
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mohammed Abu El-Magd,
Kafrelsheikh University, Egypt

REVIEWED BY

Shikha Kumari,
Virginia Tech, United States
Shuo-Yan Gau,
Chung Shan Medical University, Taiwan
Amr Adel Elkelish,
Suez Canal University, Egypt
Nemany A. N. Hanafy,
Kafrelsheikh University, Egypt

*CORRESPONDENCE

Shuangxin Liu

13543456446@163.com

Bin Tang

binbin068@qq.com

†These authors have contributed equally to
this work

RECEIVED 11 January 2024

ACCEPTED 21 June 2024
PUBLISHED 04 July 2024

CITATION

Li Q, Lin J, Hao G, Xie A, Liu S and Tang B
(2024) Nephrotoxicity of targeted therapy
used to treat lung cancer.
Front. Immunol. 15:1369118.
doi: 10.3389/fimmu.2024.1369118

COPYRIGHT

© 2024 Li, Lin, Hao, Xie, Liu and Tang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 04 July 2024

DOI 10.3389/fimmu.2024.1369118
Nephrotoxicity of targeted
therapy used to treat
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Lung cancer is the leading cause of cancer-related death worldwide, especially

non-small cell lung cancer. Early diagnosis and better treatment choices have

already provided a more promising prognosis for cancer patients. In targeted

therapy, antagonists target specific genes supporting cancer growth,

proliferation and metastasis. With the incorporation of targeted therapies in

routine cancer therapy, it is imperative that the array of toxicities associated

with these agents must be well-recognized and managed, especially since these

toxicities are distinct from those seen with conventional cytotoxic agents. Drug-

related nephrotoxicity has attracted attention when initiating cancer therapy. Our

review aims to summarize the adverse renal effects caused by targeted therapy

during lung cancer treatment, mainly focusing on EGFR and ALK tyrosine kinase

inhibitors. Also, we discuss the possible mechanism of the side effect and provide

managements to help improve the renal function in clinical practice.
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1 Introduction

Lung cancer remains the leading cause of cancer-related death worldwide, however,

many patients diagnosed with advanced disease at their initial presentation with a high

mortality rate. Based on microscopic evidence and histological features, lung cancer can be

divided into three main subtypes: non-small cell lung cancer (NSCLC), small cell lung

cancer (SCLC), and lung carcinoid tumors, of which non-small cell carcinoma accounts for

up to 85% (1). Adenocarcinoma, squamous cell carcinoma and large cell carcinoma are the

three most common forms of NSCLC (2). Lung cancer-related deaths accounted for 18.4%

of total cancer deaths in 2018. More than 2000,000 new cases of lung cancer are expected to

emerge, and up to 1761007 patients reach the death endpoint (3). The factors affecting the

occurrence and progression of lung cancer mainly include smoking, air pollution,

occupational exposure and genetic factors. Surgery, chemotherapy and radiation therapy

are the traditional treatment choices for lung cancer. However, due to lack of specificity,
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chemotherapy and radiation therapy have also caused adverse

effects such as bone marrow suppression, gastrointestinal

reactions and local inflammation for cancer patients (4, 5).

Recent years, with the development of molecular biology

technology, targeted therapies have provided us with more

promising options for treating these diseases (6). Recent research

has confirmed that folate-bovine serum albumin-coated

ethoniosomes of pterostilbene allowed specific targeting of cancer

tissues overexpressing folate receptors rather than healthy tissues.

Since propolis is rich in a variety of different polyphenolic

compounds, it can enhance antioxidant activity and regulate

signaling pathways in cancer cells, and the propolis extract is

loaded into albumin-folic acid to minimize the strong smell and

taste of propolis and control its delivery, which in turn targets

cancer cells (7, 8). For stage IVB cancer that has metastasized

throughout the body, the cancer cells need to be tested for the

presence of specific genetic mutations before any treatment. Correct

screening of gene mutations in tumor patients is the premise of an

individualized treatment plan. Compared with traditional

treatment, targeted therapy has significantly improved the

objective response rate (ORR) and progression free survival (PFS)

of mutation-positive NSCLC, therefore the progress in molecular

pathogenesis research of lung cancer is of great significance to

targeted therapy with specific molecular changes (9, 10). Common

gene mutations in lung cancer include the epidermal growth factor

receptor (EGFR), vascular endothelial growth factor (VEGF),

anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1),

Kirsten rat sarcoma viral oncogene homolog (KRAS), serine/

threonine-protein kinase b-raf (BRAF), proto-oncogene tyrosine-

protein kinase receptor Ret (RET), mesenchymal epithelial

transition factor (MET). The EGFR mutation and ALK mutation

are the most frequent oncogenic driver of NSCLC (11). We

summarized these two molecular targeted therapies and common

adverse events in Table 1.

The kidneys perform a vital role in the proper functioning of the

body and in maintaining homeostasis. The kidneys excreted

endogenous metabolic products as well as eliminated drugs and

toxins. Nephrotoxicity is a common complication during many

medical procedures, including those used for cancer treatment.

