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Longitudinal cytokine and
multi-modal health data of an
extremely severe ME/CFS patient
with HSD reveals insights into
immunopathology, and
disease severity
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Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

presents substantial challenges in patient care due to its intricate multisystem

nature, comorbidities, and global prevalence. The heterogeneity among patient

populations, coupled with the absence of FDA-approved diagnostics and

therapeutics, further complicates research into disease etiology and patient

managment. Integrating longitudinal multi-omics data with clinical, health,

textual, pharmaceutical, and nutraceutical data offers a promising avenue to

address these complexities, aiding in the identification of underlying causes and

providing insights into effective therapeutics and diagnostic strategies.

Methods: This study focused on an exceptionally severe ME/CFS patient with

hypermobility spectrum disorder (HSD) during a period of marginal symptom

improvements. Longitudinal cytokine profiling was conducted alongside the

collection of extensive multi-modal health data to explore the dynamic nature

of symptoms, severity, triggers, and modifying factors. Additionally, an updated

severity assessment platform and two applications, ME-CFSTrackerApp and

LexiTime, were introduced to facilitate real-time symptom tracking and

enhance patient-physician/researcher communication, and evaluate response

to medical intervention.

Results: Longitudinal cytokine profiling revealed the significance of Th2-type

cytokines and highlighted synergistic activities between mast cells and

eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS
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pathogenesis, particularly in cognitive impairment and sensorial intolerance. This

suggests a potentially shared underlying mechanism with major ME/CFS

comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic

tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data

identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and

emphasized the importance of investigating adverse reactions to medication and

supplements and drug interactions in ME/CFS severity and progression.

Discussion: Our study advocates for the integration of longitudinal multi-omics

with multi-modal health data and artificial intelligence (AI) techniques to better

understand ME/CFS and its major comorbidities. These findings highlight the

significance of dysregulated Th2-type cytokines in patient stratification and

precision medicine strategies. Additionally, our results suggest exploring the

use of low-dose drugs with partial agonist activity as a potential avenue for

ME/CFS treatment. This comprehensive approach emphasizes the importance of

adopting a patient-centered care approach to improve ME/CFS healthcare

management, disease severity assessment, and personalized medicine. Overall,

these findings contribute to our understanding of ME/CFS and offer avenues for

future research and clinical practice.
KEYWORDS

ME/CFS, EDS/hEDS/HSD, POTS, MCAS, MCS, longitudinal omics, Th2-cytokines,
complex chronic condition
1 Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/

CFS) is a chronic, complex, and debilitating multi-system disease

affecting millions of people worldwide (1–3). ME/CFS is

characterized by post-exertional malaise, manifested as the

worsening of existing symptoms or the onset of new ones

following mental or physical exertion, and exposure to

environmental risk factors. Persistent symptoms include, but are

not limited to, cognitive impairments, hypersensitivity to various

stimuli (4–7), headaches, muscle and joint pain, sore throat, tender

lymph nodes, gastrointestinal issues, chills, night sweats, multi-

chemical sensitivity, shortness of breath, irregular heartbeat, sleep

disturbance, pain, and orthostatic intolerance (8–10). Symptoms

tend to manifest in various combinations and levels of intensity for

each patient, often marked by periods of remission and relapse. This

variability, along with the gradual worsening of symptoms can lead

to a substantial reduction in patients’ ability to engage in previous

levels of occupational, educational, social, and personal activities,

and quality of life. Around 25% of ME/CFS patients, including

children, may become severely affected (11), confined to their

homes or beds for extended periods, with some becoming

critically ill (12–20).

Critically ill ME/CFS patients may require life-supporting

devices like jejunal feeding tubes or central venous catheters (19)

for nutrient delivery. Despite their importance, these devices carry
02
significant health risks, contributing to morbidity and mortality,

including thrombosis, infections, intestinal perforation, and

metabolic complications (21–23), thereby further complicating

the management of the patients’ health.

Despite decades of research, the precise pathophysiology of ME/

CFS remains unclear. The limited understanding of its underlying

causes, the FDA-approved diagnostic tests, and treatments, have

presented significant challenges in effectively diagnosing and

treating ME/CFS patients (9). These substantial hurdles

underscore the necessity for innovative research approaches to

address the existing gap in disease etiology and enhance patient

care and quality of life (24).

A substantial body of research has implicated genetic variations

and environmental stressors, such as infections, trauma, and

exposure to toxins, in the etiology of ME/CFS (25–30).

Additionally, ME/CFS patients and their families exhibit a higher

prevalence of conditions like Ehlers-Danlos syndrome (EDS),

hypermobility spectrum disorders (HSD) (31), post-treatment

Lyme disease (PTLDS) (32), and Pediatric Acute-onset

Neuropsychiatric Syndrome (PANS) (33–35). Recent investigations

into post-COVID syndrome have uncovered significant symptom

overlap between ME/CFS and Long COVID (36–38). Studying

shared biological systems across these comorbidities holds promise

for biomarker and therapeutic discoveries (39).

Within the intricate tapestry of ME/CFS and its comorbidities, a

central point of agreement in the scientific community revolves
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around immune dysregulation (40) and aberrant cytokine

expression. However, a thorough examination of the literature

reveals inconsistencies, with some studies indicating an overactive

immune response leading to chronic inflammation (41–43), while

others propose a scenario of immune system debilitation (44).

The inconsistency in research findings could be due to a myriad

of factors including the dynamic nature of ME/CFS (10),

characterized by relapse and remission cycles, diverse triggers,

and variable durations, as well as medication, lifestyle, and

comorbidities (31, 35, 45–48). Adding to the complexity is the

subjective nature of symptomatology, spanning across multiple

bodily systems, and the inherent limitations in tools available for

the quantitative measurement of severity fluctuations.

Currently, to assess clinical severity, researchers rely on

methods such as the SF-36 questionnaire, and cardiopulmonary

exercise tests, categorizing patients into mild, moderate, and severe

groups. Acknowledging the spectrum’s breadth, a recent addition of

a “very severe” category attempts to capture the extreme end of the

scale (5, 20). However, as the condition worsens, some patients

transition from ambulatory to bed bound states, rendering

conventional assessment tools impractical (49, 50) and

highlighting the pressing need for more adaptable approaches.

The exclusion of the very severely ill cohort from mainstream

ME/CFS studies can also result in misclassification, contributing

to research inconsistency and impeding our understanding of

disease pathophysiology (49, 50). Recognizing this critical gap, we

initiated a comprehensive longitudinal study that integrates clinical,

health, pharmaceutical, nutraceutical, textual, and cytokine data,

and harnesses the power of artificial intelligence (AI). Our focus on

an extremely severe ME/CFS patient in a phase of marginal

improvement has provided a unique perspective on the

underlying immunopathology and its connections to

symptomatology, severity, and comorbidity in ME/CFS. By

delving into the intricacies of severity and incorporating the

experiences of the most severely affected individuals, our objective

is to lay the groundwork for substantial advancements in the quality

of care for those navigating the challenges of ME/CFS. Myalgic

encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a

chronic, complex, and debilitating multi-system disease affecting

millions of people worldwide (1–3). ME/CFS is characterized by

post-exertional malaise, manifested as the worsening of existing

symptoms or the onset of new ones following mental or physical

exertion, and exposure to environmental risk factors. Persistent

symptoms include, but are not limited to, cognitive impairments,

hypersensitivity to various stimuli (4–7), headaches, muscle and

joint pain, sore throat, tender lymph nodes, gastrointestinal issues,

chills, night sweats, multi-chemical sensitivity, shortness of breath,

irregular heartbeat, sleep disturbance, pain, and orthostatic

intolerance (8–10). Symptoms tend to manifest in various

combinations and levels of intensity for each patient, often

marked by periods of remission and relapse. This variability,

along with the gradual worsening of symptoms can lead to a

substantial reduction in patients’ ability to engage in previous

levels of occupational, educational, social, and personal activities,

and quality of life. Around 25% of ME/CFS patients, including

children, may become severely affected (11), confined to their
Frontiers in Immunology 03
homes or beds for extended periods, with some becoming

critically ill (12–20).

Critically ill ME/CFS patients may require life-supporting

devices like jejunal feeding tubes or central venous catheters (19)

for nutrient delivery. Despite their importance, these devices carry

significant health risks, contributing to morbidity and mortality,

including thrombosis, infections, intestinal perforation, and

metabolic complications (21–23), thereby further complicating

the management of the patients’ health.

Despite decades of research, the precise pathophysiology of ME/

CFS remains unclear. The limited understanding of its underlying

causes, the FDA-approved diagnostic tests and treatments, have

presented significant challenges in effectively diagnosing and

treating ME/CFS patients (9). These substantial hurdles

underscore the necessity for innovative research approaches to

address the existing gap in disease etiology and enhance patient

care and quality of life (24).

A substantial body of research has implicated genetic variations

and environmental stressors, such as infections, trauma, and

exposure to toxins, in the etiology of ME/CFS (25–30).

Additionally, ME/CFS patients and their families exhibit a higher

prevalence of conditions like Ehlers-Danlos syndrome (EDS),

hypermobility spectrum disorders (HSD) (31), post-treatment

Lyme disease (PTLDS) (32), and Pediatric Acute-onset

Neuropsychiatr ic Syndrome (PANS) (33–35) . Recent

investigations into post-COVID syndrome have uncovered

significant symptom overlap between ME/CFS and Long COVID

(36–38). Studying shared biological systems across these

comorbidities holds promise for biomarker and therapeutic

discoveries (39).

