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Enhancing breast
cancer outcomes with
machine learning-driven
glutamine metabolic
reprogramming signature
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Fuxun Yu1,2* and Tao Wang1,2*

1Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China, 2NHC
Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital,
Guizhou University, Guiyang, Guizhou, China, 3Department of Breast Surgery, Guizhou Provincial
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Background: This study aims to identify precise biomarkers for breast cancer to

improve patient outcomes, addressing the limitations of traditional staging in

predicting treatment responses.

Methods: Our analysis encompassed data from over 7,000 breast cancer

patients across 14 datasets, which included in-house clinical data and single-

cell data from 8 patients (totaling 43,766 cells). We utilized an integrative

approach, applying 10 machine learning algorithms in 54 unique combinations

to analyze 100 existing breast cancer signatures. Immunohistochemistry assays

were performed for empirical validation. The study also investigated potential

immunotherapies and chemotherapies.

Results: Our research identified five consistent glutamine metabolic

reprogramming (GMR)-related genes from multi-center cohorts, forming the

foundation of a novel GMR-model. This model demonstrated superior accuracy in

predicting recurrence andmortality risks compared to existing clinical andmolecular

features. Patients classified as high-risk by the model exhibited poorer outcomes.

IHC validation in 30 patients reinforced these findings, suggesting themodel’s broad

applicability. Intriguingly, the model indicates a differential therapeutic response:

low-risk patientsmay benefitmore from immunotherapy, whereas high-risk patients

showed sensitivity to specific chemotherapies like BI-2536 and ispinesib.

Conclusions: The GMR-model marks a significant leap forward in breast cancer

prognosis and the personalization of treatment strategies, offering vital insights

for the effective management of diverse breast cancer patient populations.
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Introduction

Breast cancer (BC) remains the most prevalent malignant

tumor among women worldwide, leading to the highest number

of cancer-related deaths in this population (1). In 2022, the

estimated incidence of BC reached approximately 2.26 million

cases globally, underscoring its significant impact on women’s

health (2). Given its rising prevalence, particularly in developing

countries like China, there is a pressing need for improved

diagnostic, treatment, and prognostic strategies for BC. BC is

categorized into non-invasive and invasive types, with the latter’s

ability to metastasize to distant organs such as the bones, liver,

lungs, and brain, often rendering it incurable (3). Despite

advancements in treatment technologies, the prognosis for late-

stage BC patients remains dismal (4). Thus, developing an effective

predictive model is crucial for enhancing treatment outcomes for

BC patients.

Metabolic reprogramming is pivotal in tumor development,

exemplified by the Warburg effect, which highlights the crucial role

of cancer cell metabolism in supporting cancer survival and

proliferation (5). This metabolic reprogramming is characterized

by the preferential conversion of glucose to lactate under aerobic

conditions (6). Beyond glucose, glutamine is also a significant

contributor to redox balance, essential for the metabolic

reconfiguration of tumor cells (7). As a versatile amino acid

abundant in the human bloodstream, glutamine supports various

metabolic processes. It contributes to the synthesis of purines and

pyrimidines, participates in the tricarboxylic acid cycle, and

supports the biosynthesis of hexosamines, nucleotides, and

asparagine, besides being a critical respiratory fuel for tumor cells

(8). The aberrant metabolism of glutamine is increasingly

recognized as a vital component of BC cell survival and growth

(9). Research suggests that glutamine metabolism reprogramming

(GMR) within the tumor microenvironment (TME) may

significantly affect the anti-tumor immune response (7). Given

glutamine’s essential role in supporting oxidative metabolism in

certain cancer cell lines, investigating glutamine metabolism

abnormalities in BC is of paramount importance for improving

treatment and prognosis (10). This study aims to develop a novel

prognost ic model centered on GMR to enhance BC

patients outcomes.
Methods and materials

Data acquisition

The dataset for training was meticulously assembled from the

TCGA database, encompassing gene profiles, mutational data, and

clinical information pertinent to breast cancer cases. We ensured

the inclusion of samples with available survival data, guaranteeing

dataset completeness and accuracy.

To strengthen and validate our findings, we sourced additional

datasets from the GEO database, specifically from studies

GSE93601, GSE76250, GSE70947, GSE202203, GSE96058,

GSE58812, GSE21653, GSE86166, GSE20685, GSE20711,
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GSE88770, GSE6532. This approach allowed for cross-validation

of our results across diverse datasets, enhancing the reliability of

our findings.
Single-cell sequencing technique

Our study utilized single-cell data from the GEO database

(GSE161529) (11). The initial step involved discarding genes with

zero expression levels, retaining those with non-zero expression.

We normalized the expression matrix using the “SC Transform”

function from the Seurat R package. Dimensionality reduction was

achieved through PCA and UMAPmethods, followed by cell cluster

identification using the “FindNeighbors” and “Find Clusters”

functions. The DoubletFinder R package helped in eliminating

doublets, ensuring data accuracy (12). Cells with either 15%

mitochondrial gene content or fewer than 500 genes were

excluded, refining the dataset further.