Both chemotherapy and immunotherapy may cause deterioration

of kidney function, which in turn leads to increased mortality in

cancer patients. Antineoplastic drugs may damage the glomeruli,

renal tubules or any other part of the nephron, leading to

deterioration of renal function and the appearance of various
Abbreviations: ALK, anaplastic lymphoma kinase; BRAF, murine sarcoma viral

oncogene homolog B1; EGF, epidermal growth factor; EGFR, epidermal growth

factor receptor; EML4, echinoderm microtubule-associated protein-like 4;

FAERS, FDA Adverse Event Reporting System; HGF, Hepatocyte growth

factor; IGF-1, insulin-like growth factor-1; KRAS, Kirsten rat sarcoma viral

oncogene homolog; MET, mesenchymal epithelial transition factor; NSCLC,

non-small cell lung cancer; ORR, objective response rate; PFS, progression free

survival; RET, rearranged during transfection; ROS1, c-ros oncogene 1; TKI,

tyrosine kinase inhibitors; TRPM6, transient receptor potential cation channel,

subfamily M, member 6; TRPM7, transient receptor potential cation channel,

subfamily M, member 7; VEGF, vascular endothelial growth factor.
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clinical symptoms such as acute kidney injury, electrolyte

disturbances, nephrotic syndrome and glomerulonephritis (12,

13). Previous review has usually focused on nephrotoxicity caused

by a particular series of drugs or has not explored the specific

mechanism and clinical management. In this review, in addition to

the extensive clinical studies, we also included case reports and case

series, and summarized different types of small molecule targeted

drugs to provide effective clinical management by exploring the

possible mechanisms of nephrotoxicity. In Table 2, we have

summarized the details of approved EGFR and ALK-targeted

therapies along with dosing in CKD patients. In this review, we

aim to summarize the current literature on the nephrotoxicities of

small molecule inhibitors, especially EGFR and ALK tyrosine kinase

inhibitors, and provide possible managements of the renal

adverse effect.
2 EGFR tyrosine kinase inhibitors

The EGFR belongs to the human epidermal growth factor

receptor (HER) family. The physiological function of EGFR

involves the development of epithelial tissue and maintenance of

homeostasis. Dysregulation of these tyrosine kinases and their

downstream signaling pathways is associated with cancer cell

proliferation, angiogenesis, and metastasis (14). After ligand

binding, EGFR tyrosine kinase activates the receptor by

homologousing or heterodimering it and auto-phosphorylating

the tyrosine-rich cytoplasmic region, which initiates two main

downstream intermediate pathways (15). EGFR mutations

account for nearly 10% to 60% in patients of NSCLC (16). EGFR

mutations occur predominantly in exons 18-21 encoding the

intracellular domain of tyrosine kinase. The in-frame deletion of

exon 19 and the L858R missense mutation of exon 21 are the most

common activating mutations in EGFR, accounting for more than

90% of the totals (17). Uncommon EGFR mutation, including

G719X at exon 18, S768I at exon 20, and L861Q at exon 21 have

reported in NSCLC patients (18). EGFR inhibitors, mainly

including monoclonal antibodies and tyrosine kinase inhibitors,

are one of the widely used targeted therapies in oncology (19).

These drugs work by specifically targeting and inhibiting the EGFR,

a type of protein found on the surface of some cancer cells that can

promote cell growth, multiplication and angiogenesis. The

development of these drugs has already significantly improved the

prognosis of patients. EGFR tyrosine kinase inhibitors (TKIs),

mainly including afatinib, erlotinib and gefitinib, are suitable for

treating NSCLC harboring EGFR mutations. Erlotinib and gefitinib

are widely used as the first-generation of anti-EGFR drugs, however,

as the resistance to the treatment, the second-generation anti-EGFR

drug, afatinib and the third-generation osimertinib, which targets

the EGFR mutation T790M (20, 21). Erlotinib and gefitinib are

reversibly inhibit EGFR, whereas afatinib is irreversible covalent

binding to EGFR, HER2, and HER4 to inhibit all HER family

signaling with a broader activity to overcome EGFR TKI-resistant

mutations (22). Rash, diarrhea, hepatotoxicity, and less commonly,

but important, interstitial lung disease are common adverse events

(AEs) in clinical practice of first and second-generation of EGFR
frontiersin.org
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TKIs. About 6.1% of patients suffered treatment withdrawal due to

the unpleasant adverse events, especially skin disorders, interstitial

lung disease and hepatoxicity, but less frequent reported in

osimertinib (23, 24).
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In the kidney, EGFR was mainly expressed in renal tubules,

especially in distal and collecting ducts, and to a lesser extent in

glomerular capillary walls, proximal tubules and mesangial cells

(25). EGF is essential in maintaining the integrity of renal tubules.
TABLE 1 Application, molecule target and common adverse events of EGFR and ALK TKIs.