Within the intricate tapestry of ME/CFS and its comorbidities, a

central point of agreement in the scientific community revolves

around immune dysregulation (40) and aberrant cytokine

expression. However, a thorough examination of the literature

reveals inconsistencies, with some studies indicating an overactive

immune response leading to chronic inflammation (41–43), while

others propose a scenario of immune system debilitation (44).

The inconsistency in research findings could be due to a myriad

of factors including the dynamic nature of ME/CFS (10),

characterized by relapse and remission cycles, diverse triggers,

and variable durations, as well as medication, lifestyle, and

comorbidities (31, 35, 45–48). Adding to the complexity is the

subjective nature of symptomatology, spanning across multiple

bodily systems, and the inherent limitations in tools available for

the quantitative measurement of severity fluctuations.

Currently, to assess clinical severity, researchers rely on

methods such as the SF-36 questionnaire, and cardiopulmonary

exercise tests, categorizing patients into mild, moderate, and severe

groups. Acknowledging the spectrum’s breadth, a recent addition of

a “very severe” category attempts to capture the extreme end of the

scale (5, 20). However, as the condition worsens, some patients

transition from ambulatory to bed bound states, rendering

conventional assessment tools impractical (49, 50) and

highlighting the pressing need for more adaptable approaches.

The exclusion of the very severely ill cohort from mainstream

ME/CFS studies can also result in misclassification, contributing
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to research inconsistency and impeding our understanding of

disease pathophysiology (49, 50). Recognizing this critical gap, we

initiated a comprehensive longitudinal study that integrates clinical,

health, pharmaceutical, nutraceutical, textual, and cytokine data,

and harnesses the power of artificial intelligence (AI). Our focus on

an extremely severe ME/CFS patient in a phase of marginal

improvement has provided a unique perspective on the

underlying immunopathology and its connections to

symptomatology, severity, and comorbidity in ME/CFS. By

delving into the intricacies of severity and incorporating the

experiences of the most severely affected individuals, our objective

is to lay the groundwork for substantial advancements in the quality

of care for those navigating the challenges of ME/CFS.
2 Materials and methods

2.1 Study design and participant

Over the course of four years, from June 2017 (when the

participant was 34) to January 2021, we collected longitudinal

blood samples from an extremely ill male ME/CFS patient. These

samples were used for integrative case study on longitudinal plasma
Frontiers in Immunology 04
cytokine profiling, which incorporated health, clinical, and textual

data to identify cytokines associated with disease severity. The

patient began experiencing health issues at age 21 and received a

diagnosis of ME/CFS almost a decade later. He is entirely

bedridden, relying on caregivers for all aspects of his life, and

receives nutrition via a G-tube and PICC line. The patient, of

Caucasian descent, also has a comorbidity of hypermobility

spectrum disorder, with a family history of EDS type III and HSD

(refer to Figure 1). Throughout this four-year period, from June

2017 to January 2021, the patient’s extreme hypersensitivity and

PEM improved to the extent that he could tolerate human presence

and regain access to internet use and social media.

This patient met various diagnostic criteria outlined by

renowned ME/CFS doctors, such as those from the International

Consensus Criteria and Canadian Consensus Criteria. These criteria

encompassed Post-Exertional Malaise (PEM), symptom duration

(persisting for over six months), multiple symptoms (including

gastrointestinal issues, POTS, muscular pain, cold intolerance, sleep

impairment, and sensory intolerance), functional impairment

(severely affecting daily life), and exclusion of alternative

diagnoses (validated through medical investigations) (51).
2.2 Longitudinal plasma sample collection

Over the course of four years (2017-2021), a total of nine

plasma samples were collected from an extremely severe ME/CFS

patient, transitioning to a marginal improvement in health

(Figure 2A; Table 1). Blood samples were obtained using BD-

K2EDTA Vacutainer purple top 10 mL tubes (366643) and were

immediately mixed by gently and thoroughly inverting the tube

five to ten times. Subsequently, plasma was separated through

centrifugation at 2500 RPM for 10 minutes at 4°C. The isolated

plasma layer was transferred into 15 ml polypropylene conical

tubes, thoroughly mixed, and then aliquoted into 1.5 ml DNase-

and RNase-free Eppendorf tubes. These aliquoted plasma samples

were promptly snap-frozen in liquid nitrogen and stored at −80°C

until the time of assay.
2.3 Longitudinal plasma cytokine profiling
using multiplex cytokine bead array

The analysis was conducted in collaboration with the Stanford

Human Immune Monitoring Center, employing the MILLIPLEX

Human Cytokine/Chemokine Immunology Multiplex Assay. The

assay utilized kits purchased from EMD Millipore Corporation,

Bu r l i ng ton , MA, and fo l l owed the manu fa c tu r e r ’ s

recommendations with some modifications. The H80 kits

consisted of three panels: Panel 1 (Milliplex HCYTA-60K-PX48),

Panel 2 (Milliplex HCP2MAG-62K-PX23), and Panel 3 (Milliplex

HSP1MAG-63K-06 and HADCYMAG-61K-03, targeting Resistin,

Leptin, and HGF) to generate a 9-plex.

Following the recommended protocol, samples were diluted

threefold for cytokines measured in Panel 1 & 2 and tenfold for

those measured in Panel 3, based on the abundance range of each
FIGURE 1

Pedigree Structure of the Family with ME/CFS, EDS Type III, and
HSD History. The depicted pedigree illustrates an ME/CFS patient of
Caucasian descent. The patient presents with the comorbidity of
Hypermobility Spectrum Disorder (HSD) and shares a family history
of Ehlers-Danlos Syndrome (EDS) Type III. The sister with confirmed
EDS Type III is highlighted in green.
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cytokine in plasma. A 25 µl volume of the diluted sample was mixed

with antibody-linked magnetic beads in a 96-well plate and

incubated overnight at 4°C with shaking. Incubation steps were

performed on an orbital shaker at 500-600 rpm at both cold and

room temperature. After washing the plates twice with a wash buffer

using a Biotek ELx405 washer (BioTek Instruments, Winooski,

VT), a one-hour incubation at room temperature with biotinylated

detection antibody was conducted. Streptavidin-PE was then added

for 30 minutes while shaking.

Plates were washed again, and PBS was added to wells for

reading in the Luminex FlexMap3D Instrument with a lower bound

of 50 beads per sample per cytokine. Control beads (Custom Assay

Chex, Radix Biosolutions, Georgetown, Texas) were included in all

wells. Wells with a bead count less than 50 were flagged, and data

with a bead count less than 20 were excluded. Data analysis was

performed using MasterPlex software (Hitachi Software

Engineering America Ltd., MiraiBio Group), with both median

fluorescence intensity (MFI) and calculated concentration values

reported for each analyte.
2.4 Statistical analyses

All statistical analyses and visualization were performed in R using

custom R scripts. The raw cytokine MFI (median fluorescence

intensity) values were log 2 transformed and used for downstream

analysis. Hierarchical clustering was done on the samples and cytokines

using euclidean distance, and the ward.D2 clustering method. Outliers

in cytokine profiling data were identified using the Z-score method,

which provides a standardized measure of deviation from the mean,

facilitating the detection of biologically meaningful differences. The

robustness of the Z-score method to variations in sample size and

distributionmade it suitable for our study (52). Z-scores were calculated

by comparing the latest time-point sample (most improved health state;

01/18/2021) cytokine levels to the average of all the previous time-

points. P-values were generated from two-tailed normal distribution

samples from each z-score, followed by FDR p-value adjustment for

multiple-hypothesis testing. In addition, we conducted an analysis to

investigate the correlation between cytokine intensity and the health

state over time in the patient. The Pearson correlation coefficient was

employed as a statistical measure to assess the strength and direction of

the linear association between cytokine levels and health state. We

performed a similar analysis to assess the correlation between the

change in medication over time and health state.
2.5 Patient blog post sentiment analysis

We conducted a thorough analysis on blog posts authored by the

extremely severe ME/CFS patient. The extracted dataset included

essential details like publication dates and post content. Data

preprocessing involved extracting and standardizing publication dates

while accounting for time zone variations. The datasets were then

filtered for the timeframe spanning 2017 to 2021, aligning precisely with

the longitudinal plasma collection phase and coinciding with the period

of marginal health improvement. Our exploratory data analysis focused
Frontiers in Immunology 05
onword frequency atmonthly and yearly intervals.We also investigated

post lengths over time, calculating and visualizing average post lengths.

Employing a pre-trained large language transformer model (SamLowe/

roberta-base-go_emotions, available from HuggingFace (53), we

conducted sentiment analysis, and the outcomes were visually

depicted through monthly and yearly sentiment trends.

To deepen our understanding of linguistic nuances, word cloud

analysis was applied, generating visually intuitive representations of

word frequencies in all posts, both on a monthly and yearly basis.

Furthermore, topic modeling was applied using natural language

processing and a latent dirichlet allocation model to uncover hidden

thematic structures across the blog posts. The complete pipeline,

encompassing data extraction to exploratory analyses, was executed

using Python. Leveraging sentiment analysis and topic modeling,

the outcomes are encapsulated in a user-friendly Streamlit-powered

web application, LexiTime (Lexical and Temporal Insight Mining

Exploration). The application is accessible at https://github.com/

singjc/lexitime.
2.6 Development of a web-based
application for real-time symptom tracking
and intervention assessment

A web-based application was developed for the active tracking

of symptoms for ME/CFS patients. The application was developed

using a Node.js frontend and Python backend, interacting with a

MongoDB and Postgres data system to save patient responses. The

UI/UX design phase focused on creating an intuitive and visually

appealing interface for seamless symptom tracking. User feedback

and iterative design processes were implemented to enhance user

experience, ensuring accessibility and ease of use.