Post-quality control, approximately 43,766 cells were preserved

for in-depth analyses. Celltypist facilitated the categorization of cell

types, laying a robust foundation for our research (13). Tumor cells

were identified using the copyKAT algorithm (14).
Cell-cell communication analysis

We generated CellChat objects for each group using the

“CellChat” R package, with “CellChatDB.human” as our reference

database (15). All analyses utilized default parameters. To compare

interaction counts and intensities across groups, we amalgamated

CellChat objects via the “mergeCellChat” function. Differences in

cell interactions and signaling pathways were visualized and

analyzed using specific functions.
Functional analysis

We utilized the GO and KEGG databases for a comprehensive

evaluation of differential GMR-related gene expression between

tumor and normal tissues (16, 17). The Enrichplot package and

clusterProfiler algorithm facilitated this analysis, with a focus on

Gene Set Enrichment Analysis between distinct risk subgroups (18).

A False Discovery Rate below 0.05 was considered significant.
Calculating the GMR-score

We utilized the TCGA-BRCA dataset to conduct a differential

gene expression analysis between tumor and normal breast tissues.

This analysis allowed us to identify a set of 67 genes with differential

expression associated with glutamine metabolism. Our

development of the GMR-score integrated these gene expressions,

drawing from a selection of genes determined through the

GeneCards database with a relevance score exceeding the

threshold of 8. The heatmap and network generated as a result

visualized not only the expression but also the interconnections
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among these GMR genes. We applied the ssGSEA and Ucell

algorithms to bulk and single-cell data to compute the GMR-

score, which provided an indirect estimation of glutamine

metabolism-related gene activity within the breast cancer tissues

(19, 20). It is crucial to emphasize that the GMR-score, while

designed to estimate glutamine metabolic activity and provide

insights into the metabolic adaptations within the tumor

microenvironment, does not directly measure metabolic flux.

Instead, it functions as an estimator, based on gene expression

data indicative of glutamine metabolic pathways, enabling us to

distinguish between the gene expression profiles of tumor versus

normal tissue, and offering a potential link to the metabolic state of

the tumor. Spearman analysis elucidated the association between

GMR-score and immune cell infiltrations, providing a

comprehensive evaluation of the GMR-score in breast cancer.
Construction of the GMR model
and nomogram

To establish a GMR-based prognostic model specifically tailored

for BC patients, we employed a comprehensive workflow initially

proposed by Liu et al. (21). This approach integrated a diverse set of

ten computational algorithms, including Random Forest (RSF),

LASSO (Least Absolute Shrinkage and Selection Operator),

Gradient Boosting Machine (GBM), Survival-SVM (Support Vector

Machine), SuperPC (Supervised Principal Components), Ridge

Regression, plsRcox (Partial Least Squares Regression for Cox’s

model), CoxBoost, Stepwise Cox, and Elastic Net (Enet). Notably,

RSF, LASSO, CoxBoost, and Stepwise Cox play critical roles in

reducing dimensionality and selecting relevant variables.

Utilizing the TCGA-BRCA dataset as our training cohort, we

applied these algorithms to generate a prognostic signature.

Subsequently, we evaluated the performance of the model across

all available cohorts, which included TCGA and five external

datasets, by calculating the average concordance index (C-index).

This metric served as a measure of the model’s discriminative

ability, and through this process, we were able to identify the

most consistent and reliable prognostic model for BC.

The formulation of the GMR-model stands as a pivotal outcome

of this research, offering a valuable tool for assessing BC outcomes.

The model’s robustness and accuracy were thoroughly validated

through various methods, including calibration curves, decision

curve analysis (DCA), and multivariate Cox regression analyses.

These validation steps were instrumental in confirming the

relevance and association of the identified prognostic GMR genes

with BC. The risk scores for individual patients were calculated

using the following formula:

riskscore  =  o
n

i=1
(bi � Expi)

In this equation, ‘n’ represents the total number of GMR genes

included in the model, ‘Exp’ denotes the expression levels of the

GMR genes, and ‘b’ signifies the coefficients derived from the

multivariate Cox regression model. Based on the calculated risk

scores, patients were stratified into high-risk and low-risk groups.
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To validate the generalizability and reliability of our GMR-

model, we utilized several external datasets, ensuring that our

findings were consistent beyond the initial TCGA training set.

The survival disparities between the high-risk and low-risk groups

were assessed using Kaplan-Meier (KM) survival analysis, with a p-

value less than 0.05 considered statistically significant. This step was

crucial to confirm the prognostic value of the GMR-model in

different patient cohorts and settings.
Genomic alteration analysis

To delineate genetic disparities between high- and low-risk BC

subgroups, we conducted a comprehensive analysis of genetic

mutation frequencies and copy number alterations (CNA)

utilizing data from the TCGA-BRCA database.

We calculated the tumor mutation burden (TMB) for each

subgroup, extracting the relevant data from raw mutation files.