Drug
Class

Drug
name

Mechanism and applications Common molecular target Common
adverse events

EGFR
TKIs

Erlotinib 1st-generation;
Reversible binding to WT and mutant EGFR;
Can be used in combination with VEGF antibodies, such
as bevacizumab

EGFR L858R, Del 19 Rash, diarrhea, hepatotoxicity
and interstitial lung disease

Gefitinib 1st-generation;
Reversible binding to WT and mutant EGFR

EGFR L858R, Del 19 Rash, diarrhea, hepatotoxicity
and interstitial lung disease

Afatinib 2nd-generation;
Irreversible covalent binding to EGFR, HER2 and HER4
to inhibit all HER family signaling;
More preferred in squamous NSCLC or brain metastasis;

EGFR L858R, Del 19;
G719X, S768I, and L861Q; Wild type-HER2,
HER2 amplification, HER4

Rash, diarrhea, hepatotoxicity
and interstitial lung disease

Osimertinib 3rd-generation;
Irreversible covalent binding to mutant EGFR;
Specificity for EGFR T790M mutant;
More preferred in brain metastasis;

EGFR L858R, Del 19;
EGFR T790M

Less frequent adverse events

ALK
TKIs

Crizotinib 1st-generation; EML4-ALK; MET, ROS1 Visual impairment,
gastrointestinal disorders

Ceritinib 2nd-generation;
Higher potent;

EML4-ALK;
ALK C1156Y, I1171T, F1174C, L1198F,
D1203N, E1210K, G1269A

Gastrointestinal and hepatic
disorder, more frequent AEs

Alectinib 2nd-generation;
First choice for first-line treatment of ALK-positive
NSCLC;
More preferred in brain metastasis;

EML4-ALK;
ALK C1156Y, I1171N/S/T, F1174C,
L1196M,
D1203N, E1210K, G1269A

Gastrointestinal and
hepatobiliary disorders

Brigatinib 2nd-generation; EML4-ALK Gastrointestinal disorder,
fatigue, headache

Lorlatinib 3rd-generation; EML4-ALK;
ROS1 G2032R

Neurocognitive impairments
EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; WT, wild type; NSCLC, non-small cell lung cancer; VEGF, vascular endothelial
growth factor, HER, human epidermal growth factor receptor; EMLK4, echinoderm microtubule-associated protein-like 4; ROS1, c-ros oncogene 1.
TABLE 2 Approved EGFR and ALK TKIs along with dosing in CKD.

Drug
class

Drug
name

Approved
Dosage (mg)

Clearance Renal
excretion

Dose adjustment for mild to
moderate CKD

Dialysis
dose adjustment

EGFR
TKIs

Erlotinib 150 P.O. QD

Via the feces

<9%

No (caution needed)Gefitinib 250 P.O. QD <4%

Afatinib 40 P.O. QD <5% No

Osimertinib 80 P.O. QD 14%

ALK TKIs Crizotinib 250 P.O.BID

Via the feces No No No (caution needed)

Ceritinib 750 P.O. QD

Alectinib 600 P.O.BID

Brigatinib 90 P.O. QD

Lorlatinib 100 P.O. QD
EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; AKI, acute kidney injury; P.O., orally; QD, once per day; BID, twice a day; NSCLC,
non-small cell lung cancer.
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EGFR activation results in the growth and regeneration of renal

tubular epithelial cells after acute tubular necrosis (26). Renal side

effects caused by EGFR tyrosine kinase inhibitors can differ among

patients but commonly include electrolyte disturbances, such as

hypomagnesemia, hypokalemia and hypophosphatemia. Also,

proteinuria, hypertension, and acute kidney injury may occur,

though uncommon, still reports showed indirect renal toxicity

caused by diarrhea-induced dehydration may happen and it is

pretty essential to recognize timely and take managements (27–

29). Table 3 and Table 4 respectively summarizes the renal toxic

events and possible mechanism of EGFR inhibitors in lung cancer.

And the clinical managements have been listed in detail in Table 4.
2.1 Erlotinib

Erlotinib is the first-line treatment for patients with locally

advanced or metastatic EGFR mutations with NSCLC, primarily as

maintenance therapy for these patients (30). Erlotinib can be used

in combination with VEGF antibodies, such as bevacizumab (31).

The usual dose of erlotinib is 150 mg orally per day, and the drug

binds to plasma proteins up to 95%. Its metabolites are excreted

mainly in feces, while the proportion of renal elimination is less

than 9% (32). FDA Adverse Event Reporting System (FAERS)

review revealed that 63 patients with acute kidney injury and 8

patients developed hypomagnesemia (33). Recently, Crosnier et al.

(27) indicated that 139/303(45.9%) patients present with acute

kidney injury among the patients with lung cancer (271/303) by

reviewing the VigiBase® the WHO Global Database, and diarrhea-

related acute kidney injury was the leading cause.

In a small clinical trial of 17 patients with solid tumors treated

with erlotinib and sorafenib, the incidence of hypophosphatemia was
TABLE 3 Summary of renal toxic events with EGFR and ALK
targeted agents.