Given the sensitive nature of health data,robust security measures

have been implemented at multiple layers of the application to ensure

data confidentiality, integrity, and availability. The security design

adhered to established principles (54–57) and included end-to-end

encryption, input sanitization, server-side authentication, and

encryption of usernames and passwords. We employed HTTPS for

transport in the web-based application and AES-256 for data

encryptions. The application underwent rigorous testing phases,

ensuring functionality and usability. User feedback and testing results

informed iterative development cycles, ensuring a robust and reliable

web-based tool. Upon successful testing, the web-based application was

deployed to a secure server, ensuring accessibility for users. Cross-

browser compatibility and responsive design were prioritized to

facilitate usage across various devices.
3 Results

3.1 Constructing a comprehensive disease
timeline through integration of longitudinal
health and clinical data

Individuals with very severe ME/CFS encounter communication

challenges, impeding health evaluation and therapeutic assessment.
frontiersin.org
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We took a collaborative approach with patients’ caregivers involving

meticulous utilization of patient and caregiver notes, alongside

clinical health records, to construct a detailed disease timeline and

severity assessments (Figure 2, Table 1, Figure 3).

The patient began experiencing health symptoms in 2004 and

was diagnosed with ME/CFS in 2012 at the age of 29, after

struggling with health issues for nearly a decade (Figure 2A). He

had an active life prior to his illness. Longitudinal clinical blood cell

count (CBC) analysis indicated two episodes of leukocytosis,

characterized by an elevated white blood cell (WBC) count in

2000 and 2002 (Figure 2B), which occurred before the onset of

experiencing health symptoms. The initial leukocytosis was

attributed to EBV-mediated mononucleosis, as confirmed by a

monospot test, and may have potentially acted as a trigger for the

condition (Figure 2A). Longitudinal analyses of clinical data

revealed mononucleosis as the cause for his initial leukocytosis.

Retrospective complete blood count (CBC) analyses also illustrated

a consistently diminished red blood cell count subsequent to the
A

B C

FIGURE 2

Constructing a Comprehensive Disease Timeline through the Integration of Longitudinal Health and Clinical Data for An Extremely Severe ME/CFS
Patient. (A) Integrating health and clinical data illustrates dynamic severity changes, triggers, contributing factors, and new symptom onsets.
Infections like mononucleosis and stressors such as infections, medications, and trauma modulate severity. (B) Retrospective analysis of Longitudinal
Complete Blood Count (CBC) data from the extremely severe ME/CFS patient during the first decade of his illness revealed two episodes of
leukocytosis (red arrows) prior to the onset of health symptom, suggesting infection-derived immune dysregulation as a potential trigger for his ME/
CFS. (C) Leukocytosis was followed by a lasting red blood cell count reduction. While white blood cell counts normalized, RBC levels declined,
remaining low. * Depicts a Severe ME/CFS-like episode.
Frontiers in Immunology 06
TABLE 1 Longitudinal collection of plasma cytokines, age, and severity
score over the 4-Year study period.

Date Age CFS severity

6/29/17 33 Severe D

6/18/18 34 Severe D

4/9/19 35 Severe D

8/1/19 35 Severe D

12/19/19 36 Severe D

1/14/20 36 Severe D

2/7/20 36 Severe D

2/13/20 36 Severe D

1/18/21 37 Severe A
Nine plasma samples were collected using EDTA tubes, capturing the nuanced progression of
the patient’s health from the extremely severe stage D to A. The collected plasma samples
underwent prompt processing and were stored at -80°C.
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leukocytosis, persisting at a lower or below-normal range

throughout the course of the illness (Figure 2B).

In 2006, during a trip to India, the patient developed a peculiar

cold with mild symptoms lasting two weeks. Four months later, he

encountered an abrupt onset of symptoms akin to severe ME/CFS

cases (Figure 2A). After a slow recovery, regaining about 60% of

health (patient self-assessment) (Figure 2A), his disease severity

transitioned from mild to moderate (Figure 2A). Subsequently, a

similar episode unfolded, starting with mild diarrhea, and escalating

to severe ME/CFS, rendering him bedridden, only able to consume

liquified white rice soup. Three months later, he ended up with

pneumonia in a hospital in India, forcing him to return home.

Upon return, although he partially regained health, lingering
Frontiers in Immunology 07
symptoms including lightheadedness persisted. Seeking a remedy,

he traveled to Guatemala, where another severe ME/CFS-like

episode occurred, mirroring the India experience. It began with

mild diarrhea after a meal, followed by what the patient self-

described as a stomach shutdown, possibly indicative of

gastroparesis, and fatigue. After a week in this condition, he

returned home, and his condition improved. However, his health

baseline never fully recovered (patient self-assessment), and issues

like gastroparesis, postprandial nausea, cold intolerance, and cold

extremities surfaced (Figure 2A).

Throughout the first decade of his ME/CFS journey, the

patient’s symptom severity gradually worsened from mild to

moderate (2004-2006: mild, 2006-2010: moderate) (Figure 2A),
A B C

FIGURE 3

Proposed Framework for Personalized Severity Assessment in ME/CFS to Capture Variation in ME/CFS Severity and Life Impairment across Patients
and Time. (A) Illustrates the dynamic range of the ME/CFS severity scale based on the disease’s impact on all aspects of the patient’s life, including
occupational, educational, social, and personal spheres. (B) Depicts the impact of mild to severe ME/CFS on the patient’s life. Mild: maintained about
80% of pre-ME/CFS functional capacity, as well as full-time employment with limitations due to post-exertional malaise (PEM). Moderate: pre-ME/
CFS functional capacity, unable to hold part-time work, with increased limitations in activity, progressing to severe: inability to hold any job, primarily
house and bedbound. (C) Shows the patient’s functioning ability significantly degrading from extremely severe A to D, highlighting ME/CFS’s
profound impact at this level. Severe nutritional deficiencies led to Gastrostomy tube (G-tube) and Peripherally inserted central catheter (PICC Line)
Line use. Sensory intolerance intensified, making it impossible for the patient to tolerate others in his room. At stage D, communication loss and
internet access loss intensified social isolation.
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with a notable presence of postural orthostatic intolerance (POTS),

which significantly worsened after cardiovascular exercise and

reappeared during post-remission periods (Figure 2A). In 2009,

while managing only a part time job, the patient encountered

another cold episode with initially mild symptoms. This episode

triggered a decline in his health, reminiscent of the severe ME/CFS-

like states he had previously experienced (Figure 2A). While mostly

housebound, he managed short walks for groceries, performed self-

care activities, cooked, and was sufficient. His condition further

advanced from moderate to severe, rendering him bed bound.

Describing his main symptoms as a ‘total body shut down,’ he

emphasized the severity of the debilitating post-exertional malaise

(Figure 2A). To articulate the gravity of his condition, he offered the

analogy: “To compare the state I was in in 2012 to staying up for

two nights in a row while fasting, then getting drunk. The state you

would be in on the third day— hangover, not having slept or eaten

in 3 days— is close, but still better than many ME/CFS patients feel

every day”.

In 2013, the patient received Rituximab, after which he

experienced an extreme crash and became permanently affected

by PEM (Figure 2A). Muscular pain developed in the back of his

legs, hindering his ability to stand or walk short distances

(Figure 2A). Subsequently, he lost the capacity to speak, and

communicated by text messages and a pre-programmed app for

basic communication and food requests, ultimately transitioning to

a routine food delivery program to minimize the need for

texting (18).

During this period, he exerted minimal activity including lying

on a lawn chair and listening to music with headphones for a few

hours before returning to his room, with 2–3 short trips to the

kitchen comprising the extent of his daily walking. Later, he

obtained a wheelchair to facilitate movement to the kitchen

(Figures 2A, 3A, B). However, a physically demanding event in

2014, coupled with emotional strain, rendered him fully bedridden

and intolerant of human contact, escalating his condition to an

extremely severe state overnight (Figures 2A, 3C). Transitioning

from a very severe to an extremely severe state, heightened sensorial

intolerance to noise, human contact, and social media impeded the

patient’s ability to receive basic necessities. To cope, he resorted to

covering his eyes with a folded trowel and wearing earphones and

earmuffs to block outside stimuli (18) (Figure 3). The patient coined

the term “mental crash” to describe this sensorial intolerance,

emphasizing that even stimuli unrelated to any mental links could

overwhelm the brain’s processing capacity. He subsequently

isolated himself from human presence and the external world

(Figure 3C) (18).

During emergencies intravenous Ativan administration enabled

basic communication (Figure 2A). In the fall of 2019, the patient

began a low dose of Abilify (aripiprazole, 0.2 mg), which was

gradually increased to 2 mg by February 17, 2020. By June 2020,

he reported slight improvement, allowing him to communicate

briefly in writing using his cell phone. In one of his posts, the patient

attributed this improvement to several factors, including an increase

in the doses of Cortef (hydrocortisone) from 10 to 15 (to address

potential adrenal insufficiency), and the Abilify treatment. In late
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2020, he reported being able to have people in his room without the

need for earphones and earmuffs (18) (Figures 2A, 3C).
3.2 A proposed framework for assessing
the personalized severity of ME/CFS

We built upon the existing classifications of mild to very severe

(9), but also introduced the “extremely severe” category, further

subdividing it into subclasses (A, B, C, D, and E) (Figure 3). The

resulting framework classifies patients on a 1-10 scale and is defined

around the impact of symptoms on patients’ ability to regain their

pre-ME/CFS baseline function at a single symptom resolution.