Utilizing maftools, we subsequently mapped the mutation

landscape, focusing on the 28 genes (mutation rate > 5%) that

exhibited the highest mutation frequencies. Following procedures

outlined in a previously published study (22), we utilized the

deconstructSigs package to identify patient-specific mutational

signatures. This analysis brought to light four prominent

mutational signatures (SBS1, SBS3, SB11, SBS12) within the BC

dataset, all of which demonstrated elevated mutation frequencies.

In addition to these mutational signatures, our investigation

extended to chromosomal aberrations. We pinpointed the five

regions most frequently subjected to amplification and deletion

events, giving special attention to four predominant genes located in

chromosomal regions 8q24.21 and 9p23. This meticulous analysis

aims to uncover the genetic underpinnings that may contribute to

the variance in risk and prognosis between the two BC

patient subgroups.
Identifying TME disparities

To assess immune cell infiltration levels precisely and

exhaustively, we analyzed the prevalence of adversely infiltrated

immune cells in patients categorized by the GMR-model. IOBR

package employes a comprehensive suite of algorithms, including

MCPcounter, EPIC, xCell, CIBERSORT, quanTIseq, and TIMER,

ensuring a robust and multifaceted examination (23–29).

In addition, we evaluated the ESTIMATE and TIDE indices to

glean insights into the immune microenvironment’s state and

structure within the TME (30, 31). This evaluation is crucial, as it

provides valuable information for immunotherapy strategies and

enhances our understanding of the potential outcomes for

BC patients.

To augment our analysis, we also quantified immune

checkpoints, thereby offering an additional layer of insight into

the immune state. This quantification serves as a preliminary tool

for predicting patient responsiveness to immune checkpoint

inhibitors (ICIs) therapy, a vital component in personalized

cancer treatment strategies.
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Determining therapeutic targets and drugs

After removing duplicates, we gathered a comprehensive

collection of 6,125 compounds from the Drug Repurposing Hub

(https://clue.io/repurposing). Our objective was to predict

chemotherapeutic responses and identify potential therapeutic

targets. The selection of these targets, associated with BC

outcomes, was based on Spearman correlation analysis.

Specifically, we looked at the relationship between risk scores and

gene expression levels, focusing on cases where the correlation

coefficient exceeded 0.15 and the P-value was less than 0.05. To

pinpoint genes associated with adverse prognosis (correlation

coefficient < -0.15, P < 0.05), we examined the relationship

between CERES scores and risk scores for brain cells using data

from the Cancer Cell Line Encyclopedia (CCLE) (32).

To refine our drug response predictions, we employed the

CTRP and PRISM datasets, both of which provide extensive drug

screening and molecular information across various cancer cell

lines. Our analysis included differential expression assessments

between bulk samples and cell lines. Utilizing the pRRophetic

package, we applied a ridge regression model for predicting drug

responses. This model, trained using expression data and drug

response information from solid cancer cell lines, exhibited robust

performance, as validated through standard 10-fold cross-

validation (33).

Furthermore, we conducted a Connectivity Map (CMap)

analysis to identify the most promising therapeutic drugs for BC.

This involved comparing gene expression profiles between different

risk subgroups and submitting the top 300 genes (comprising 150

up-regulated and 150 down-regulated genes) to the CMap platform

(https://clue.io/query). Interestingly, the CMap scores showed a

negative correlation with the potential therapeutic efficacy in BC,

providing valuable insights for drug selection.
Immunohistochemistry experiment

In our study, we collected tissue samples from 30 BC patients

undergoing surgery at the Guizhou Provincial People’s Hospital.

These samples were then processed through Hematoxylin and

Eosin (HE) staining, adhering to standard protocols. The

diagnostic evaluations of these stained specimens were carried

out by two independent pathologists, ensuring an unbiased and

thorough analysis . Detailed demographic and clinical

information of the patient cohort is provided in Supplementary

Table S1.

Furthermore, we conducted immunohistochemistry (IHC) on

the paraffin-embedded tissue specimens, employing methodologies

that have been outlined in previous publications (34, 35). The

antibodies utilized in this process are comprehensively listed in

Supplementary Table S2. The evaluation of the protein expression

levels was conducted following well-established protocols and

scoring criteria. Consistent with the practices established in our

prior research (35), the assessment was independently carried out

by two pathologists, ensuring a reliable and accurate interpretation

of the protein expression levels.
Frontiers in Immunology 04
Results

Deciphering the impact of GMR-related
genes in BC

The overall design of this study is displayed in Figure 1. In this

study, we used TCGA-BRCA database to screen differentially

expressed genes (DEGs) of GMR between tumor and normal

samples. Significant DEGs were shown in the heatmap

(Figure 2A). To systematically clarify the relationship between

prognostic DEGs, we categorized them into three groups and

constructed a regulatory network illustrating their interactions,

with most showing significant associations (Supplementary Figure

S1A). Further exploring the link between GMR genes and BC, we

developed a GMR-score, based on the prognostic DEGs associated

with glutamine metabolism. The GMR score was computed using

the ssGSEA and Ucell algorithms for bulk and single-cell data,

respectively. These algorithms allowed us to quantitatively estimate

the activity level of glutamine metabolism-related genes in

individual samples, providing an indirect measure of glutamine

metabolism activity within the tumor microenvironment. This

analysis revealed that the GMR-scores were markedly lower

compared to control cohorts (Figure 2B), a finding corroborated

by three additional datasets (GSE93601, GSE76250, and GSE70947)

(Figures 2C–E). These results underscore the critical role of GMR-

related gene expression differences in BC development.