Drug
class

Drug
name

Renal adverse events

EGFR
TKIs

Erlotinib AKI, hypomagnesemia, hypophosphatemia

Gefitinib AKI, nephrotic syndrome, membranous
nephropathy, hypokalemia, fluid retention

Afatinib AKI, hypokalemia, hyponatremia

Osimertinib AKI, rhabdomyolysis

ALK
TKIs

Crizotinib Elevated serum creatinine, renal cyst formation

Ceritinib Hypophosphatemia,
hypomagnesaemia, hyponatremia

Alectinib AKI, hypophosphatemia

Brigatinib Tumor lysis syndrome

Lorlatinib Diffuse edema, nephrotic syndrome
F
rontiers in I
mmunology
EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; TKI, tyrosine
kinase inhibitor; AKI, acute kidney injury.
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TABLE 4 Clinical management and possible mechanism to renal adverse
events of EGFR and ALK targeted agents.

Drug
class

Adverse
events

Possible
mechanism

Clinical
management

EGFR
TKIs

Electrolyte disorders Hypomagnesemia:
insufficient
activation of TRPM-
6 type channel
Hypophosphatemia:
dysfunction sodium
phosphate co-
transporters in the
proximal tubule

Holding the dose;
Regularly monitor
electrolyte levels
and kidney
function, especially
serum magnesium
and phosphorus.

Elevated
serum creatinine

Acute tubular
necrosis;
rhabdomyolysis

Regularly monitor
serum creatinine
and
creatine kinase.

Proteinuria Unknown, possible
an allergic or
immune reaction

Holding original
dose or reduce the
dose; Closely
monitored with
regular urine test;
Renal biopsy

ALK TKIs Renal
cyst formation

Activation of the
HGF/MET signaling
axis;
Imbalance of
testosterone
hormone levels;

Usually self-
limiting and
holding the dose;
Closely monitored
with
regular imaging

Peripheral edema Inhibition of c-MET
pathway;
Late-onset
cumulative effect

Low-grade edema,
compression
stockings, leg
elevation, and
lifestyle changes;
Diuretics only in
severe edema

Electrolyte disorders Hypophosphatemia:
Inhibition of the
insulin (IGF-1)
receptor;
Hyponatremia:
inadequate secretion
of
antidiuretic
hormone

Holding the dose;
Regularly monitor
electrolyte levels
and kidney
function, especially
serum magnesium
and phosphorus

Proteinuria Likely
podocytopathies

Holding original
dose or reduce the
dose; Closely
monitored with
regular urine test;
Renal biopsy

Elevated
serum creatinine

Pseudo-kidney
injury due to
creatinine
transporter
inhibition;
Inhibition of c-MET
pathway; acute
tubular necrosis

Check cystatin-C
based glomerular
filtration to rule
out pseudo-AKI;
otherwise, drug
discontinuation
and closely check
cystatin-C based
glomerular
filtration
EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; TKI, tyrosine
kinase inhibitor; AKI, acute kidney injury; eGFR, estimated glomerular filtration rate; MET,
mesenchymal epithelial transition factor.
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76%. In comparison, another clinical trial that enrolled 25 patients

d iagnosed wi th g l ioma showed a 30% inc idence of

hypophosphatemia (34, 35). Erlotinib can affect magnesium

hemostasis, but its effect on systemic magnesium concentrations

does not appear to be as good as that observed in antibody-based

EGFR inhibitors, and the erlotinib-induced hypomagnesemia may be

corrected by magnesia supplementation (13). There are several

proteins in the distal convoluted tubules that have been implicated

in the transport of magnesium, including magnesium-permeable

transient receptor potential cation channel, subfamily M, member 6

(TRPM6) and transient receptor potential cation channel, subfamily

M, member 7 (TRPM7) (36). EGF is a magnesiotropic hormone that

regulates magnesium levels by regulating the TRPM6 type channel.

Mutation of EGF gene resulted in impaired basolateral sorting of pro-

EGF, thereby the renal EGFR is inadequately stimulated, inducing

insufficient activation of TRPM6 type channel and thus

hypomagnesemia occurred, as described in Figure 1 (37).

Therefore, it is recommended that all patients have their

magnesium levels checked before starting treatment and then

every 2 to 4 weeks, especially those with heart disease history.

The severity of hypomagnesemia is closely related to treatment.

Generally, EGFR TKIs induced hypomagnesemia may be corrected

by extra magnesium supplementation. Hypomagnesemia can be

divided into 5 grades according to the magnesium level (Grade 1 is

0.73-0.50 mmol/L, Grade 2 is 0.50-0.40 mmol/L, Grade 3 is 0.40-
Frontiers in Immunology 05
0.30 mmol/L, Grade 4 is <0.30 mmol/L, Grade 5 is death) (38).

Grade 1 hypomagnesemia requires close monitoring of magnesium

levels without medication. In grade 2 hypomagnesemia, magnesium

supplementation, usually given intravenously with a dose of 4

grams of magnesium sulfate weekly, is highly recommended to

avoid fatal arrhythmias, especially for those ineffective and poorly

tolerated to oral magnesium supplementation (32, 39). Patients

with grade 3/4 hypomagnesemia are advised to take 6-10 grams of

magnesium sulfate twice a day twice a week, and monitor serum

magnesium every other day until a stable state is reached. Another

strategy may be to consider 2-month discontinuation of magnesium

sulfate therapy in patients requiring frequent magnesium sulfate

infusions (39).