The mild stage is defined in which the patient maintains 80% of

their baseline function and full-time employment, albeit with

limitations due to post-exertional malaise. Progressing to a

moderate stage reduces their capacity to function to 60% or lower

of their baseline, limiting them to part-time work.

Transitioning to the severe stage renders patients house and

bed-bound, unable to work. They can perform most self-care

activities independently but are unable to hold a job or engage in

cardiovascular activity. At a very severe stage, patients become

mostly bedridden, only able to perform minimal activities of daily

living and self-care, such as bathing. They are unable to leave the

house or do basic chores.

Extremely severe ME/CFS significantly interferes with nearly all

aspects of the patient’s life (Figure 3C). Sensory intolerance and

gastrointestinal disorders can cause severe nutritional deficiencies,

resulting in a significant weight drop and the potential use of a G-J

tube and PICC line for nutritional and medicinal support. From

stage B to D, sensory intolerance makes it impossible for the patient

to tolerate others in their room. At stage D, they lose

communication abilities and internet access, intensifying

social isolation.
3.3 Development of ME-CFSTrackerApp, a
web-based application for real-time
symptom tracking and
intervention assessment

As a companion to our work, a web-based application was

developed to allow patients to create an electronic journal of their

symptoms, medications, and life events. The application was built

using a stack of a Node.js front end and a Python back end and

deployed on a secure server hosted at Stanford. The deployment is

configured to guarantee constant uptime and cross-browser

compatibility to ensure accessibility. Cross-browser compatibility

and responsive design were prioritized to facilitate seamless usage

across various devices, enhancing the accessibility and user

experience. To promote widespread usage and accessibility, ME-

CFSTrackerApp is freely available for use. Users can navigate to the

app l i c a t i on u s i n g t h e p ro v i d ed l i nk “h t t p s : / /me -

cfstrackerapp.su.domains”, where they can benefit from its

features without any cost. This commitment to open access
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ensures that individuals can readily leverage the application for

the i r rea l - t ime symptom track ing and intervent ion

assessment needs.
3.4 Longitudinal cytokine analyses

For downstream analyses, raw mean fluorescence intensity (MFI)

values were log2-transformed. The distribution of log2-transformed
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cytokine MFI profiles showed remarkable consistency across all 9 time

points, with comparable medians (Figure 4A). Hierarchical clustering

analysis effectively revealed relationships between samples, resulting in

distinct clustering patterns among similar time points (Figure 4B;

Supplementary Figure S1).

To investigate cytokines linked with disease severity, Z-scores

were computed for the 80 measured cytokines between the patient’s

improvement to ‘Extremely Severe A’ (Jan 21) and the average of

the preceding eight time points when his health was assessed at
A B

D

E F

C

FIGURE 4

Longitudinal Multiplex Cytokine Profiling. (A) Distribution of log2-transformed cytokine MFI values per sample: Each boxplot represents a time point
(run in 3 cytokine panels). The boxplot is arranged chronologically. (B) Hierarchical Clustering of Samples: This panel reveals groupings of similar
time points and illustrates relationships between the samples based on clustering of log2-transformed cytokine intensities. (C) Volcano Plot of
Differentially Expressed Cytokines: Plot illustrates cytokines based on the z-score derived from the last time point (Jan. 21), corresponding to the
patient’s improved severity to ‘extremely severe A,’ in comparison to the average of the preceding nine time points. The x-axis represents z-scores,
while the y-axis line represents -log (p-value). Black and blue dots marked cytokines with z-score values within -1 and 1, and p-value<0.05,
respectively. (D) Heatmap of Top Differentially Expressed Cytokines: Columns (sample time points) and rows (cytokines) are clustered using
euclidean distance and ward.D2 clustering. Most cytokines are reduced in the healthiest time point (marked in purple) except MIF, HGF, and LEP.
Dark blue signifies the lowest z-scores, dark red the highest. (E) Log2 intensity levels of top 5 differentially expressed cytokines over time
demonstrates cytokines that share similar trends. (F) Pearson correlation of cytokines in relation to the health state of the patient at the 9 different
timepoints. The red dashed line indicates a 5% p-value cutoff.
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‘Extremely Severe D’ (Supplementary Table S1). Cytokines of

interest were identified based on absolute z-scores deviating by 1

standard deviation or more from the mean (Table 2), enabling the

identification of subtle changes in cytokine patterns across time

points that may be associated with transitions in health severity

from extreme severe D to A. Among 80 cytokines, ten exhibited a Z-

score of +1 or more, including HGF (4.80), Leptin (3.61), MIF

(3.08), ENA78 (1.37), GROA (1.25), IL2 (1.19), CCL17 (1.10),

CCL21(1.04), FGF2 (1.0), and TPO (1.0). Additionally, 14

cytokines showed a z-score value of -1 or less including CCL11

(-2.75), MCP1 (-2.27), IL28A(-2.17), CXCL9 (-2.10), IL5 (-2.08),

MIP1D (-2.06), SFAS (-1.90), VEGF (-1.79), CCL27 (-1.71), IL9

(-1.51), IL6 (-1.29), MCP4 (-1.20), IL10 (-1.18), IL4 (-1.11) (Table 2;

Supplementary Table S1). Among these 24 cytokines, only nine

exhibited statistically significant changes with an absolute z-score >

1 and p-value <= 0.05. These include HGF (z-score: 4.80, p-value:

1.60E-06), Leptin (z-score: 3.61, p-value: 0.0002), MIF (z-score:
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3.08, p-value: 0.002), CCL11 (z-score: -2.75, p-value: 0.005), MCP1

(z-score: -2.27, p-value: 0.023), IL28A (z-score: -2.17, p-value:

0.029), CXCL9 (z-score: -2.11, p-value: 0.035), IL5 (z-score: -2.08,

p-value: 0.035), and MIP1D (z-score: -2.06, p-value: 0.039)

(Figure 4C, Table 2). This limited 9-plex cytokine panel effectively

distinguished ‘Extremely Severe A’ from ‘Extremely Severe D’

(Figures 4C, D). Out of these 14 cytokines, only HGF, LEPTIN,

and MIF withstood an FDR adjustment of 10% (Table 2;

Supplementary Table S1).

The color-coded heatmap (Figure 4D) shows cytokines with

significant changes in plasma levels as the patient’s health improved

from Extremely Severe D to Extremely Severe A between June 2017

and January 2021. Key cytokines in this transition, such as HGF,

LEPTIN, MIF, IL5, CCL11, CCL2, IL28A, CCL15, are highlighted. The

red and blue colors indicate whether the cytokine levels increased or

decreased. The change for each cytokine was calculated using a z-score

based on log-transformed raw MFI values.

Cytokines were filtered based on an absolute Z-Score of ±1 or

more, comparing samples from the healthiest time point (01/18/

2021) to the average of the 8 previous time points. Significant

differences (denoted in red) between the healthiest and preceding

time points were determined using p-values, both before and after

adjusting for multiple comparisons (controlling for FDR at 10%).

Analyzing cytokines that demonstrate significant differentiation

between the patient’s most improved state in January 2021 and the

preceding health states revealed distinctive patterns in cytokine

deviations. This differentiation is visually represented in the

hierarchical clustered heatmap (Figure 4D), where clear clusters

of time points emerge, highlighting unique cytokine expression

profiles. Moreover, among the top differentially expressed

cytokines, some exhibit similar temporal profiles (Figure 4E).

Notably, MCP1 and CCL11 demonstrate analogous trends over

time, albeit at varying magnitudes, both showing a decline in the

latest time point. Similarly, HGF and MIF display comparable

temporal patterns, exhibiting an increase in the most recent time

point. In contrast, MCP1 and CCL11 display opposite trends

compared to those observed for MIF and, to a lesser degree, with

HGF (Figure 4E). This intricate interplay underscores the nuanced

dynamics of cytokine regulation during the observed period. The

analysis of cytokine levels in relation to disease severity indicated a

positive correlation for HGF, LEP, and MIF (increase in plasma

cytokine level with health improvement and reduced severity) and a

negative correlation for CCL11 (decrease in plasma cytokine level

with health improvement) during the transition from extremely

severe D to extremely severe A. Additionally, negative correlations

were observed for MCP1, IL28A, CXCL9, IL5, MIP1D SFAS, VEGF,

and CCL27 with health improvement, although statistical

significance (p-value < 0.05) was not achieved (Figure 4F;

Supplementary Table S2).
3.5 Gene set enrichment and ingenuity
pathway analyses

In exploring the changes in cytokine expression between the

healthiest time point and preceding stages, Ingenuity Pathway
TABLE 2 Top differentially expressed cytokines between healthiest time
point (Extremely severe stage A) and average of prior time points
(Extremely severe stage D).