Subsequently, we delved deeper into the functions and pathways

of these DEGs. The KEGG results showed that pathways related to

biosynthesis of amino acids, carbon metabolism, and HIF-1

signaling pathway show a higher gene ratio, suggesting these

pathways are upregulated in the tumor environment and may

contribute to tumorigenesis (Figure 2F). However, pathways such

as AMPK signaling pathway, and Valine, leucine and isoleucine
FIGURE 1

The overall flow of this study.
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degradation were most inhibited. The downregulation of these

pathways could reflect a suppression of normal metabolic

processes in tumor tissues (Figure 2G).

Extensive research by scholars on tumors consistently suggests

that the TME directly influences tumor onset and progression.

Building on this, we delved into the correlation patterns between the

GMR-score and 25 types of infi ltrating immune cells

(Supplementary Figure S1B). Notably, multiple cells, including

Th1 cells, resting dendritic cells, resting CD4 memory T cells, and

Th17 cells, exhibit a positive correlation with the GMR-score, while

T cells follicular helper, memory B cells, plasma cells are negatively

correlated. In addition, we also demonstrated the strongest positive

and negative correlation (Supplementary Figures S1C, D). Through

these analyses, we concluded that lower GMR-score and less

immune cell infiltration are the key reasons for the development

of BC.
Unraveling GMR complexities at single-
cell level

To explore the GMR activity among different immune

infiltrating cells, we enrolled 8 BC patients including tumor and

normal tissues and conducted in-depth exploration of the single-

cell data (Figures 3A, B). We then divided the 43,766 cells into 15
Frontiers in Immunology 05
clusters and ultimately annotated 9 cell types (Figures 3C, D). The

representative markers and top 3 DEGs for each cell type were

demonstrated (Figures 3E, F). Among the annotated cell types, we

observed the decrease in the Plasma cell, Macrophage, Fibroblast,

Endothelial cell and B cell in tumor tissue compared to the normal

group, the percentage of T cell, Mast cell, Epithelial cell and DC

were significantly increased in tumor tissues (Figure 3G). The Ucell

algorithm was used to calculate the GMR-scores for each cell

(Figure 3H). Subsequently, based on the Kruskal-Wallis method,

the correlation between GMR-score and nine cell types was

estimated (Figure 3I). To explore the GMR-score in cancer cell,

we performed copyKAT analysis of Epithelial cells (Figure 3J). We

observed continuous reduction of GMR-score in normal tissue,

tumor-diploid and tumor-aneuploid, which were in keeping with

the bulk sequence results (Figure 3K).
Illuminating the dynamics of cell-cell
interactions in BC

Subsequently, we utilized Cellchat analysis to identify alterations

in the quantity and intensity of cellular communication between

normal cells and tumor cells. We found that the number and

intensity of interactions between BC cells are significantly lower

than those of normal cells (Figure 4A). In particular, compared with
B C

D E

F G

A

FIGURE 2

Deciphering the impact of GMR-related genes in BC. (A) Expression profile of GMR related regulators in breast cancer and normal tissues. (B–E) The
GMR-score was compared among two groups in the four datasets: TCGA-BRCA, GSE93601 GSE76250 and GSE70947. (F, G) KEGG enrichment
analysis of the up and down-regulated GMR genes. **P < 0.01, ****P < 0.0001.
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the normal group, the communication of epithelial cells to

endothelial cells, Fibroblasts, T cells has been reduced, while the

communication between B Cells and epithelial is more frequent

(Figure 4B). We further explored the specific pathways between the

normal and tumor groups by comparing the differences in the

interactions. Signal pathways such as SPP1, GALECTIN, CD99,

MIF, APP, FN1, and MK are significantly active in BC patients,

while LAMININ, MHC-1, and SELE exhibit greater activity in

normal individuals (Figure 4C). In addition, to continuously

detect changes in the submission or acquisition signals between
Frontiers in Immunology 06
different groups, a comparison based on the intensity of 2D spatial

outgoing and incoming interactions is conducted. The scatter plot

shows that epithelial cells and T cells serve as the main sources in the

normal group, while DC andMast cells are significant sources in BC

patients (Figure 4D). Finally, the plot shows a stronger possibility of

interaction among immune cells, including B cells, DC,

Macrophages, Mast cells, and T cells in the BC group, while the

communication between LGALS9 and CD44, MDK and LRP1, and

MIF and CD74+CXCR4/CD44 is unique to the BC

group (Figure 4E).
B C D

E F

G H I

J K

A

FIGURE 3

Unraveling GMR complexities at single-cell level. (A, B) Distribution of cells collected from tumor and normal tissues of eight patients. (C, D)
Distribution of cell clusters and annotated cell types. (E) UMAP plots showing the expression levels of representative marker genes representing nine
cell subtypes. (F) Top 3 differentially expressed genes in each cell type. (G) A stacked bar chart showing the fractions of each cell type in normal and
tumor tissues. (H) UMAP plots showing the distribution of GMR-scores in each cell. (I) Violin plot demonstrating the difference of GMR-score in each
cell type. (J) CopyKat algorithm evaluates the genomic variations. (K) Comparison of GMR-score among normal, tumor diploid and aneuploid
epithelial cells.
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Developing the GMR prognosis model
through machine learning