In addition, hypophosphatemia has been reported in patients

treated with EGFR inhibitors. Possible mechanism related to

hypophosphatemia might involve sodium phosphate co-transporters

in the proximal tubule (39). In general, hypophosphatemia should not

be considered as a reason to discontinue aggressive cancer treatment

unless it is recurrent and life-threatening, especially given that the use

of these drugs may significantly improve life expectancy in many

cancer patients. Intravenous rehydration should be considered in any

symptomatic or severely exhausted patient (phosphate <1.0 mg/dL).

Oral replacement therapy can be resumed after the patient has resolved

symptoms or serum phosphate > 1.5 mg/dL (40). Therefore, it is

advisable to check electrolyte levels before initiation of therapy, and
FIGURE 1

Renal effects of EGFR inhibitors. EGFR, the epidermal growth factor receptor; AKI, acute kidney injury; TRPM6, transient receptor potential cation
channel; Na/Pi, sodium-phosphate co-transporter; GBM, glomerular basement membrane.
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then routinely monitor to prevent the development of severe

complications caused by electrolyte disorders.

Erlotinib-related acute and chronic kidney dysfunction, though

uncommon, still occur in clinical practice. Even for the same type of

drug, patients may respond differently due to the different chemical

structure of the drug. Maruyama et al (41) described that a 57-year-

old patient with advanced lung adenocarcinoma developed

nephrotic syndrome after taking gefitinib, which improved

after discontinuation and switched to erlotinib without any

kidney damage, and possible explanation is related to drug

hypersensitivity reactions. Besides, another case reported that

patient had only mild proteinuria on erlotinib, but developed

nephrotic range proteinuria on gefitinib (42). While all EGFR

TKIs have the potential to cause direct damage to glomerular

podocytes, these drugs may also produce podocyte damage

through indirect pathways. Different pathways of injury may

explain the severity of podocyte injury in these EGFR TKIs (42).

However, more researches are needed to explore the precise

mechanism. Therefore, it is highly recommended to check the

renal function before erlotinib therapy, and then check routinely

for early recognition and treatment to prevent the development of

severe complications.
2.2 Gefitinib

Gefitinib is another TKI that blocks the activity of the EGFR

tyrosine kinase. Gefitinib is used across all lines of therapy for

patients with locally advanced or metastatic NSCLC with activating

mutations of EGFR (20, 28). The usual dose of gefitinib is 250 mg

orally per day, and the drug binds to plasma proteins up to 90%. Its

metabolites are excreted mainly in feces, while the proportion of

renal elimination is less than 4% (32). The most common adverse

effect caused by gefitinib included diarrhea, vomiting and skin rash.

Also, renal dysfunction of gefitinib were observed in clinical studies,

with literature reviewed that 6.6% patients with gefitinib therapy

developed fluid retention (43, 44). According to the FAERS, 7

patients after gefitinib initiation developed acute kidney injury, with

hypokalemia and hyponatremia as the second and third adverse

renal effects (33).

Pathological manifestations, including minimal change and

mild IgA deposition, crescent formation, and tubular injury under

microscopy have been reported in patients treated with EGFR

inhibitors. A possible mechanism was proposed as an allergic or

immune reaction as mild interstitial infiltration of lymphocytes was

noted under the renal biopsy (44, 45). Kumasaka et al (44) reported

a 76-year-old male presented with nephrotic syndrome after

gefitinib therapy. Renal biopsy confirmed minimal change disease

under electron microscopy, and her renal function discovered after

discontinuation of gefitinib. Another case of acute renal failure due

to thrombotic thrombocytopenic purpura/hemolytic uremic

syndrome caused by gefitinib has been also reported. A 73-year-

old male without potential precipitating factors for renal

insufficiency has become uremic and acidosis after 16-day therapy

of gefitinib. His renal function improved rapidly after gefitinib

discontinuation (45). Kaneko et al (46) described the first case of
Frontiers in Immunology 06
gefitinib-related membranous nephropathy. Possible mechanisms

include that gefitinib can act as a hapten attached to some native

proteins, triggering an antibody response. Through long-term use,

gefitinib may produce autoimmune reactions. In addition, gefitinib

can locally bind to the increased phosphorylation of EGFR on

podocytes, change its structure and induce antibodies, and thereby

lead to subepithelial immune complexes (44, 46). During the first

few weeks of gefitinib treatment, close monitoring of kidney

function is required. When renal insufficiency is found, gefitinib

should be discontinued immediately, and efforts should be made to

find other secondary factors, and the next treatment should be

determined until the cause is identified.
2.3 Afatinib

Afatinib, an orally administered irreversible EGFR TKI, is the

first-line treatment for patients with EGFR mutation-positive

advanced squamous NSCLC and patients harboring uncommon

EGFR mutation, including G719X, S768I, and L861Q mutation (18,

47). Studies have shown that compared to first-generation EGFR

TKIs, afatinib has a more favorable outcome, with significantly

prolonged progression-free survival and time to treatment failure

(47, 48). The recommended dose of afatinib is 40 mg orally per day.

