frequency of
B

C

D

E F G

H I

A

FIGURE 2

The genetic landscape of IRGs in CRC. (A) Heatmap of the expression of IRGs in non-cancer samples and cancer samples. (B) Volcano plot of IRGs.
(C) Landscape of genomic aberrations of the IRGs in CRC. Each row represents a gene, and each column represents a patient. The frequency of
alterations in top 20 IRGs is displayed on the right side of the mutation landscape. (D) The localization of the SCNA. (E) Histogram of the proportion
of gene alteration in CRC. (F) Histogram of the proportion of SCNA in CRC. (G) Gene alteration frequency of CRC patients in TCGA. (H) SCNA
frequency of CRC patients in TCGA. (I) Lollipop chart of the SCNA proportion in IRGs (*,<0.05).
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CRC patients. Among the inflammation genes, most inflammation

genes with high CNA frequency trended to result from co-

amplification rather than co-deletion (Figure 2I).
NMF clustering identified two
inflammation-based subtypes

Based on the completeness of clinical information, a total of 534

patients were included in the NMF clustering. Based on the

expression profiles of DE-IRGs from TCGA, the NMF algorithm

was used to cluster patients into two different expression patterns,

Cluster 1 (n = 337) and Cluster 2 (n = 197) (Figure 3A). As shown in

Figure 3B, when k = 2, the two subtypes had a clear boundary,

suggesting a high degree of explanation and interpretation of the

cluster with extremely strong intra-cluster and low inter-cluster

correlation. PCA was conducted to compare the transcriptional

profiles of both inflammatory subtypes. In general, PCA and t-SNE

indicated that patients could be divided into two remarkably

different subtypes with distinct transcriptional profiles

(Figures 3C, D). The expression landscape of DE-IRGs varied

among other clusters. Specifically, Cluster 1 had a lower level of

inflammation gene expression. In contrast, Cluster 2 was found to

have a higher expression level of inflammation genes (Figure 3E).

The inflammatory response score of each patient was quantified by

the ssGSEA method. Figure 3F demonstrates that patients stratified

into Cluster 2 have a greater inflammatory response compared to

patients in Cluster 1. Hence, we designated Cluster 1 as an

inflammation-low (INF-low) subtype, and Cluster 2 as an

inflammation-high (INF-high) subtype. We validated the

inflammation-based classification in an independent sample

cohorts (GSE17538) (Supplementary Figure 1).

Patients classified into the different inflammation subtypes had

different survival outcomes and clinico-pathologic features. In

general, the INF-high subtype had a dismal prognosis with a

shorter overall survival time (OS), progress-free survival (PFS),

and disease-specific survival (DSS) (log-rank test, P ≤ 0.05)

(Figure 3G). The relationship between clinico-pathologic

characteristics of the two TCGA subtypes are shown in

Figures 3H-J. Patients in the INF-high group had greater

mortality, a T3-T4 stage, a stage II-IV, colon adenocarcinoma

cancer type, and microsatellite-instability status. The Sankey plot

intuitively presented the relationships between the inflammation-

related subtypes, MSI status, T stage, cancer type, TNM stage,

and the status of CRC patients. Using GSE17538 cohort, we

conducted external validation to confirm clustering resilience

(Supplementary Figure 1).
Inflammation-based subtypes are
associated with distinct
tumor microenvironments

The TME component was explored using the ESTIMATE

algorithm, which showed that the INF-high group had higher

stromal scores, ESTIMATE scores, immune scores, and lower
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tumor purity (P < 0.05) (Figures 4A-D). The TME component

was related to inflammation and played a decisive role in immune

cell infiltration. By using ssGSEA, we assessed the immune function

of the two TCGA subtypes. Compared with the INF-low subgroup,

the INF-high subgroup exhibited a greater immune cell infiltration

and more active levels of immune-associated processes and

pathways, indicating a microenvironment of excessive immune

activation (Figures 4E, F). The relationship of the two subtypes to

major histocompatibility complexes was assessed. The expression

level of the major histocompatibility complexes tended to be higher

in the INF-High group (Figure 4G). The immunological profile was

assessed by analysis of inflammatory markers. The concentration of

multiple chemokines was markedly increased in the serum of INF-

high patients compared to INF-low patients, which indicates a more

severe inflammatory response in the INF-high subgroup

(Figure 4H). The immune landscape of inflammation subtypes in

the validation cohort is presented in Supplementary Figures 2A-J.

The somatic variations in CRC driver genes between the INF-high

and INF-low subgroups is shown in Supplementary Figures 2K, L.