The results clearly indicate a significant link between GMR

related genes and BC. We then employed machine learning

analyses on the TCGA training group and five external cohorts,

using 54 combinations of 10 machine learning methods. This

approach yielded an average C-index for the six groups

(Figure 5A). Our analysis led to the selection of Random Survival

Forest for constructing a GMR prognosis model, pinpointing five key

genes (SLC19A1, SGTA, PGK1, ETFA, TH) linked to BC prognosis

(Figures 5B, C). Patients were then stratified into high-risk and low-

risk groups based on risk scores derived from these genes. The

heatmap showed these genes were notably upregulated in the high-

risk group (Figure 5D). Kaplan-Meier survival curves revealed

significantly higher survival rates in the low-risk group (Figure 5E).
Frontiers in Immunology 07
Recurrence risk predictions indicated a considerably increased risk in

the high-risk group (Figure 5F). The ROC curve, assessing the

prognostic model’s efficiency (Figure 5G), demonstrated AUC

values above 0.5 across the first, third, and fifth years, affirming the

model’s predictive accuracy and reliability. Considering the dataset’s

correlation between risk scores and survival status, we concluded that

the low-risk group has a better survival outlook, whereas the high-risk

group faces a higher probability of mortality.
Assessment and validation of the
GMR-model

In this study, univariate and multivariate Cox regression

analyses were employed to assess the independence of our

prognostic model relative to other clinical factors in BC patients.
B

C

D E

A

FIGURE 4

Illuminating the dynamics of cell-cell interactions in BC. (A, B) Bar and circle charts showing the differences in the number of interactions (left),
strength of interactions (right) in the network of cell-cell communication between normal and tumor groups. (C) Stacked plots exhibiting the
differences in intercellular signaling pathways between tumor and normal groups. Green and red colors denote up-regulated signaling pathways in
normal and tumor samples. (D) Scatter plot illustrating the difference in incoming interaction strengths in normal groups (left) and tumor patients
(right). Larger circles indicate stronger strengths. (E) Dot plot presenting the distribution of distinctive signaling molecules in T cells, B cells, and
macrophages between the two groups.
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Univariate analysis revealed that several indicators, such as risk

score, menopause status, stage, and TNM classification, significantly

impacted survival rates. Notably, multivariate analysis showed that

both risk score and age met the significance threshold (P < 0.05),

affirming the predictive independence of our GMR-model for BC

patient outcomes (Figure 6A). Recognizing the clinical importance

of staging, we developed a GMR-nomogram that integrates risk

score, stage, and age to accurately forecast one-, three-, and five-year

survival probabilities for BC patients (Figure 6B). The calibration

curve is used to calibrate the accuracy of the 1-year, 3-year, and 5-

year nomograms, indicating a high degree of consistency with

actual survival rates (Figure 6C). In addition, the GMR-model

chart is higher than the two extreme curves (Treat All and Treat

None), indicating that the GMR-column chart has reliable

predictive ability (Figure 6D). Furthermore, there was no

statistically significant difference (p > 0.05) between the predicted

values of the GMR column chart and the ideal observed values,

further demonstrating the predictive ability of the GMR model

(Figure 6E). We also compared our model with clinical pathological

factors and found that the GMR-model better reflects the

prognostic correlation of BC with other pathological factors

besides age (Figure 6F). Then, we compared the predictive ability

of the GMR-model and these 100 signatures in the training group
Frontiers in Immunology 08
and 10 external cohorts using the C-index. Our GMR-model

showed significantly better superior accuracy than other models

in almost all queues (ranking first in five queues, second in five

queues, and fourth in one queue), revealing the robustness of the

GMR-model (Supplementary Figure S2).
Multi-omics analysis of genetic variations

To systematically evaluate genomic heterogeneity based on the

GMR-model, we calculated gene mutations and CNV between high-

risk and low-risk groups. We observed the significant mutation

frequency changes of TP53, PIK3CA, TTN, CDH1 and APOB (P <

0.05). Further analysis revealed that amplification or deletion of copy

numbers were also detected in high-risk BC patients, such as 3p26.32,

5p15.33, 6q21, 8q24.21, and 10p15.1 amplification and 8p23, 9p21.3,

9p23, 10q26.3, and 17q21.31 deletion. In addition, our findings were

confirmed by the amplification of oncogenes TMEM75, MYC,

CASC8, CCDC26 in the 8q24.21 fragment and the deletion of

tumor suppressor genes PYPRD, NFIB, MPZD, and TYRP1 in the

9p23 fragment (Figure 7A).