Cytokine Z score p-value fdr

HGF 4.80 1.60E-06 0.0001

LEPTIN 3.62 0.0002 0.01

MIF 3.09 0.00 0.05

EOTAXIN/CCL11 -2.75 0.01 0.12

MCP1/CCL2 -2.27 0.02 0.35

IL28A/IFNL2 -2.17 0.03 0.35

MIG/CXCL9 -2.11 0.04 0.35

IL5 -2.08 0.04 0.35

MIP1D/MIP5/CCL15 -2.06 0.04 0.35

SFAS/TNFRSF6 -1.91 0.06 0.45

VEGF -1.79 0.07 0.53

CTACK/CCL27 -1.72 0.09 0.57

IL9 -1.51 0.13 0.81

ENA78/CXCL5 1.37 0.17 0.97

IL6 -1.29 0.2 0.97

GROA 1.25 0.21 0.97

MCP4/CCL13 -1.20 0.23 0.97

IL2 1.19 0.23 0.97

IL10 -1.18 0.24 0.97

IL4 -1.12 0.26 0.97

TARC/CCL17 1.11 0.27 0.97

6CKINE/CCL21/EXODUS2 1.04 0.3 0.97

FGF2/FGFB 1.01 0.31 0.97

TPO 1.01 0.31 0.97

HGF 4.80 1.60E-06 0.0001
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1369295
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jahanbani et al. 10.3389/fimmu.2024.1369295
Analysis (IPA) provided insights into pathways potentially

associated with health improvement. Canonical pathway analyses

on cytokines with z score value of plus minus 1 or more revealed

significant inhibition in several pathways, notably the pathogen-

induced cytokine storm signaling pathway (-log (B-H p-value)= 27;

z-score = -1.15) (Supplementary Table S4), neuroinflammation

(-log (B-H p-value)= 4.1; z-score = -2.24), HMGB1 (High

Mobility Group Box 1) signaling (-log (B-H p-value)= 8.36; z-

score = -1.34), and Systemic Lupus Erythematosus in T cell

signaling pathway (-log (B-H p-value)=2.78; z-score: -1.34)

(Figure 5A; Supplementary Table S3). The TH2 pathway also

exhibited inhibition (-log (B-H p-value) = 5.5; z-score = -1),

aligning with the observed reduction in IL4, IL5, and IL9.

Notably, DHA (Docosahexaenoic Acid) signaling (-log (B-H p-

value) =3.2; z-score = 1) and RAF/MAP kinase cascade (-log (B-H

p-value)=3.26, z-score=1) were predicted to be activated

(Supplementary Table S3). Canonical pathways analysis on

differentially expressed cytokines that passed both the z score

value of 1 and more and p value of <0.05 also suggests inhibition

of pathogen induced cytokine storm, and IL17 signaling

(Supplementary Figure S2).
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Upstream regulators analyses indicated predicted inhibition in TNF

(activation Z score=-1.6, p-value of overlap=2.56E-27) (Supplementary

Figure S3A), TLR4 (Toll-like receptor 4) (activation Z score=-2.2; p-

value of overlap=5.18E-10), PLA2G10 (Phosphatidylcholine 2-

Acylhydrolase 10) (Supplementary Figure S3A, B) (activation Z

score=-2.4, p-value of overlap=5.22E-10), CCL11 (activation Z

score=-1.9; p-value of overlap=5.75E-21) (Supplementary Figure S3B)

(Supplementary Table S6), KITLG (KIT proto‐oncogene ligand)

(activation Z score=-2.2, p-value of overlap=1.85E-10), IL9 (activation

Z score=-2.4, p-value of overlap=2.92E-10), IL18 (activation Z score=-

2.2; p-value of overlap=2.65E-17) and NFkB-RelA (activation Z score=-

2.0; p-value of overlap=1.96E-10) (Supplementary Table S5). Notably,

BCL6 (activation Z score=2.1; p-value of overlap=5.97E-11)

(Figure 5B), EPO (Erythropoietin) (activation Z score=1.99; p-value

of overlap=1.29E5), TP53 (activation Z score=1.6; p-value of

overlap=1.48E-9) (Figure 5B), HBB (hemoglobin subunit beta)

(activation Z score=1.9; p-value of overlap=1.68E-18), IL11

(activation Z score=1.96; p-value of overlap=1.02E-6), and SCGB1A1

(Secretoglobin Family 1AMember 1) (activation Z score=1.9; p-value of

overlap=1.51E-8) were predicted to be activated (Supplementary Table

S5, Figure S3). Additionally, IPA disease and function analysis predicted
A

B C

FIGURE 5

Ingenuity Pathway Analysis of Longitudinal Cytokine Profiling During Health Improvement from Extremely Severe Stage D to A. (A) Top significant
canonical pathways with an absolute z-score value of 0.8 and B-H p-value ≤ 0.05 are shown. Orange and blue bars represent positive or negative z-
scores, indicating predicted pathway activation or inhibition, respectively. (B) Upstream regulator analysis indicates the activation of BCL6 and TP53
at the healthiest time point. (C) IPA diseases and function analyses predict the inhibition of mast cells and eosinophils functions. Green represents
cytokines with reduced plasma levels at the healthiest time points, and red indicates increased cytokines. Orange and blue indicate predicted to be
activated or inhibited, respectively.
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reduced activity in mast cell activation (activation z-score=-1.99;

overlap p-value=1.44E-10) and mast cell differentiation (activation z-

score=-2.23; overlap p-value= 9.01E-11) (Figure 5C). There was also a

decrease in the attraction of eosinophils (activation z-score=-2; overlap

p-value=6.20E-11) and chemotaxis of eosinophils (activation z-score=-

1.5; overlap p-value=4.21E-20), as well as cellular infiltration by

eosinophils (activation z-score=-1.5; overlap p-value=1.98E12).
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3.6 Patient blog post sentiment analysis

For nuanced insights into subtle health changes, we employed

natural language processing to gauge social media activity as a tool

for assessing the patient’s functional capacity in daily life activities

and obtaining insights into temporal posting trends. Exploratory

data analysis focused on post frequency and the average number of
A B
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C

FIGURE 6

Integrating Longitudinal Cytokine Profiling with Health, Textual, and Medication Data in Relation to Health Improvement. (A) Number of blog posts
written monthly from 2017 up until the end of January 2021. For the first two months of 2020, the patient had assistance with writing blog posts for
the months of January and February (blue bars). From May 2020 and onwards, the patient was feeling well enough to start writing the blog posts on
his own (green bars). (B) Topic analysis word cloud for blog posts written from January 2020 until the end of January 2021, offering a visual
representation of the most frequently occurring words from blog posts in this time frame, all under the topic umbrella of “Living with CFS and health
challenges”. (C) Correlation analysis of the change in medication and health state over time. Changes in dosage for Skullcap, Buspar and Klonopin
showed a strong correlation with improved health. (D) Medication usage over time is visualized for the 9 time points, which overlap with cytokine
sample time points. To facilitate comparison, the dosage of each medication has been standardized over time using min-max scaling. This
standardization is represented in a heatmap, gray squares represent no medication dosage recorded. List of medications are provided in bold to be
distinguished from supplements. (E) Longitudinal monitoring of Clonazepam concentration in blood, which followed the reduction trend in his
intake from 24 mg to 7 mg.
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words per post at monthly and yearly intervals, revealing no activity

from June 2017 to December 2019 (Figure 6A). In January and

February 2020, the patient received assistance to activate his

personal blog and share one post every month (Figure 6A). From

May 2020 onward, his sensorial intolerance improved to a degree

that allowed him to use social media and post blogs without

assistance (Figure 6A). Throughout the patient’s blog posting

journey in 2020 and 2021, there is an increase in the number of

posts as well as the length of posts (Supplementary Figure S4B). To

assess the emotional tone of blog posts (for the years 2020 and

2021), we conducted a sentiment analysis using a pre-trained BERT

language model (Supplementary Figure S4C). Sentiments were

visualized monthly and yearly as negative, neutral, and positive

(Supplementary Figure S4C). Fisher exact tests revealed significant

differences in sentiment distribution (Supplementary Table S7). In

2021, the odds ratio for negative vs. positive sentiments was

substantially lower (0.13, p=0.03), indicating a significant decrease

in negative sentiments. Similarly, neutral vs. positive comparison

showed a significant decline in neutral sentiments in 2021 (0.18,

p=0.04), emphasizing a notable shift toward a more positive

emotional tone over time (Supplementary Figure S4C, Table S7).

To explore the nuances of linguistic patterns, we conducted a

word cloud analysis, visually representing word frequencies across

all posts in 2020 and 2021 (Supplementary Figure S4A). The most

recurring words in 2020 posts include ‘CFS,’ ‘people,’ ‘illness,’ ‘way,’

‘I’m,’ ‘think,’ ‘see,’ ‘don’t,’ ‘I’ve,’ ‘every,’ ‘life,’ and ‘help.’ In 2021, the

frequently used words are ‘CFS,’ ‘dream,’ ‘sleep,’ ‘I’m,’ ‘love,’ ‘long,’

‘new,’ ‘way,’ ‘day,’ ‘right,’ ‘adventure,’ and ‘people’ (Supplementary

Figure S4A). While there are overlaps, distinct words and themes

emerge when comparing the most used words in 2020 versus 2021.

Intrigued by the growing use of LLMs like chatGPT, we informally

analyzed the frequently used words (23) identified by the word

cloud. We prompted chatGPT to infer the overall message the

patient conveyed in his blog posts between Jan 2020 to Jan

2021 (Figure 5S).

ChatGPT analysis revealed that the patient reflects on his

struggles with ME/CFS, its severity and profound impact on

individuals’ lives. Additionally, it suggests the patient’s strong

interest in disseminating information and sharing personal

experiences related to ME/CFS, thereby contributing to ongoing

research efforts (Supplementary Figure S5). Promoted for a

comparison between 2020 and 2021, chatGPT identifies that

although there is still some mix of challenging emotions and

experiences, it does note a change in emotional state—a positive

outlook in 2021 (Supplementary Figure S6).

For a more formal analysis aimed at identifying specific themes

across blog posts in 2020 and 2021, we conducted a topic modeling

analysis using a latent Dirichlet allocation (LDA) model. Across all

posts, the first prominent topic involves words discussing living

with CFS and the health challenges the patient faces. Three other

main topics identified include personal growth and lifestyle

changes, research funding and scientific review, and health

strategies and supplements (Figure 6B; Supplementary Figure

S4D). Utilizing natural language processing techniques for textual

data analysis saves time and resources compared to manually going

through each blog post to identify a patient’s current journey and
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health state. Furthermore, this reduces bias and interpretation of

content, particularly crucial in ME/CFS, where subjective

experiences vary. Extracting valuable information from written

expressions can provide a means for non-verbal patients to

contribute to research and connect with the ME/CFS community.