We performed functional enrichment analysis of IRGs to gain

insight into the potential role of inflammation-related genes and their

relationships with the CRC immune microenvironment. GO analysis

showed that IRGs are associated with biological processes such as

extracellular structure organization, extracellular matrix organization,

positive regulation of cytokine production, and external encapsulating

structure organization. We performed enrichment analysis of the two

inflammation clusters to determine pathways involved the regulation of

tumorigenesis. GSEA analysis demonstrated IRGs to be highly

expressed in the INF-high group with significant enrichment

in MAPK signaling, JAK-STAT signaling, leukocyte trans-

endothelial migration, cytokine receptor interaction, and natural

killer cell-mediated cytotoxicity. In contrast, the INF-low subtype

was substantially enriched in negative modulation of cell

metabolism pathways, including peroxisome, pyruvate metabolism,

citrate cycle TCA cycle, pentose phosphate pathway, and

glycosylphosphatidylinositol anchor biosynthesis (Figures 4I-K).
Prediction of chemotherapy and
immunotherapy sensitivity

Inflammation gene profiles were assessed with regard to

treatment choice. Results showed that the INF-high subgroup

patients had higher TMB values, dysfunction scores, and MSI

scores (Figures 5A-C). The patient’s response to immune

checkpoint inhibitors and survival were negatively related to the

TIDE score. The TIDE score of INF-high patients was significantly

higher than that of INF-low patients (P < 0.05), indicating that INF-

high patients had a poor response to immune checkpoint inhibitors,

poorer survival, and a tendency to immune escape (Figure 5D). We

utilized the IPS as a means by which to assess the response to

immune checkpoint inhibitors. The scores for IPS and IPS-CTLA4

blockers were lower for the INF-high group, indicating that the

INF-high group had a poorer result with immunotherapy

(Figures 5E-H). These findings indicate that the low inflammation

subtype was significantly related to a better immunotherapy effect
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and that INF-high patients exhibit an immune-suppressive

microenvironment. Tumor stemness was assessed among the

different CRC subtypes by RNAss and DNAss and results showed

a negative effect of the INF-high subtype on cancer cell

characterization (Figures 5I, J). Further, the expression levels of

immune checkpoint molecules including BTLA, CTLA-4, and

LAG-3 were significantly upregulated in the high inflammatory
Frontiers in Immunology 08
response group compared with the low inflammatory response

group, indicating a higher tendency to escape from host

immunity of INF-high subgroup (P < 0.05) (Figure 5K).

Chemotherapeutic efficacy and clinical utility, of the

inflammation-related classification, were assessed with regard to

precise CRC treatment. The results showed that many common

CRC chemotherapy drugs had significantly different effects on the
B C

D E F

G
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J

A

FIGURE 3

Consensus clustering of inflammation-related genes in training cohort. (A) The consensus clustering heat map visualizes the degree of segmentation
for 65 genes in 534 samples. (B) The average silhouette width represents the coherence of clusters. (C) Principal component analysis plots. (D) t-
SNE plots. (E) Heatmap of 65 inflammation related genes expression in different subgroups; red represents high expression, and blue represents low
expression. (F) Violin plots indicating the differences in these subtypes. (G) Kaplan-Meier overall survival, progress-free survival, disease-specific
survival, and disease-free survival curves. (H) Heatmap presenting the clinicopathologic features of these subtypes. (I) Sankey diagram showing the
relationship between inflammation subtype, MSI status, T stage, cancer type, TNM stage and status. (J) The distribution characteristics of different
clinicopathological factors in two subtypes. (*p<0.05, **p<0.01, and ***p<0.001).
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INF-high groups of patients (P < 0.05). 5-Fluorouracil (5-FU) is the

most common chemotherapy drug for CRC and had a significantly

lower IC50 value for the high-INF group than for the low-INF

group (P < 0.05). Of note, INF-high patients were more sensitive to

5-FU, Camptothecin, Irinotecan, and Docetaxel. Further, INF-low

individuals responded more to non-traditional drugs such as
Frontiers in Immunology 09
Lapatinib, Selumetinib, Vorinostat, and Gefitinib (P < 0.05). These

results suggest that classification based on inflammatory response

may be an effective means to predict drug response and potential

therapeutic targets (Figures 5L, M). 3D structures were mapped for

chemotherapeutic agents with differences between the two groups,

using the PubChem database.
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FIGURE 4

Immune landscape of inflammation subtypes in the training cohort. (A-D) The violin plots display the immune score, stromal score, estimate score,
and tumor purity score in the training cohort. (E-H) Boxplots representing the differential expression of immune cells, immune cell subpopulations
related functions, HLA gene sets and chemokines. (I) GO analysis of DE-IRGs in terms of biological process, cellular component and molecular
function. (J, K) GSEA of the DE-IRGs showing the different pathways in the INF-low group and in the INF-high group. (*p<0.05, **p<0.01,
and ***p<0.001).
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Development and validation of the CRC
predictive model

We constructed a predictive model based on the 647 CRC

patients, with OS information, derived from the TCGA cohort.