TMB was notably higher in the high-risk group compared to the

low-risk group (Figure 7B). Further examination of the key tumor
B C

D

E
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G

A

FIGURE 5

Developing the GMR prognosis model through machine learning. (A) The C-index of 54 machine learning algorithm combinations in six cohorts. (B)
The error rate in several different trees. (C) The importance of each GMR gene. (D) Distribution between risk score and survival status and gene
expression. (E) KM survival illustrates the survival probability in these two groups. (F) The kernel-smoothing hazard function plot demonstrates the
correlation between relapse hazard and moths in two populations. (G) The ROC curves visualize the AUC values of the GMR-model at one-, three-,
and five-year.
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suppressor gene TP53 revealed a significantly elevated mutation

rate in the high-risk group (Figure 7C). Additionally, a heatmap

illustrated the expression profiles of eight GMR modulators, with

ETFA, PGK1, TH, SLC19A1, and SGTA exhibiting higher

expression in the high-risk group (Figure 7D). Risk assessment

considering survival status and clinical staging in BC patients

indicated that those with poorer survival outcomes and less

favorable clinical stages had higher risk scores (Figures 7E, F). We

further observed the GMR-score were markedly lower in the high-

risk group compared to low-risk cohorts (Figure 7G). To

understand potential BC mechanisms, functional annotation and

gene enrichment analyses were performed. The results suggested

that, in the high-risk group compared to the low-risk group,

immune-related processes were suppressed while metabolic

pathways were activated (Figures 7H, I). These findings provide

insights into the mechanisms potentially driving BC progression.
Immune landscape diversity across
GMR groups

We next explored the difference of tumor infiltrating

lymphocytes (TILs) between the two subgroups. Six immune

infiltrating algorithms were used to estimate different TIL. In low-

risk patients, the tumor microenvironment is characterized by a

substantial infiltration of immune cells, including CD4 T cells and
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CD8 T cells, which are classified as tumor-infiltrating lymphocytes

(TILs), as well as a notable presence of M2 macrophages and DCs.

In the high-risk group, the relative content of M1 macrophages,

pro-B cells, Th1 cells, and Th2 cells were significantly increased

(Figure 8A). We further showed that patients with low risk

exhibited increased immune cell infiltration, marked by a greater

prevalence of immune-checkpoint genes, correlating with better

prognoses (Figure 8B). For a more in-depth examination of the

TME and to confirm our findings, IHC staining, targeting key

cellular markers and immune-checkpoint genes, was conducted.

The representative IHC images and statistical outcomes are

presented in Figures 8C, D.
Predicting immunotherapy response using
the GMR-model

Our analysis of the TME suggested that those at low risk might

respond better to immunotherapy. This hypothesis stemmed from

their higher levels of immune cell infiltration and increased

expression of ICI genes. To validate this, we utilized ESTIMATE

analysis, which showed significantly higher ESTIMATE, immune,

and stromal scores, alongside lower tumor purity, in the low-risk

group (Figure 9A). TIDE analysis, a tool for predicting

immunotherapy efficacy, generally correlates negatively with

treatment response. Our findings indicated higher TIDE and
B

C D E F

A

FIGURE 6

Assessment and validation of the GMR-model. (A) Univariate and multivariate Cox regression analysis of prognostic ability for GMR-model and other
clinical pathological features. (B) GMR-nomogram was built consisting of risk score, age and stage index to predict 1-, 3-, and 5-year OS of BC. (C)
Correction curve demonstrating the observed OS (%) and the predicted OS (%) of the nomogram. (D) DCA curves indicates two extreme lines drawn
from treat all and treat none, respectively. (E) Evaluate the accuracy of GMR column charts and ideal curves using the Hosmer-Lemeshow method.
(F) 11 ROC curves respectively unfolding the corresponding AUC values of the risk score and ten clinicopathological indexes. ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1369289
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1369289
Dysfunction values in low-risk patients, although differences in

Exclusion scores between low- and high-risk groups were not

statistically significant (P > 0.05) (Figure 9B). KM survival curves,

representing four different risk and TIDE combinations, suggested

that low-risk patients with high TIDE values had better outcomes,

u n d e r s c o r i n g t h e p i v o t a l r o l e o f r i s k s c o r e i n

prognosis (Figure 9C).

Furthermore, we assessed tumor immunogenicity based on

proliferation, wound healing, homologous recombination

deficiency, and chromosomal segments. Our results showed a

positive correlation between these indices and risk score,
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indicating poorer prognoses in high-risk BC patients (Figure 9D).