To this end, we developed LexiTime, an application for textual data

processing including sentiment analysis and topic modeling. The

application is accessible at https://github.com/singjc/lexitime.

Additionally, we explored the relationship between medication

changes and the patient’s health status over time (Figure 6C;

Supplementary Table S8). Working closely with caregivers, we

gathered a comprehensive medication list spanning the dates of

the 9 longitudinal blood samples, including three days before and

after each time point. To facilitate comparison, we standardized

medication dosages using min-max scaling and presented the

patterns in a heatmap, showcasing both individual time points

and 7-day windows surrounding each blood draw date (Figure 6D;

Supplementary Figure S7). Our correlation analysis focused on

comparing the doses of all medications on the day of blood draw

(Figure 6D). Significantly, changes in dosage and reduction of

intake for Skullcap, Buspar, and Klonopin exhibited a strong

correlation with improved health (Figure 6C). We also noted a

positive correlation between the increase in low-dose Abilify and

health improvement, although the latter did not achieve standard

significance (Figure 6C). The integration of clinical data unveiled a

reduction in blood Klonopin levels in response to lowering the

medication dose (Figure 6E).
4 Discussion

In the ME/CFS research landscape, the focus has traditionally

been on comparing patients with healthy controls, with limited

attention to longitudinal aspects and periods of improvement

(58, 59). Our study addresses this gap by taking a single patient-

centered approach (60, 61) exploring molecular and phenotypic

differences underlying severity improvements in ME/CFS. While

acknowledging the N-of-1 nature of our study and the necessity for

larger cohort studies, our integrative longitudinal strategy,

incorporating health, clinical, cytokine profiling, and textual data

over more than 4 years period offers invaluable insights. These

findings enhance our comprehension of factors influencing ME/

CFS development and severity, providing personalized insights into

medical interventions (Figure 7).

We refined the severity framework by introducing the

“extremely severe” category, subdivided into A, B, C, D, and E, to

capture the complete spectrum of ME/CFS severity and its true

debilitating nature at maximum severity (9). While the current very

severe category, such as those offered by ICC, includes individuals

who are bedridden and require assistance with basic functions (5,

9), some ME/CFS patients may experience extreme sensory

sensitivities and post-exertional malaise (PEM) that dangerously

affect their ability to receive life necessities such as food and

medication. In extreme cases, patients become fully isolated from

others, resembling conditions of solitary confinement (18).

Recogniz ing the exis tence of such a level of severe
frontiersin.org

https://github.com/singjc/lexitime
https://doi.org/10.3389/fimmu.2024.1369295
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jahanbani et al. 10.3389/fimmu.2024.1369295
hypersensitivity and PEM is crucial for advancing care for patients

at the highest level of the severity spectrum.

The “extremely severe” category, as outlined in our manuscript,

pertains to individuals whose lives are impacted to an extent of 80-

100%, profoundly restricting their basic movements, self-care,

occupation, communication, and access to social media. It is

noteworthy that the integration of the internet and social media

into daily life activities over recent decades has been significant;

hence, the burden of ME/CFS on those whose severity affects basic
Frontiers in Immunology 14
access to these platforms may profoundly impact their quality of life

and contribute to the worsening of their condition. We believe

severity based on a patient’s ability to receive life support and their

most basic interaction with the outside world via social media

warrants explicit recognition to underscore the significant burden

faced by these patients and to delineate appropriate medical

interventions and support measures.

While current severity assessment platforms offer a solid

foundation for recognizing disease severity and patient
FIGURE 7

A Potential Mechanism Underlying ME/CFS Development, Aggravation and Comorbidities. Mast cells, present in nearly all human tissues, and
eosinophils, found in the gastrointestinal tract, secondary lymphoid tissues, adipose tissue, thymus, mammary gland, and uterus, are tissue-resident
cells. Aberrant DAMPs and PAMPs signaling cascades can lead to systemic overactivation and degranulation of mast cells and eosinophils, resulting
in the release of over a hundred molecules, including potent inflammatory mediators, into the extracellular matrix of connective tissue. The
synergistic activity of mast cells and eosinophils upon systemic activation can skew Th1/Th2 to Th2-immune responses, leading to tissue injuries,
autoimmunity, impairment of multiple organs and biological systems as well as causing exercise intolerance and post-exertional malaise in
predisposed individuals. Unresolved systemic mast cell and eosinophil overactivation could contribute to the development and aggravation of ME/
CFS and related multisystem disorders and comorbidities. The schematic also depicts potential therapeutic targets and biomarkers.
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classification, integrating this aspect into patients’ diagnosis and

severity assessment criteria can provide a more refined delineation

of the condition’s severity spectrum (62). This addition facilitates

the assessment of even minor improvements in response to

treatment. Furthermore, delving into potential shared

mechanisms between ME/CFS and Hypermobility Spectrum

Disorder addresses significant facets of ME/CFS.

Our ME-CFSTrackerApp supports real-time tracking of

symptoms, medications, and life events, benefiting physicians and

researchers in more precise single-symptom assessment, treatment

optimization, triggers and patterns identification, enhanced patient-

doctor communication, longitudinal research data, and efficient

data sharing. Crucially, the app enables remote real-time

monitoring, facilitating proactive interventions, particularly

benefiting severe cases (63). The data can be used for careful

subject selection and eligibility criteria for clinical trials, targeted

therapy and research studies. Additionally, employing natural

language processing and open AI tools like ChatGPT, as well as

the development of LexiTime application for textual data

processing, including sentiment analysis and topic modeling,

holds significant implications for ME/CFS research, particularly

for patients with extreme severity who may face challenges in verbal

communication (64, 65).

The deliberate inclusion of an extremely severe ME/CFS patient

in our analysis offers a unique perspective on immune dynamics at

critical disease stages, crucial for understanding the full spectrum of

ME/CFS and tailoring interventions (18, 66). The identification of

two leukocytosis episodes preceding health issues, particularly

linked to infectious mononucleosis, aligns with the widely

accepted understanding of ME/CFS etiology. This observation

supports the notion that specific infections, such as herpes

viruses, can act as catalysts for ME/CFS development (67–70).

Additionally, recognizing environmental risk factors such as

infection, overexertion, toxin exposure and medication side effects

as crucial contributors to ME/CFS progression from mild to

extremely severe adds significant value. This acknowledgment not

only improves our understanding of the disease’s etiology but also

directs focused research efforts to explore underlying mechanisms

and develop strategies to mitigate illness severity.

The integration of cytokine analysis from nine longitudinal

samples, with health, clinical, and textual data provided deeper

insights into the immune signature of ME/CFS during transitions in

health severity. At the extremely severe A stage, the patient, while

remaining fully bedbound and reliant on caregivers for most aspects

of personal life, experienced a reduction in cognitive impairment

and sensorial intolerance. This improvement allowed the patient to

tolerate sounds, engage with music, access the internet,

communicate in writing, and be comfortable with people’s

presence in the room. The noteworthy decrease in CCL11 during

the healthiest time point aligns with previous ME/CFS cytokine

studies, indicating a positive correlation between CCL11 and ME/

CFS severity or duration (43, 71). CCL11 has been implicated in

various diseases, including fibromyalgia (72), osteoporosis (73),

metabolic conditions like non-alcoholic fatty liver disease

(NAFLD) (74), accelerated aging, and neurodegenerative

disorders such as chronic traumatic encephalopathy (75), multiple
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sclerosis (76), and the chemotherapy and long COVID-related

brain fog (77). The consistent research findings revealing a

positive correlation between elevated CCL11 levels, and the

severity of sensorial intolerance and cognitive impairment

underscore the need for further investigation into the significance

of this cytokine in the context of ME/CFS and its potential value as a

diagnostic and therapeutic biomarker (Figure 7).

Additionally, CCL11 plays a crucial role in recruiting

eosinophils, implicating it in allergic responses and a shift toward

a Th2 immune response and hypersensitivity. Interestingly, most

significantly reduced cytokines at the healthiest time point have also

been associated with eosinophils and mast cell activation, Th2

immune response and IgE signaling (Figure 7). These cytokines

include IL5, MCP1, MIP1D, and CXCL9 (78–80). IL-5 is best

known for its major roles in meditating eosinophil growth,

activation, and survival and also differentiation of B-1 cells into

Ig-secreting cells (78, 79, 81, 82). IL5 is expressed by many cell types

including Th2 T-cell subsets, gamma delta T cells, basophils, group

2 innate lymphoid cells (ILC2s) and eosinophils (80, 81). Elevated

IL5 has been reported in ME/CFS plasma (83) and many

inflammatory conditions like eosinophilic gastroenteritis,

eosinophilic dermatitis, and allergic reactions.