Through LASSO COX regression analysis, we chose and evaluated

DE-IRGs significantly associated with survival. Seventeen genes
Frontiers in Immunology 10
were selected to build a predictive model using the optimal

adjustment parameter (l) via the LASSO method (Figures 6A, B).

After univariate COX proportional hazards analysis, 11 genes

(P2RX4, RIPK2, VIP, RGS16, MARCO, SLC28A2, CCL24,

CMKLR1, SLAMF1, SRI, and NOD2) met the proportional hazard

hypothesis and were used to establish the risk score model. We drew

a forest plot to demonstrate the associations between the expression
B C D
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FIGURE 5

The estimation of two inflammation subtypes in immunotherapy and chemotherapy response. (A-J) Violin plots presenting the TMB score, MSI
score, dysfunction score, TIDE score, IPS, IPS-CTLA4, IPS-PD1, IPS-PD1-CTLA4 scores, DNAss and RNAss between two IRRS subtypes. (K) Boxplot
representing the immune checkpoints in the various inflammation subtypes in the various inflammation subtypes. (L, M) drug sensitivity analysis and
3D structure tomographs of the eight candidate common drugs for CRC. (NS, no significance; *p<0.05, **p<0.01, and ***p<0.001).
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levels of the 11 inflammation-related signatures and OS (Figure 6C).

The expression levels of P2RX4, RIPK2, VIP, MARCO, and RGS16

had significant positive contribution to a better prognosis, while the

expression levels of SLC28A2, CCL24, CMKLR1, SLAMF1, SRI, and

NOD2 had an opposite effect. Calculation of the risk-score model

was achieved by the following equation: risk score = (0.6184) ×

P2RX4 + (0.3427) × RIPK2 + (0.3129) × VIP + (0.2508) × RGS16 +

(0.1581) × MARCO + (−0.1568) × SLC28A2 + (0.2054) × CCL24 +
Frontiers in Immunology 11
(−0.4771) × CMKLR1+ (−0.5236) × SLAMF1+ (−0.5293) × SRI +

(−0.7741) × NOD2 (Figure 6D). We conducted time-dependent C-

index curves of different factors, with the combined model having

the highest C-index compared to single variables (Figure 6E).

Patients were assigned to high-risk and low-risk cohorts by

median-risk score. In Figure 6F, the Sankey plot shows the

relationships between inflammation-related subtypes, IRRS, and

survival status. The high IRRS group had a more significant
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FIGURE 6

Construction and validation of the inflammation-related prognostic signature in training cohort. (A, B) Lasso analysis of 65 inflammation genes
associated with overall survival. (C) Multivariable Cox analysis uncovered 11 inflammation genes associated most with overall survival. (D) The
coefficient of the 11 genes identified by Multivariable Cox analysis. (E) Time-dependent C-index plot for the risk score and individual genes. (F)
Sankey plot summarized the relationships among the clusters, IRRS and survival status. (G) Risk scores distribution, survival status of each patient,
and heatmaps of prognostic eleven-gene risk signature. (H-K) Kaplan−Meier analysis of overall survival, progress-free survival, disease-specific
survival, and disease-free survival curves in the two risk groups.
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proportion of patients with a deadly outcome, while the INF-low

group had a higher proportion of patients with low IRRS.

Relationships between risk score distribution and survival status

were examined. Figure 6G presents survival outcomes, IRRS, and

model gene expression profiles between the two risk groups.