The suitability of different patient groups for ICI therapy remains

unclear. However, immune profiling score (IPS) analysis using the

TCGA dataset revealed exceptionally high scores in low-risk BC

patients, suggesting a greater likelihood of benefiting from

immunotherapy, whether standalone or in combination

(Figure 9E). Finally, evaluating responses to PD1, PDL1, CTLA4,

and MAGE-A3 treatments indicated that low-risk patients

primarily respond to anti-PD-L1 therapy (Bonferroni corrected

P < 0.05) (Figure 9F). In summary, our GMR-model effectively

predicts ICI therapy responsiveness across different groups, with
B C

D

E F G
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A

FIGURE 7

Multi-omics analysis of genetic variations. (A) Distribution of TMB, mutational signatures, gene mutation, CNVs and oncogenes. (B) Comparison of
TMB between the two groups. (C) Proportions of TP53 mutation in the two groups. (D) Heatmap displays the distribution of GMR regulators and
clinicopathological factors in the two groups. (E, F) Comparison of survival status and clinical grade between GMR groups. (G, H) Functional
annotation and gene enrichment analysis for high-risk patients. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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low-risk BC patients seemingly more favorable candidates for this

treatment approach in a clinical setting.
Chemotherapy response and new
treatment avenues for high-risk BC

In exploring new cancer treatments, targeted therapy has been

considered, yet chemotherapy remains vital in clinical cancer
Frontiers in Immunology 11
management. Our model, aimed at predicting chemotherapy

responses in BC patients, is particularly crucial for those at high

risk. A key step is identifying therapeutic targets to tackle currently

undruggable challenges. Using Spearman’s correlation analysis, we

discovered four proteins more abundant in high-risk patients,

suggesting a greater susceptibility to chemotherapy in this group.

The CERES scores corroborate these proteins as therapeutic targets

for this demographic (Figure 10A). Additionally, these proteins

associated anti-cancer drugs demonstrated increased drug
B

C

D

A

FIGURE 8

Immune landscape diversity across GMR groups. (A) The distribution of distinctive infiltrated immune cells between two risk subgroups calculated
using multiple algorithms. (B) The differential expression profiles of immune-checkpoint genes between two GMR groups. (C) IHC image of
infiltrated immune cells targeting the reproductive makers. (D) Statistical result of (C). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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sensitivity (Figure 10B). Consequently, CDK4, SLC25A13, and

ACAT2 are proposed as potential therapeutic targets for high-

risk BC.

Further, we sought potential drugs using PRISM and CTRP

datasets. Seven candidate compounds were identified: paclitaxel, BI-

2536, GSK461364, and SB-743921 from CTRP (Figure 10C), and

LY2606368, ispinesib, and volasertib from PRISM (Figure 10D).
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Lower AUC values in high-risk patients indicated better

chemotherapy response. However, to determine the most effective

drugs, we conducted a multi-faceted analysis, incorporating clinical

status, experimental evidence, mRNA expression levels, and CMap

scores. Based on a CMap score criterion of < -35, BI-2536 and

ispinesib emerged as the chosen therapeutic drugs for high-risk BC

(Figure 10E, Supplementary Table S3).
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FIGURE 9

Predicting immunotherapy response using the GMR-model. (A) Distinctive scores of estimate algorithm, including estimate scores, immune scores,
stromal scores, and tumor purity. (B) Comparison of TIDE algorithm between GMR groups. (C) KM survival curve analysis of patients with different
combinations of risk scores and TIDE in TCGA cohort. (D) The relationship between proposition, wound healing, homologous recognition defect,
and number of segments risk scores. (E) IPS (Immunophenoscore) value of each combination among two risk groups. (F) Putative ICIs therapy
response in two risk BC patients. **P < 0.01, ****P < 0.0001.
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Discussion

Glutamine metabolism is one of the key metabolic pathways in

all cells, and normal glutamine metabolism is particularly important

for the normal occurrence and development of cells. Thus,

abnormal glutamine metabolism often brings irreversible damage

to cells, which is considered as the key factor to promote the

progress of solid tumors such as BC (9). Therefore, based on the

particularity of glutamine metabolism and the status of treatment

and prognosis of BC, we urgently need to identify reliable and

accurate glutamine metabolism related markers to predict the

survival and immune response of BC patients. In this project, we

obtained regulatory factors related to GMR and analyzed the

relationship between GMR and BC heterogeneity.

The relevance of scoring systems in evaluating the activities of

metabolic pathways, including glutamine metabolism, in cancer has

been well-documented in the literature. For instance, the study by

Giunchi et al. reviews the metabolic landscape of prostate cancer,
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emphasizing metabolic alterations and their potential as diagnostic

and therapeutic targets, underscoring the importance of metabolic

pathways in cancer development and progression (36). Similarly,

Sudarshan et al. discuss the metabolic effects of genes and signaling

pathways implicated in renal cancer, highlighting the role of altered

metabolism in the pathogenesis of this malignancy (37). This

further validates the use of scoring systems like our GMR-score

to quantitatively assess metabolic alterations in cancer. These

studies collectively support the premise that metabolic scoring

systems can effectively represent the activity levels of specific

metabolic pathways, including glutamine metabolism, and their

association with cancer. By adopting a quantitative approach to

assess these metabolic activities, our GMR-score provides a robust

tool for understanding the metabolic reprogramming in cancer,

reinforcing the validity of our approach in linking specific metabolic

pathways with cancer-associated gene expression changes.