The observed reduction in MCP1 levels at the healthiest time

point is also in line with a potential positive correlation between

aberrant Th2 immune response and ME/CFS severity in this

individual. MCP1, expressed by various cell types such as

monocyte/macrophage, mast cells (84), dendritic cells, eosinophils

(85), osteoclasts, osteoblasts, neurons, astrocytes, and microglia,

plays a crucial role in recruiting immune cells like monocytes,

eosinophils, and mast cells to inflammation sites resulting from

tissue injury or infection (86, 87). This intricate involvement

positions MCP1 as a key player in the pathogenesis of

inflammatory diseases, including psoriasis, rheumatoid arthritis

(88), and various neurological conditions such as brain ischemia

(89 ) , A l zhe ime r ’ s ( 90 ) , e xpe r imen t a l au to immune

encephalomyelitis (EAE) (91), and traumatic brain injury (92,

93). MCP1 elevation was reported in fibromyalgia and linked to

insulin signaling impairment in skeletal muscle cells of these

patients (83). This alongside recent reports of increased MCP1

plasma levels in ME/CFS (83), suggests a reduction of MCP1 at

hea l th i e s t t ime po in t migh t be l inked to r educed

neuroinflammation (94), improved blood-brain barrier

permeability (95), diminished neuronal sensitization, and

alleviated endothelial dysfunction (96). Adding another layer to

its potential significance, MCP1’s influence on the hypothalamus-

pituitary-adrenal (HPA) axis (94), a critical regulator of stress

responses and immune function, prompts further exploration into

its diagnostic and therapeutic potential for ME/CFS.

Moreover, the reduction in CXCL9 (monokine induced by IFN-

gamma) at the healthiest time point also underscores the potential

involvement of eosinophils, mast cells, and an imbalance in Th1/

Th2 immune responses in ME/CFS etiology in our patient (97–

100). CXCL9, acting as a ligand for CXCR3 expressed in synovial

mast cells and eosinophils, has been associated with inflammation

in synovial tissues (100) and rheumatoid arthritis pathogenesis (99).

Interestingly, elevated CXCL9 was reported in the cerebrospinal
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fluid (CSF) of ME/CFS subjects, particularly those with a disease

duration of less than 3 years (101), further emphasizing its potential

relevance in ME/CFS etiology, in a subset of patients.

Furthermore, the decrease in IL28A, a type III interferon

(102, 103), at the healthiest time point could also contribute to

alleviating ME/CFS symptom severity by reducing systemic

immune dysregulation, and interferon-associated fatigue,

mitigating inflammatory response, and restoring Th1/Th2 balance

(104), collectively enhancing cognitive function (105). Despite its

physiological importance, aberrant IL28A activity has been linked

to the promotion of inflammation and autoimmunity (106), and is

associated with conditions such as lupus (107) and post-traumatic

sepsis (108).

At the extremely severe stage A, elevation in plasma levels of

Leptin, HGF, and MIF correlated positively with reduced disease

severity, particularly in sensorial intolerance and cognitive function.

It’s essential to acknowledge that the observed cytokine elevation at

the healthiest time point may be influenced by factors beyond

health improvement, such as extended fasting hours, medication,

infection, or trauma. However, considering the diverse multisystem

biological functions of those cytokines in maintaining homeostasis,

including the central and peripheral nervous system, energy

regulation, immune system, and blood circulation, their elevation

could contribute to overall health improvement.

Elevated leptin may positively impact ME/CFS by enhancing

mental clarity, focus, mood, emotional well-being, metabolic

regulation, energy production and utilization, neuroendocrine

hormonal balance, motivation and immune function (109–114).

Our current findings, indicating a negative correlation between

plasma leptin and disease severity, differ from previous studies

(42, 43), potentially attributed to the longitudinal nature of our

research and variations in severity scales. Furthermore, the observed

rise in leptin levels in the latest time point may be associated with

slight changes in BMI (41, 115).

The varied physiological role of HGF (hepatocyte growth

factor) suggests that an increase level may reduce ME/CFS

symptom severity through tissue repair (116), anti-inflammatory

effects, enhanced energy metabolism (117), neuroprotection

(118, 119), improved blood circulation (120), immune

modulation (121), and antioxidant properties (122–124). Further

research into HGF’s role in ME/CFS is warranted due to

inconsistencies across studies (117–121).

MIF is a multifunctional molecule produced by various cell

types , inc luding ac t iva ted macrophages . Beyond i t s

proinflammatory roles, MIF is associated with many pathways

such as inflammation, neural activities, and neuroplasticity

(125, 126). It regulates catecholamine metabolism (127), protects

dopaminergic neurons and has antidepressant effects at high

concentrations. Additionally, MIF impacts the hypothalamic

−pituitary−adrenal cortex axis (125, 126). Elevated MIF may

correlate with improved ME/CFS symptoms, particularly in

cognitive function and sensorial intolerance. However, elevated

MIF at the healthiest point may stem from factors like infection

(128), glucocorticoid use (129), and trauma (130). Further

investigation is needed to understand MIF’s role in ME/CFS

pathophysiology, disease severity, and prognosis.
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While specific cytokine changes, including the reduction in

SFAS/FASLG, VEGF, CTACK/CCL27, IL9, IL6, MCP4, IL10, IL4,

and increases in ENA78, GROA, IL2, TRACE, CCL21, FGF2, IL33,

and TPO, did not achieve statistical significance individually, their

collective alterations, as indicated by Z scores, may reveal a significant

impact on the cytokine landscape in ME/CFS. Notably, IL4, IL6, IL9,

IL10 (131), and IL33 play crucial roles in Th-2 immunity, the mast

cell and eosinophil signaling network (132–138) (Figure 7).

Canonical pathway and upstream regulator analysis suggests

potential mechanisms which could attenuate mast cells and

eosinophil activities at the healthiest time point. This involves the

predicted activation of Docosahexaenoic acid (DHA) and inhibition

of KITLG and TLR4 signaling pathways (139). DHA and its

metabolite, docosahexaenoyl ethanolamide (DHEA) show

promise in preventing mast cell degranulation, IgE-mediated

anaphylaxis reaction (140), eosinophil dysfunction (141) and also

facilitates synaptogenesis and synaptic activity (similar to the

endogenous cannabinoid receptor ligand anandamide) (142).

Inhibition of KITLG and TLR4 could also decrease levels of

various cytokines, including IL10, IL4, IL5, IL6, CCL2, and

MCP1, thereby mitigating mast cell and eosinophil activation and

aberrant Th2 immune responses (140, 143–149). Targeting TLR4

holds promise for reducing neuroinflammation (150–152).

Our study unveils novel insights into the potential roles of TP53

(tumor protein p53) and BCL6 (B-cell CLL/lymphoma 6) in ME/

CFS pathogenesis (153, 154). Notably, both BCL6 and TP53

function as negative regulators in IgE-mediated mast cell

activation (155, 156), exerting a dampening effect on both early

and late-phase anaphylaxis. BCL6, a master regulator of humoral

immunity, negatively modulates key molecules and cells associated

with Th2-type inflammation (156–158). The implications of its

involvement in preventing or attenuating allergic diseases suggest a

potential link to ME/CFS in a subset of patients, especially

con s i d e r i ng i t s r o l e i n expe r imen ta l au t o immune

encephalomyelitis (EAE) (156). TP53, beyond its role as a tumor

suppressor, plays a crucial part in various physiological processes,

including cell metabolism, mitochondrial respiration, autophagy,

and stress response. Balanced TP53 activation could reduce ME/

CFS severity by promoting cellular repair (159), regulating

metabolic pathways (160), and mitigating inflammation through

the suppression of NF-kB transcriptional activity and mast cells and

eosinophil-mediated Th2 dominant response (161). TP53’s role in

neurite outgrowth suggests potential benefits for cognitive function

and overall neurological health (162, 163). These findings

underscore the imperative for further exploration into the

involvement of TP53 and BCL6 in ME/CFS pathophysiology.

The identification of a diminished Th2 immune response,

coupled with reduced mast cell and eosinophil activation at the

healthiest time point, unravels potential underlying pathological

mechanisms in ME/CFS. This observation holds particular

relevance to its association with major comorbidities such as

EDS/hEDS/HSD. Mast cells and eosinophils, widely distributed in

connective tissues (164), play crucial roles in immune regulation

and extracellular matrix homeostasis (165, 166).

Notably, mast cell activation syndrome (MCAS) is highly

prevalent in ME/CFS and connective tissue disorders, including
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EDS/hEDS/HSD. Additionally, aberrant eosinophil function is

commonly observed in connective tissue disorders (167, 168) and

reported in the context of ME/CFS (169, 170). This underscores the

necessity for further exploration into the dynamic interactions

between mast cell and eosinophil immune responses and

connective tissue function in ME/CFS (Figure 7).

Both mast cells and eosinophils exhibit widespread tissue

distribution, with mast cells present in nearly all human tissues

(171), and eosinophils mainly localized in the gastrointestinal tract,

secondary lymphoid tissues, adipose tissue, thymus, mammary gland,

and uterus (172). These cells play indispensable roles in both innate

and adaptive immunity, particularly in tissues closely exposed to

environmental factors like the skin and intestinal lining (173, 174),

where they are engaged in bidirectional mast cell–eosinophil

interactions known as the allergic effector unit (AEU) (175, 176).

Infections, allergens (177), and exposure to environmental risk

factors (e.g., UV, radiation, stress, mechanical trauma, and

hypoxia) can activate a wide array of receptors, including PRRs

(pattern recognition receptors) (e.g., TLRs, NLRs, RLRs), FC

receptors, P2Y receptors (P2YR) (178, 179), MHC (major

histocompatibility complex) class II (180, 181) and complement

receptors (C3a and C5a) (182–184) on mast cells and eosinophils

via binding to their cognate ligands. These factors could also lead to

cell/tissue injury, resulting in the release of endogenous danger signals

or DAMPs (damage-associated molecular patterns) (e.g., HMGB1,

HSPs, eATP, FN, dsRNA, fHA, nuclear, mitochondrial, and cytosolic

nucleic acids, cytokines) (185) into the extracellular space. Here, they

can engage with the same PRRs to initiate mast cell (135) and

eosinophil (186, 187) activation and intricate crosstalk between

these cells and the rest of the immune and non-immune cells (137,

138, 180, 181, 188). Upon activation, both cells undergo

degranulation, releasing various inflammatory mediators, including

reactive oxygen species (ROS), cytokines, eicosanoids (e.g.,

prostaglandins, leukotrienes, thromboxane), proteins (cationic

proteins) and enzymes (e.g., tryptase, chymase, peroxidase, b-
hexosaminidase, b-glucuronidase, arylsulfatases) as well as

neurotransmitters (e.g., nitric oxide, histamine, serotonin,

dopamine, substance P) (188–190) (Figure 7).