Kaplan–Meier survival analysis verified that the high-risk TCGA

cohort was associated with poorer OS, PFS, and DSS, while the low-

risk TCGA cohort was not (Figures 6H-K). These results were

validated with the GEO cohort (Supplementary Figure 3).
Establishment of an inflammation-
based nomogram

Since high IRRS was significantly associated with higher

malignancy and advanced CRC tumor, we sought to determine

whether IRRS was a clinically independent prognostic factor for

CRC patients. IRRS and significant clinico-pathological indicators

were subjected to univariate and multivariate Cox analysis

(Figures 7A, B). After adjustment for potential bias, multivariate

regression analysis demonstrated age (1.05, 1.03−1.07, P < 0.01),

TNM stage (1.65, 1.11−2.44, P < 0.01), and IRRS (1.08, 1.03−1.13, P

< 0.01) to be independent factors that predicted prognosis for CRC

patients. Based on the above results, we established a

comprehensive nomogram that acts as a clinically relevant

quantitative tool by which clinicians can predict the 3-, 5-, and

10-year OS probabilities for CRC patients (Figure 7C). Every

patient was assigned a total point value by addition of the values

for each prognostic parameter. Higher total points corresponds to

worse patient outcomes. Time-dependent C-index curves of the

nomogram and risk score, based on TCGA, demonstrated the

nomogram to have better performance and more accurate

survival prediction that the risk score model (Figure 7D).

Furthermore, calibration plots of the TCGA cohort indicated that

the nomogram had high consistency between predicted and actual

OS (Figure 7E). To explore the clinical applicability of the

nomogram, we generated a DCA curve that showed the

comprehensive nomogram to have more net benefit than a model

with risk score (Figure 7F). The predictive value of the nomogram

was verified with the GEO cohort (Figures 7G-J).
Validation of inflammation gene expression
patterns by scRNA-seq analysis

To assess associations among TME cell types and the expression

of signatures in IRRS, we analyzed GSE146771 CRC scRNA-seq

data. 20 cell clusters were delineated using uniform manifold

approximation and projection (UMAP)-based cell clustering after

dimensionality reduction (Figure 8A). B cell, conventional CD4+ T

cells (CD4Tconv), CD8T, exhausted CD8+ T cells (CD8Tex),

endothelial cells, fibroblasts, malignant cells, mast cells, NK cells,

monocytes or macrophages, plasma, Tprolif cells, and Treg were

labeled based on lineage markers (Figure 8B). The 20 clusters were

merged into three cell types that included immune cells, malignant
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cells, and stromal cells (Figure 8C). Results showed that P2RX4,

RIPK2 and SRI were predominantly expressed in most cell types;

SLAMF1 was predominantly expressed in immune cells; RGS16 was

mainly expressed in stromal cells. SLC28A2, VIP, CMKLR1,

MARCO, and NOD2 were detected at low levels in non-tumor

and tumor cells (Figures 8D-F). CCL24 was not detected at the

single cell level.
Inflammation pathway hub
gene identification

For experimental verification, the number of inflammation-

related genes was narrowed by construction of a protein-protein

interaction (PPI) network. This was accomplished by exploration of

the STRING database for hub genes within the 11 genes that

comprised the inflammation-related risk score system. As shown

in Figure 9A, there was a complex interaction between RIPK2 and

NOD2, suggesting that these were central nodes of the PPI network.

Thus, we chose both genes for further study. NOD2 and RIPK2 were

expressed differentially by tumor and normal or adjacent normal

tissue. RT-qPCR demonstrated that CRC cells showed higher

mRNA expression of NOD2 and RIPK2 compared with control

cells (Figures 9B, C). Moreover, both genes were upregulated in

cancer tissue and significantly associated with CRC clinical outcome

based on GEO and TCGA cohorts (Figures 9D-G).
RIPK2 promotes malignant proliferation of
CRC cells

CRC is fundamentally characterized by the uncontrolled

proliferation of cells (29). In our study, we considered the

upregulated genes as crucial elements contributing to the

malignant progression of CRC cells. Previous research has

consistently linked these upregulated genes to processes involved

in tumor growth and dissemination (30). However, despite existing

reports associating RIPK2 with promoting malignant progression

and poor prognosis in various solid tumors, its precise functions

and regulatory mechanisms in CRC remain unclear. To bridge this

knowledge gap, we obtained IHC results from the HPA database,

revealing a significant upregulation of RIPK2 protein levels in CRC

(Figures 10A, B). To delve deeper into the impact of RIPK2 on CRC

cell proliferation, we established RIPK2 knockdown models using

HCT116 and SW480 cells (Figure 10C). CCK-8 and colony

formation assays collectively revealed a marked decrease in cell

viability and colony-forming ability following RIPK2 knockdown in

CRC cells (Figures 10D, E). The results demonstrated a significant

reduction in migration and invasion abilities in the sh-RIPK2 group

compared with the control group (Figures 10F-I). Collectively, these

findings provide compelling evidence that RIPK2 actively promotes

the malignant progression of CRC cells. To further illuminate the

effects of RIPK2 on CRC, animal studies were conducted, showing a

substantial reduction in volume and weight of xenograft tumors

when RIPK2 was knocked down (Figures 10J, K).
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Discussion