While highlighting the role of GMR in the prognosis of BC, we

constructed a model of 5 GMR related genes based on one training
B C

D E

A

FIGURE 10

Chemotherapy response and new treatment avenues for high-risk BC. (A) Spearman correlations between risk score and gene abundance and CERES
score of drug targets. (B) Spearman correlation between gene expression of potential targets and drug sensitivity across cancer cell line. (C, D) Four
compounds obtained from CTRP and three compounds obtained from PRISM were subjected to Spearman correlation analysis. The block diagram
correspondingly shows the difference in estimated AUC values of different compounds within the two groups. (E) This graph displays the clinical status,
experimental evidence, mRNA expression levels, and CMap scores of four drugs for CTRP and three drugs for PRISM, respectively. ***P < 0.001.
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set and five external datasets and compared it with 100 existing

models. The results indicate that the GMR prediction model is more

robust, independent, and reliable. Subsequently, GMR-nomogram

was established to predict the survival probability of BC patients at

1, 3, and 5 years, which has the best predictive ability compared to

other clinical pathological features based on AUC values. Of note,

five GMR genes (SLC19A1, SGTA, PGK1, ETFA, TH) were

upregulated in the high-risk group.

Our discussion extended to the genetic differences between the

two risk groups. The low-risk group was characterized by low TMB

and fewer mutated genes, whereas the high-risk group exhibited

higher TMB and more mutations in genes such as TP53 and

PIK3CA. TP53, a quintessential tumor suppressor gene, has been

implicated in BC progression and poor prognosis due to its mutations

(38). CNV analysis revealed that high-risk patients also displayed

notable aberrations in gene amplifications and deletions. The human

genome locus 8q24.21, often referred to as a “gene desert” due to its

sparse protein-coding genes, has been linked to various cancer

phenotypes despite covering a 4.1MB region (39). This area houses

the well-studied oncogene MYC, implicated in approximately 20% of

human cancers (40). Also located in this region is the OCT4

pseudogene POU5F1B, which has been observed to amplify in

cancers (41). Beyond oncogenic protein-coding genes, the 8q24.21

region is a hub for many lncRNAs associated with different cancers.

These lncRNAs function independently of MYC, highlighting the

complexity and significance of this genomic region in cancer biology

and risk stratification (42). This indicates that due to the role of MYC

in accelerating tumor progression, it further promotes tumor

development. According to reports, 9p23 deficiency may lead to

chronic myeloid leukemia (43). CDKN2A and CDKN2B are tumor

suppressor genes located at 9p21, and their deletion inevitably

increases tumor risk. These characteristics indicate poor prognosis

in BC patients, but also lay the foundation for the response of low-risk

patients to ICI treatment.

Our findings illustrate that the GMR-model effectively categorizes

tumors into low-risk and high-risk groups, which correspond to distinct

immune phenotypes within the TME. Specifically, the low-risk group

demonstrated a high infiltration of CD8+ T cells, aligning with an

“immune-inflamed” phenotype, indicative of a robust antitumor

immune response. Conversely, the high-risk group was characterized

by an “immune desert” phenotype, with a notable presence of TP53

mutations, suggesting a reduced capacity for eliciting an effective

immune response. The distinction between “immune-inflamed” and

“immune desert” phenotypes is crucial for predicting the efficacy of

immunotherapeutic interventions. Traditionally, the direct prediction

of immunotherapy responses from genome-wide gene expression data

has been challenging. However, our GMR-model provides a nuanced

framework that not only encapsulates the interplay between genomic

alterations and immune responses but also enhances the predictive

capabilities for immunotherapy outcomes beyond the binary

classification of risk levels. This underscores the importance of

considering both genomic and immune contexts in designing

personalized immunotherapeutic strategies.

BI 2536 is a highly selective and potent PLK 1 inhibitor that can

regulate the malignant behavior of gastric cancer cells in
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combination with cisplatin (44). Schöffski P. et al. conducted

parallel phase II experiments on the treatment of BC with BI

2536 over a decade ago (45). Ispinesib (also known as SB-715992,

CK-0238273) was the first small molecule inhibitor of KSP, an

effective, specific, and allosteric inhibitor. Inhibiting KSP activity by

preventing the release of ADP without altering the release of KSP-

ADP complex in microtubules. It is reported that ispinesib inhibits

cell proliferation by inducing medium-term cell division

dysfunction of pancreatic cancer cells (46). These results enhance

the persuasiveness of these two drugs for treating high-risk

BC patients.
Conclusion

Our study introduces a groundbreaking GMR prognostic model

for breast cancer, offering precise prognosis and treatment response

predictions. This model distinguishes high-risk patients, guiding

targeted chemotherapy, and identifies low-risk patients likely to

benefit from immunotherapies. Highlighting the pivotal role of

glutamine metabolism-related genes in breast cancer, the GMR

model marks a significant step in personalized cancer therapy,

promising enhanced patient care and treatment outcomes.
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