The drug binds mainly to plasma proteins and is excreted in feces,

the proportion of which is excreted in the urine does not exceed 5%

(32). Pharmacokinetic data indicate that in patients with mild or

moderate renal impairment, the dosage of afatinib does not need to

be adjusted, but 30 mg orally is prescribed to patients with severe

renal impairment, even those patients under hemodialysis (49). In

preliminary trials of afatinib, the incidence of hypokalemia was 34%

(50). 26 patients under afatinib therapy developed acute kidney

injury was noted in the FEARS report, which was followed by

hypokalemia and hyponatremia (33). Koch et al (51) reported a case

of hyponatremia in a 58-year-old female patient with EGFR-

positive lung adenocarcinoma treated with afatinib. Serum

electrolytes should be monitored closely in patients treated with

EGFR TKIs and drugs should not be discontinued unless the

symptoms are very severe.
2.4 Osimertinib

Osimertinib, a third-generation EGFR TKI, has been developed

due to the acquired T790M mutation caused by resistance for

advanced NSCLC EGFR mutant patients progressed after first-

line EGFR TKI therapy (52). The T790M mutation is the most

common mechanism of acquired resistance in NSCLC treatment,

accounting for 50-60% of secondary resistance after first-line

therapy (53). Usually, administration with osimertinib 20 mg

once per day is chosen as the initiating dose, which is sufficient to

inhibit EGFR T790M, while doses equivalent to 80 mg or more are

expected to lead to profound inhibition of tumor growth (52). A

clinical trial for patients with EGFR inhibitor-resistant NSCLC at

doses of 20 to 240 mg once daily revealed that diarrhea is the most

common toxicity, followed by rash, nausea, and decreased appetite
frontiersin.org
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(24). Research has found that adverse effect is more common in

patients with impaired renal function, however, under close

monitor, osimertinib can be safely administered to cancer patients

undergoing regular hemodialysis (54). In another clinical trial with

locally advanced or metastatic, MET-amplified, EGFR mutation-

positive NSCLC, a case of acute renal failure was found in patients

treated with osimertinib plus savolitinib (55). Recently, more cases

related to renal toxicities were reported. Niitsu et al (56) reported a

patient with NSCLC developed acute kidney injury associated with

biopsy-proven mild IgA deposition, crescent formation, and tubular

injury after initiation of osimertinib and his renal function

recovered after reducing the dose of osimertinib (from 80 mg/day

to 40 mg/day). Another case reported that a patient with advanced

lung adenocarcinoma presented with myalgia, muscular weakness

after 5-month treatment with osimertinib and bevacizumab. He was

diagnosed with osimertinib-associated rhabdomyolysis and

developed acute renal insufficiency, hyperuricemia, metabolic

acidosis and electrolyte disorders. However, all symptoms

recovered after discontinuation of osimertinib (57). Few cases of

osimertinib-related kidney dysfunction were reported and more

attention and follow-up are required.
3 ALK inhibitors

Besides EGFR tyrosine kinase, ALK has been another most

frequently identified mutational driver of NSCLC. Due to

chromosomal inversion, part of the ALK gene is fused with the

echinoderm microtubule-associated protein-like 4 (EML4) gene in

a small proportion of NSCLC patients, resulting in the activation

and transformation of the EML4-ALK fusion protein

compositionally, resulting in oncogene addiction. EML4-ALK

fusion and other ALK rearrangements occur in 3-7% of patients

with NSCLC. ALK inhibitors have already greatly improved

prognosis in patients with advanced ALK-positive NSCLC (58,

59). To date, crizotinib and ceritinib are the ALK inhibitors most

commonly used in clinical practice to treat advanced NSCLC (59).

However, in clinical practice, most patients develop tolerance

within 1 year of initiating crizotinib therapy. Compared to

crizotinib, second-generation ALK TKIs, including alectinib,

ceritinib, and brigatinib, have better sensitivity to ALK-positive

NSCLC harboring a secondary mutation such as L1196M or

G1269A (60).

With the widespread use of ALK inhibitors, the adverse events

associated with these drugs have gradually attracted attention. A

recently meta-analysis revealed that adverse events happened in

most participants under ALK inhibitors therapy, among them

serious adverse events occurred over 20%. Most of the adverse

events of ALK TKIs are grade 1 to 2, which are generally tolerated

by most patients. Diarrhea, vomiting, liver dysfunction, and vision

disorder are common adverse events of ALK TKIs. Visual

impairment and gastrointestinal symptoms, such as nausea and

vomiting, were frequent adverse events of crizotinib. The most

common renal adverse events include renal cysts, peripheral edema,

elevated serum creatinine and proteinuria (61, 62). According to

FAERS analysis, ALK inhibitors can cause acute or chronic renal
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insufficiency and may also cause electrolyte abnormalities such as

hyponatremia and hypophosphatemia (33). Table 3 and Table 4

respectively summarizes the renal toxic events and possible

mechanism of ALK inhibitors in lung cancer. Besides, the clinical

managements have been listed in detail in Table 4.
3.1 Crizotinib

Crizotinib, the first-generation oral small molecule targeted

therapy, inhibits multiple tyrosine kinase inhibitors, especially

ALK, MET and ROS1. It has been shown to significantly improve

outcomes compared with chemotherapy in both first-line and

subsequent treatment in patients with ALK-positive advanced

NSCLC. The recommended dose of crizotinib is 250 mg twice

orally per day (63, 64).