CRC is one of the most common gastrointestinal malignancies

with worldwide high morbidity and mortality (31). It is worth

noting that the CRC TME (comprised of tumor cells, inflammatory

immune cells, fibroblasts, and vascular cells) prevents
Frontiers in Immunology 13
immunosurveillance, which promotes tumor progression and

metastasis (32). Further, the inflammatory response has a

significant impact on the plasticity and functional characteristics

of cancer and stromal cells within the TME (10), with either

beneficial or adverse consequence for disease progression (33).

Contextual evaluation of the TME, inflammation, and cancer is
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FIGURE 7

Nomogram developed for predicting the clinical outcome. (A, B) Univariate analysis and multivariate analysis containing IRRS and clinical factors.
(C) The comprehensive nomogram for predicting probabilities of CRC patients with 1-, 3- and 5-year OS in TCGA dataset. (D) Time-dependant c-
index plot for the nomogram and other clinical factors in the TCGA cohort. (E) The calibration plots for predicting CRC patients with 1-, 3- and 5-
year OS in the TCGA cohort. (F) Decision curve analysis of the nomogram and other factors in the TCGA cohort. (G) The comprehensive nomogram
for predicting probabilities of CRC patients with 1-, 3- and 5-year OS in GEO dataset. (H) Time-dependant C-index plot for the nomogram and
other clinical factors in the GEO cohort. (I) The calibration plots for predicting CRC patients with 1-, 3- and 5-year OS in the GEO cohort. (J)
Decision curve analysis of the nomogram and other factors in the GEO cohort.
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fundamental to an understanding of the molecular basis for CRC

and to the design of new therapeutic targets for CRC.

Herein, we classified CRC subtypes based on DE-IRG

expression profiles and evaluated relationships between the

inflammatory response and CRC clinico-pathologic traits.

Pathway enrichment analysis was used to compare TME

inflammation-related subtypes. Further, ssGSEA, IPS algorithm,

TMB, and drug sensitivity were analyzed to predict a patient’s
Frontiers in Immunology 14
therapeutic response to ICI and chemotherapy. In addition, we

constructed a risk-scoring system consisting of 11 inflammation-

related genes. Findings provided for a high degree of explanation

and interpretation, yielding valuable insight into predictive

prognosis and the identification of novel biomarkers and

treatment modalities for CRC.

We classified patients with CRC into INF-high and INF-low

groups; the latter was associated with a favorable prognosis based
B C
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A

FIGURE 8

Single-cell profiles reveal inflammation genes expression patterns. (A) Cells were clustered into 20 types by the UMAP dimensionality reduction
algorithm, with each color representing an annotated phenotype. (B) UMAP plot of 13 predominant cell types from colon cancer scRNA-seq data.
(C) UMAP plot of immune, malignant and stromal cells from colon cancer scRNA-seq data. (D, E) Violin plot for displaying the expression levels of
inflammation genes in all cell types. (F) UMAP plots for visualizing the abundance distribution of inflammation genes.
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on survival analysis. Consistent with our study, unbalanced and

unlimited chronic inflammation, as a consistent component of

cancer, is associated with disease progression and a poor

prognosis (34, 35). Analysis of clinico-pathological characteristics

by this study demonstrated that more malignant and advanced CRC

patients were found within the INF-high cluster. This cluster had

the worse prognosis.

Herein, the immune microenvironment was analyzed to explore

prognostic differences between the subtypes. Compared to the INF-
Frontiers in Immunology 15
low group, the INF-high group had a higher immune and estimate

scores, suggesting abundant immune cell and non-tumor cell

infiltration within the INF-high CRC patients. Tumor purity may

reflect TME components and is negatively related to clinical

outcomes, as described in previous studies (36–38). The INF-high

subgroup had higher tumor purity and was associated with a poor

prognosis. The mismatched immune infiltration and survival

disadvantage for the INF-high subgroup may be due to the rare

presence of T cells within tumor islets. A dense stromal matrix may
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FIGURE 9

Identification of two hub inflammation genes in CRCs. (A) Protein–protein interactions among 11 inflammation related genes. (B) RT-QPCR analysis
of NOD2. (C) RT-QPCR analysis of RIPK2. (D) Differential analysis for NOD2. (E) Differential analysis for RIPK2. (F) Survival analysis for NOD2.
(G) Survival analysis for RIPK2. (NS, no significance; *p<0.05, **p<0.01, and ***p<0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1369726
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pei et al. 10.3389/fimmu.2024.1369726
restrain migration of T cells and thus weaken antitumor immunity

(39). Higher stroma-related gene expression is associated with a

poorer immunotherapy response and worse survival (40). We

speculated that different components of the TME play paradoxical

roles and as such we assessed immune cell infiltration.