Due to their widespread distribution, the overactivation of mast

cells and eosinophils can impact multiple biological systems and

organs, affecting cardiovascular, endothelial (191, 192), epithelial,

mucosal, microvascular (193), metabolic (194), muscular,

gastrointestinal, and connective tissues (193, 195–197) as well as

peripheral, central and autonomic nervous system. This cascade of

effects can contribute to the development of complex multi-system

conditions, exemplified by ME/CFS, which manifests with a diverse

range of comorbidities (198) such as connective tissue disorders,

small fiber neuropathy, migraine (199–201), POTS (202, 203),

immune system hypersensitivity (204, 205), and dermatological

manifestations (e.g., dermatitis, tingling or numbness, sensitivity,

and allodynia) (206), as well as neuroinflammation, GI disorders,

leaky gut (207), and autoimmunity observed in many patients

(82, 143, 208–213). The excessive response of mast cells and

eosinophils, coupled with aberrant degranulation, not only has

the potential to trigger or exacerbate congenital conditions but

also contributes to the development of acquired forms (214). This
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aspect is particularly relevant in conditions like hEDS and HSD,

where underlying genetic variations remain unidentified (215, 216).

While mast cells and eosinophils have been traditionally

associated with type 2 immunity during allergies and helminth

infections, they actively participate in immune responses against

various pathogens, including bacteria, fungi, and viruses

(174, 217–220). Their capacity to survey the environment through

numerous receptors enables them to finely tune a balance between

immune activation and suppression. This orchestration involves

intricate crosstalk with a variety of cells, including dendritic (221),

B, T, type 2 innate lymphoid cells (ILC2) (222), macrophage,

monocyte, fibroblast, smooth muscle, neurons, microglia (223), as

well as epithelial and endothelial cells. Recent revelations highlight

the dual nature of mast cells and eosinophils (175, 182, 224, 224).

While acting as potent agents against helminths, they also play a

surprising role in fostering the coevolution of helminth parasites

with their hosts through immunosuppressive activities (225). A

noteworthy mechanism involves the reduction of Th1 immune cell

proliferation and the promotion of apoptosis via the indoleamine

2,3-dioxygenase (IDO) gene (226). This leads to a decrease in Th1

cells and a tilting of the immune balance from Th1/Th2 towards

Th2-dominated responses (227–233), potentiating systemic

autoimmune inflammatory diseases (229).

Research indicates that overtraining can shift the Th1 to Th2

phenotype, resulting in diminished Th1 and NK cell function (234).

Lower NK cell levels have been reported among ME/CFS patients

(235). Furthermore, an overactive Th2 immune response has been

implicated in individuals with exercise intolerance (234, 236). These

findings, suggest an intricate crosstalk between dysregulated

immune system, exercise intolerance, and post-exertional malaise

in ME/CFS. Additionally, these findings might imply a primed Th2

immune system plays a role in the adverse reactions observed in

ME/CFS patients to high-intensity aerobic exercise. Recent findings

linking elevated Th2 immune response in long COVID patients

with adverse reactions to aerobic exercise further highlight the

importance of investigating the Th1/Th2 axis imbalance and post-

exertional malaise in ME/CFS and related comorbidities for insights

into etiology and lifestyle adjustments (236).

Adding to their significance, mast cells and eosinophils play

pivotal roles in adaptive immunity, and guiding T (157, 237, 238)

and B cells to transform into effector cells, such as antibody-

producing plasmablasts and long-lived plasma cells (158, 189,

239–246). Their activated states may contribute to aberrant

elevated antibody production (247) and T and B cell-dependent

inflammatory and autoimmune diseases. The surplus IgEs, IgAs,

and IgGs binding to mast cell and eosinophil FC receptors set off a

vicious cycle, amplifying degranulation and escalating tissue

damage and promoting autoimmunity (248–250). Uncontrolled

Th2 activity may also mitigate pathogenic T-cell immunity. With

elevated antibody levels observed in many ME/CFS patients

(251–253), delving into the role of mast cell and eosinophil

activation in triggering abnormal antibody responses could

provide deeper insights into ME/CFS pathogenesis, severity, and

guide diagnostic and therapeutic strategies (254).

In our study analyzing medication data from June 2017 to

January 2021, a positive correlation was found between health
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improvement in ME/CFS patients and a slight increase in low-dose

Abilify (Aripiprazole), alongside the reduction and optimization of

doses for Skullcap, buspar (buspirone), and klonopin (clonazepam).

All immune cells, including mast cells and eosinophils, express

receptors for various neurotransmitters and neuropeptides (255–

258). Optimizing the dose of these medications, known for

modulating neurotransmitters and neuropeptides, may contribute

to health improvement by modulating the central, and peripheral

nervous system and restoring Th1/Th2 balance, mitigating mast

cells (259, 260) and eosinophils’ overactivation (261, 262) along

with other relevant biological players (255–258) (Figure 7).

Abilify’s acts on dopamine D2 and serotonin 5-HT1A receptors,

as a partial agonist and antagonist, respectively (263). As a partial

agonist, Abilify could act as a D2 agonist, increasing dopamine

activity in the presence of low levels of endogenous dopamine and

exerting antagonistic activity in the presence of high levels (263). An

in-depth investigation into aberrant dopaminergic signaling in ME/

CFS and Abilify’s use is warranted, given varying anecdotal reports,

some indicating benefits and others worsening symptoms (264).

Klonopin binds to GABA receptors in and outside the brain

(265–269), enhancing GABA’s inhibitory effect and regulating

serotonin utilization (270, 271). Buspirone, an anxiolytic drug,

acts as a partial agonist of serotonin and dopamine receptors

(272). Despite distinct targets, both klonopin and buspar have

been used to manage pain and improve cognition (273–277).

However, higher doses may result in cognitive issues (277).

Skullcap, a native American medicinal plant has been used for

treating menstrual disorders, nervousness, and kidney problems

(278). However, at higher doses it can cause giddiness, stupor,

mental confusion, twitching, irregular heartbeat, and seizures (279).

Notably, baicalin, a component of Skullcap, binds to GABA A

receptor. Optimizing the doses of these medications could

potentially enhance cognitive function and minimize side effects

due to drug interactions (280–283). Our analysis of medication

correlations with severity underscores challenges faced by ME/CFS

patients in navigating their path to recovery. The intricate and

diverse nature of ME/CFS, coupled with the absence of FDA-

approved treatments, often prompts patients to adopt a trial-and-

error approach, experimenting with various medications and

interventions to address their health needs (284, 285).

Potential interactions among these interventions are frequently

overlooked due to the absence of proper diagnostic assessments and

objective evaluations of disease severity. Developing tools to

monitor and assess potential adverse effects will enhance patient

safety, inform personalized treatment plans, and contribute to the

advancement of ME/CFS care (170). The ME/CFSTracker app

serves as a valuable tool for patients, caregivers, and medical

teams, enabling the easy collection of longitudinal health changes

and a more precise assessment of severity in response to

therapeutics and nutraceutical interventions.

Our study has limitations, such as a small sample size and the

heterogeneous nature of ME/CFS, which may limit the

generalizability of our findings. The observed aberrant Th2-

cytokine expression and dysregulated mast cells and eosinophil
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function, causing a shift from Th1 to Th2 immune response, may

apply to a specific subset of patients rather than the entire spectrum

(286–290). Further longitudinal studies are needed to validate and

extend the scope of our results.
5 Conclusion

Our study underscores the values of integrating longitudinal

health, clinical, pharmaceutical, nutraceutical, and multi-omics

data, and the use AI to advance our understanding of factors and

mechanisms underlying ME/CFS development, progression, and its

associated comorbidities, guiding personalized data-driven

therapies (279). We introduced an updated platform for objective

severity assessment and created two applications, the ME-

CFSTrackerApp, and LexiTime, aiming to facilitate real-time

symptom tracking and text mining to optimize treatment

strategies and communication. Our longitudinal cytokine

profiling suggests the need for further research into the role of

aberrant Th2-type cytokines and the synergistic activities between

mast cells and eosinophils in the pathogenesis and severity of ME/

CFS, particularly in cognitive impairment and sensorial intolerance.

Our results also highlight a potential shared underlying mechanism

between ME/CFS and its major comorbidities such as hEDS/HSD,

POTS, MCAS, multiple chemical sensitivity, peripheral neuropathy,

and the neuro-immune and brain-gut interaction axis.

Our findings align with previous research, supporting the potential

of CCL11, IL5, and MCP1 as biomarkers for ME/CFS diagnostics and

therapeutics. Identification of master regulators like BCL6, TP53,

KTLG offers a mechanistic model linking chronic systemic activation

of mast cells and eosinophils to the development and aggravation of

multi-system conditions such as ME/CFS (30, 160, 196, 202, 280–282).

Our results underscore the need for further exploration into mast cell-

and eosinophil-directed biologic therapies, and the significance of low-

dose drugs with partial agonists activity toward neurotransmitters in

ME/CFS treatment (Figure 7).
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