According to the FDA, about 4% of patients develop complex

renal cysts after initiation of crizotinib. Lin et al (65) revealed

significant changes in renal cysts in 7 patients (22%) among 32

patients treated with crizotinib for ALK-positive advanced NSCLC,

however, these may reverse after crizotinib discontinuation. An

analysis of 255 patients treated with crizotinib for at least 6 months

showed that 9% of patients acquired new cysts, and 2% of patients

with pre-existing cysts developed new cysts and acquired

enlargements in existing cysts (66). A retrospective study of 60

patients treated with crizotinib identified that female (p=0.008) and

the presence of renal cysts on baseline scan (p=0.044) significantly

related with renal cyst development or growth during initiation of

crizotinib therapy (67). Also, Asians, especially Koreans tend to

have higher odd ratios of developing de no renal cysts during

crizotinib treatment (66).

Another adverse renal effect related to crizotinib is acute kidney

injury. Camidge et al (68) have demonstrated that elevated serum

creatinine with crizotinib occurs mainly in the first 12 weeks after

initiation of crizotinib. There is little evidence of cumulative effects

with long-term treatment, and renal function is largely restored

after discontinuation within one week, suggesting that this may be

primarily an effect on creatinine secretion rather than true

nephrotoxicity, which is named pseudo acute kidney injury.

However, there were still case reports related to actual kidney

injury. Gastaud et al (69) reported a case that a 49-year-old patient

with previously normal renal function developed AKI after 3 weeks of

crizotinib treatment, and renal function returned to normal on day 8

after discontinuation and renal biopsy showed diffuse acute tubular

injury and tubular necrosis. Another case described by Izzedine et al

(70) showed a patient diagnosed with NSCLC along with chronic

kidney disease presented with progressive renal function worsening

after 11-month crizotinib therapy, with kidney biopsy revealing

features of acute tubular injury without interstitial cell infiltration

and renal arteriolar myocyte vacuolization.

Electrolyte disorders have also occurred during clinical practice,

including hypophosphatemia, hyponatremia, hypokalemia and

hypocalcemia. Among them, hypophosphatemia has come to the

first as a serious adverse event with up to 15% of all participants

reporting during the treatment of crizotinib (71). Researches have

revealed that hypophosphatemia is a sensitive prognostic factor
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related to the in-hospital day, severe complications or all-cause

mortality. Still, the exact mechanism for these adverse events

remains unclear, and there are no formal recommendations for

guidance. Possible explanation for hypophosphatemia is associated

with inhibiting the insulin-like growth factor-1 (IGF-1) located in

the proximal tubules blocking the phosphate reabsorption, thus

resulting in phosphaturia (40).

Renal cyst formation has been reported in patients treated with

ALK inhibitors, especially those treated with the first-generation

crizotinib. Yet, the potential causal relationship between crizotinib

treatment and renal cyst formation has not been fully established.

Hepatocyte growth factor receptor (HGF) is the only known ligand

for MET and plays a vital role in embryonic development, tissue

regeneration, and tumor progression. In the kidney, HGF is found

in mesenchymal cells, while MET is expressed in non-mesenchymal

cells. Activation of the HGF/MET signaling axis is associated with

the development of renal cysts (66, 72). Another possible

explanation is attributed to the imbalance of testosterone

hormone levels, whose secretion decreased under crizotinib

treatment but recovered after discontinuation of crizotinib (73).

Routine ultrasound and renal function examination are needed

when initiating ALK inhibitors.

ALK inhibitors have been associated with the occurrence of

acute kidney injury and chronic kidney disease in clinical practice.

Acute elevation of serum creatinine when initiating first-generation

crizotinib may not be a reflection of true kidney injury, but rather a

pseudo-kidney injury due to creatinine transporter inhibition,

thereby interfering with creatinine secretion in the proximal

tubule (58).

Still, cases of real acute kidney dysfunction are reported in the

patients treated with ALK inhibitors. It is thought that MET is

mainly expressed in the proximal convoluted tubule, proximal loop

of Henle loop and distal convoluted tubule. Crizotinib competitively

inhibits creatinine and water secretion by inhibiting the c-Met

pathway, which may be the mechanism that predisposes to acute

kidney injury (58, 70).

Recently, an analysis revealed that the calculated glomerular

filtration rate in cancer patients undergoing TKIs was higher in

almost all cases when using cystatin C (74). Therefore, it is

important to recalculate with both serum creatinine and cystatin

C to identify the actual situation when using crizotinib. Patients

undergoing treatment with crizotinib should maintain proper

hydration, regularly monitor kidney function, and promptly

report any symptoms indicating potential kidney injury to

healthcare professionals. Also, physicians should carefully assess

the risk-benefit ratio before prescribing crizotinib to patients with

known risk factors for kidney disease.
3.2 Ceritinib

Ceritinib, an oral small molecule, ATP-competitive tyrosine

kinase inhibitor of ALK, is 20 times as potent as crizotinib in

enzymatic assays. It is always used in patients harboring ALK

mutation involving L1196M, G1296A, I1171T, and S1206Y
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mutations. The recommended dose of ceritinib is 750 mg orally per