Compared to the INF-low group, the INF-high group exhibited

abundant immune cell infiltration including immunosuppressive

cells such as Tregs, mast cells, and macrophages. Previous studies
Frontiers in Immunology 16
have reported that Tregs suppress antitumor immunity and

promote tumor progression (41). Tregs and tumor-associated

macrophages contribute to the creation of an immunosuppressive

network, playing a key role in the development of tumor immune

evasion (42–44). Considering the significant immunosuppressive

roles of Tregs and macrophages, the abundant immune infiltration

observed in INF-high does not guarantee enhanced tumor

suppression and immune killing capabilities compared to INF-
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FIGURE 10

RIPK2 promotes malignant proliferation of CRC cells. (A) Distribution of protein expression in rectum and rectal cancer tissues obtained from the
HPA database. (B) Differential expression of RIPK2 proteins. (C) Efficiency of RIPK2 knockdown in HCT116 and SW480 cells. (D) CCK-8 assay
measuring cell viability in HCT116 and SW480 cells, respectively. (E) Colony formation assay assessing the colony-forming ability of HCT116 and
SW480 cells. (F, G) Wound healing assay of migration in HCT116 and SW480 cells, respectively. (H, I) Transwell assay of migration and invasion in
HCT116 and SW480 cells, respectively. (J) Efficiency of RIPK2 knockdown in SW620 cells. (K) RIPK2 promotes CRC cell growth in vivo. (*p<0.05,
**p<0.01, and ***p<0.001).
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low. In addition, though tumor infiltrating lymphocytes (TILs) play

pivotal roles in determining survival rates, when activated T-cells

fail to completely eliminate the tumor, they can become exhausted

over time (45). This exhaustion, a consequence of prolonged

antigen exposure, results in cytotoxic T-cells becoming

compromised, rendering them inefficient at performing their

effector functions (46). Prior research has demonstrated that

elevated levels of CTLs and a heightened incidence of T cell

dysfunction which may lead to increased tumor immune evasion,

through a more severe degree of T cell dysfunction (47). Such

immune cell exhaustion, common in cancer and various other

conditions, leads to malignant progression despite an otherwise

operational immune system (48). TIDE, capable of quantifying

immune dysfunction in tumors, reveals that INF-high subgroup,

characterized by elevated TIDE scores, are more prone to exhibit T

cell exhaustion (47). Together with the immunosuppressive cells,

patients within the INF-high group were more likely to develop

immune evasion.

Major histocompatibility complexes and chemokines were

upregulated in the INF-high group, suggesting greater inflammatory

activity (49). The chemokines CCL2 and CCL3 recruit pro-tumor

macrophages into the TME (50). The chemokine receptors CXCR1,

CXCR4, and CCR5 are associated with growth and metastasis of

tumors (51–55). CXCL12 and CXCL8 have been linked to

immunotherapy unresponsiveness for colon cancer and melanoma

patients (56, 57). Thus, elevated chemokines within the INF-high

subgroup were associated with disease progression and insensitivity

to immunotherapy, resulting in poorer survival.

Advanced understanding of the pathophysiology of CRC,

combined with a cumulative interest in immunotherapy and

chemotherapy, have significantly increased the number of treatment

options for CRC patients (31). Only 15% of CRC patients are MSI-H

and benefit from immunotherapy. Most patients are MSS and have

‘cold tumors’ that are insensitive to ICI (58). It is urgent to find effective

biomarkers that can predict whether a CRC patient would benefit from

immunotherapy. In this study, the INF-high subgroup was positively

related to TIDE score, which indirectly indicates that INF-high patients

are less responsive to ICI and more likely to suffer immune evasion.

The IPS score is valuable for prediction of cancer patient response to

immunotherapy with anti-PD-1 and anti-CTLA-4 treatment (59).

Levels of IPS and IPS-CTLA4 were lower for INF-high individuals,

indicating that immune checkpoint inhibitors were less effective for

treatment of INF-high patients, which may account for their poor

clinical outcomes. Thus, although patients within the INF-high group

present with high TMB and MSI-H, they respond poorly to ICI.

According to theory, inflammation induced by specific treatments may

accelerate tumor progression and block the efficacy of anti-PD-1

therapy (60). Furthermore, the IC50 values for key drugs, such as 5-

FU and Irinotecan, are significantly higher in patients with INF-low

than in those with INF-high. This suggests that CRC patients exhibiting

a high inflammatory response may exhibit increased sensitivity to

common chemotherapeutic agents including 5-Fluorouracil,

Irinotecan, Camptothecin, and Docetaxel. These drugs primarily

target pathways related to DNA or RNA synthesis and cell division,

aiming to inhibit cancer cell proliferation. In addition, we have

identified non-traditional drugs—Lapatinib, Selumetinib, Vorinostat,
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and Gefitinib—that may offer a therapeutic advantage for INF-low

patients who might not respond to conventional treatments. These

drugs specifically target signaling pathways or receptors associated with

tumor growth and survival. They have the potential to modulate

receptor tyrosine kinases, MAPK/ERK signaling, or histone

deacetylases, thereby impeding tumor progression.

Finally, to streamline inspection and identification of patients at

high risk for early intervention, we constructed a risk model based

on 11 prognostic signatures identified by machine learning

methods, six of which (CCL2, CMKLR1, NOD2, SLC28A2,

SLAMF1, SRI) were protective factors, and five of which

(MARCO, P2RX4, RGS16, RIPK2, VIP) were related to high risk.

Risk score was negatively associated with clinical outcomes. Results

from single and multiple-factor Cox regression analysis

demonstrated IRRS to be an independent prognostic marker for

CRC. We constructed a nomogram by combining risk score and

other independent prognostic factors, which had superior

predictive value and higher net benefit than risk score.

To effectively predict survival, we screened two inflammation-

related genes (RIPK2 and NOD2) that were highly expressed in

cancer tissues and which influenced clinical outcomes. RIPK2 and

NOD2 (included in the model) are associated with the occurrence

and progression of IBD, affecting intestinal homeostasis (61, 62). As

an intracellular pathogen pathway, NOD2/RIPK2 is a molecular

driver of tumorigenic inflammation. RIPK2 is an intermediate of

NOD2 signaling. During the transformation from acute to chronic

inflammation, hyperactive RIPK2 plays an important role in

abnormal inflammation, altered metabolism, cell proliferation,

and tumorigenesis (63). NOD2 controls intestinal inflammation

thereby decreasing the incidence of inflammatory driven cancers,

including CRC, by downregulation of TLR pathways (64, 65).

This investigation is limited in that the study cohorts were

collected from different platforms and different public datasets.

Intra-tumor and intra-patient heterogeneity was a limitation, with

future analysis benefiting from greater calibration. As well, this

study and other similar studies are limited by the general lack of

CRC patient data. Further, although identified clusters appeared to

have a strong power for prognostic assessment, the cellular and

molecular mechanisms underpinning the assessment is unclear. In

vivo and in vitro biological experiments are required to verify the

role of inflammation pathways in CRC. As well, the reliability and

repeatability of the predictive model require further validation with

other datasets and prospective as well as multi-center large-sample

studies. Finally, factors included in the nomogram may have been

inappropriate in that initiation and risk factors for CRC are not well

defined. With further definition a more accurate nomogram may be

built by incorporation of new risk factors and clinical elements.

In conclusion, by combining bioinformatics analysis and in vitro

experiments, we have identified a new CRC molecular subtype based

on the inflammatory response. Results demonstrated the inflammation

related model to be a credible prognostic approach for CRC patients

through analysis of immune cell infiltration and immunotherapy

response. The inflammation-high subtype is associated with a dismal

prognosis, an immunosuppressive microenvironment, and more

advanced malignant tumors. In contrast, the inflammation-low

subtype was associated with favorable clinical outcomes and an
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immune-reactive microenvironment. The inflammation related model

may provide improved predictive prognosis for CRC patients and may

be useful as a means to accurately stratify CRC patients. However, it is

important to note that the interplay between inflammation markers

and the immune microenvironment requires further investigation. In

summary, this bioinformatics study serves as a foundation for

understanding the role of IRGs in CRC.
Conclusion

In conclusion, we identified two distinct inflammation related

clusters based on DE-IRGs and developed an inflammation related

risk score model for colorectal cancer, which can reveal the

relationship between inflammation and tumor immune

environment and provide references for early intervention and

individualized treatment of colorectal cancer.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

22. Yu G, Wang L-G, Han Y, He Q-Y. Clusterprofiler: an R package for comparing
biological themes among gene clusters. OMICS. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

23. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

24. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. Gsea-P: A desktop
application for gene set enrichment analysis. Bioinformatics. (2007) 23:3251–3.
doi: 10.1093/bioinformatics/btm369

25. Geeleher P, Cox N, Huang RS. Prrophetic: an R package for prediction of clinical
chemotherapeutic response from tumor gene expression levels. PloS One. (2014) 9:
e107468. doi: 10.1371/journal.pone.0107468

26. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s
proportional hazards model via coordinate descent. J Stat Softw. (2011) 39:1–13.
doi: 10.18637/jss.v039.i05

27. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al.
Single-cell Rna-Seq supports a developmental hierarchy in human oligodendroglioma.
Nature. (2016) 539:309–13. doi: 10.1038/nature20123

28. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. Tisch: A comprehensive web
resource enabling interactive single-cell transcriptome visualization of tumor
microenvironment. Nucleic Acids Res. (2021) 49:D1420–D30. doi: 10.1093/nar/gkaa1020

29. Sedlak JC, Yilmaz ÖH, Roper J. Metabolism and colorectal cancer. Annu Rev
Pathol. (2023) 18:467–92. doi: 10.1146/annurev-pathmechdis-031521-041113

30. Qi L, Ding Y. Screening and regulatory network analysis of survival-related genes
of patients with colorectal cancer. Sci China Life Sci. (2014) 57:526–31. doi: 10.1007/
s11427-014-4650-1

31. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer.
Lancet. (2019) 394:1467–80. doi: 10.1016/S0140-6736(19)32319-0

32. Tauriello DVF, Batlle E. Targeting the microenvironment in advanced colorectal
cancer. Trends Cancer. (2016) 2:495–504. doi: 10.1016/j.trecan.2016.08.001

33. WuD,Wu P, HuangQ, Liu Y, Ye J, Huang J. Interleukin-17: A promoter in colorectal
cancer progression. Clin Dev Immunol. (2013) 2013:436307. doi: 10.1155/2013/436307

34. Rossi J-F, Lu ZY, Massart C, Levon K. Dynamic immune/inflammation precision
medicine: the good and the bad inflammation in infection and cancer. Front Immunol.
(2021) 12:595722. doi: 10.3389/fimmu.2021.595722

35. Lippitz BE. Cytokine patterns in patients with cancer: A systematic review.
Lancet Oncol. (2013) 14:e218–e28. doi: 10.1016/S1470-2045(12)70582-X
Frontiers in Immunology 19
36. Mao Y, Feng Q, Zheng P, Yang L, Liu T, Xu Y, et al. Low tumor purity is
associated with poor prognosis, heavy mutation burden, and intense immune
phenotype in colon cancer. Cancer Manag Res. (2018) 10:3569–77. doi: 10.2147/
CMAR.S171855

37. Gong Z, Zhang J, Guo W. Tumor purity as a prognosis and immunotherapy
relevant feature in gastric cancer. Cancer Med. (2020) 9:9052–63. doi: 10.1002/
cam4.3505

38. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, et al. Tumor purity as an
underlying key factor in glioma. Clin Cancer Res. (2017) 23:6279–91. doi: 10.1158/
1078-0432.CCR-16-2598

39. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P,
Trautmann A, et al. Matrix architecture defines the preferential localization and
migration of T cells into the stroma of human lung tumors. J Clin Invest. (2012)
122:899–910. doi: 10.1172/JCI45817

40. Wang L, Saci A, Szabo PM, Chasalow SD, Castillo-Martin M, Domingo-
Domenech J, et al. Emt- and stroma-related gene expression and resistance to Pd-1
blockade in urothelial cancer. Nat Commun. (2018) 9:3503. doi: 10.1038/s41467-018-
05992-x

41. Itahashi K, Irie T, Nishikawa H. Regulatory T-cell development in the tumor
microenvironment. Eur J Immunol. (2022) 52:1216–27. doi: 10.1002/eji.202149358

42. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance.
Cell. (2000) 101:455–8. doi: 10.1016/S0092-8674(00)80856-9

43. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: can Treg cells be a
new therapeutic target? Cancer Sci. (2019) 110:2080–9. doi: 10.1111/cas.14069

44. Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer.
Front Immunol. (2013) 4:190. doi: 10.3389/fimmu.2013.00190

45. Neeve SC, Robinson BW, Fear VS. The role and therapeutic implications of T
cells in cancer of the lung. Clin Transl Immunol. (2019) 8:e1076. doi: 10.1002/cti2.1076
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