day (75, 76). The most common adverse events caused by ceritinib

include gastrointestinal disorder (grade 1 or 2 diarrhea, nausea) or

hepatic disorders among up to 5% of patients, which generally

required essential approach and is reversible after drug

modifications or discontinuation. Serum creatinine levels were

elevated in 11% of patients, and hypomagnesemia occurred in 8%

of patients undergo ceritinib therapy. Patients treated with ceritinib

often present with hypophosphatemia and this is dose-dependent

(75, 77). Hyponatremia is another common electrolyte disorder in

patients treated with ceritinib therapy. More than 5% of patients

developed hyponatremia during ceritinib therapy. A postulated

explanation attributed hyponatremia in patients treated with ALK

inhibitors to inadequate secretion of antidiuretic hormone in the

collecting ducts and thus producing hyponatremia (78).

Hypocalcemia and hypokalemia are also reported though in

patients treated with ceritinib (59).

In conclusion, it is necessary to regularly monitor electrolyte

levels and kidney function, recognize symptoms and signs early,

and take relevant measures to intervene. Dose reductions have not

usually been required (77).
3.3 Alectinib

Alectinib, a second-generation oral ALK TKIs, is highly

selective and more potent against ALK. It has been used in

patients with ALK mutations that cause resistance to crizotinib,

such as L1196M and C1156Y (79). The recommended dose of

alectinib is 600 mg twice orally per day. Alectinib has good brain

barrier penetration, resulting in high concentrations in the cerebral

blood fluid. The brain is the most common site of metastasis in

patients with ALK-positive NSCLC treated with crizotinib, and

many patients suffer recurrence of central nervous system

involvement (80, 81). Common adverse effect caused by alectinib

are constipation (35.6%), edema (33.6%) and myalgia (30.8%). The

gastrointestinal and hepatobiliary disorders are the two most

common vital adverse effects that calls for emergent attention and

treatment (82).

Still, renal adverse events have been reported in patients treated

with alectinib, commonly grade 1 or 2 nephrotoxicity. Grade 3 renal

adverse events including elevated serum creatinine and neutropenia

were reported in 26% of patients, and hypophosphatemia was

reported in 2~4% of patients (81, 83). Ramachandran et al (84)

reported that a 72-year-old patient with ALK-positive metastatic

NSCLC developed acute kidney injury which necessitated emergency

hemodialysis within 6-week treatment of alectinib. He recovered

completely within 7-10 days on alectinib withdrawal. Recently, one

case of biopsy-proven a mixed pattern of acute interstitial nephritis

and acute tubular necrosis was reported with this agent for a 68-year-

old patient with ALK-positive NSCLC stage IV. After initiation of

corticotherapy, renal function in this patient returned to baseline. The

patient was finally discharged from the hospital, the and treatment

with alectinib was changed to lorlatinib, and renal function remained

stable after 10 months of lorlatinib (85).
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3.4 Brigatinib

Brigatinib, another highly selective ALK TKIs with a 12-fold

stronger potent against ALK than crizotinib, has been widely

applied in patients with regressive ALK-positive metastatic

NSCLC or resistant to crizotinib. The recommended dose of

brigatinib is 90 mg orally per day (86). Gastrointestinal disorder

(nausea, diarrhea), fatigue and headache are the most common

adverse effects and needed emergent attention and treatment (58).

Brigatinib-induced renal adverse events have been rarely

reported in clinical practice. Wang et al (87) reported that a 39-

year-old patient with advanced ALK-rearranged NSCLC developed

tumor lysis syndrome after 22-day therapy of brigatinib, whose

serum creatinine rose from 73 mmol/L to 320.2 mmol/L over 22 days

of brigatinib treatment. Emergent hemodialysis is required;

however, the patient and his family refused any other further

interventions due to the worse prognosis, and finally he passed

away within 24h.
3.5 Lorlatinib

Lorlatinib, a selective third-generation tyrosine kinase inhibitor,

has been used to treat crizotinib-resistant ROS1-positive NSCLC

and glioblastoma. Lorlatinib has shown high potency in crizotinib-

resistant NSCLC with ROS1 G2032R mutation and the

recommended dose of lorlatinib is 100 mg orally per day (88–90).

Common adverse events of lorlatinib involve neurocognitive

impairments, such as slowed speech and thinking and word-

finding difficulty, which are dose-limited (91). Up to 50% of

patients develop peripheral edema when treated with lorlatinib

(10). Also, lorlatinib-related glomerular-toxicity may happen.

Betton et al (92) reported that a 64-year-old female diagnosed

with lung adenocarcinoma presented with diffuse edema and

proteinuria after 1-month treatment with lorlatinib. She was

diagnosed with lorlatinib-related nephrotic syndrome with a

kidney-biopsy revealing diffuse podocytes foot process

disappearance under electron microscopy and her symptoms

relived after discontinuation of this drug. However, due to disease

progression, the patient was restarted with lorlatinib and

subsequently increased to 3.6 g/g proteinuria within 3 days of

initiation (92). In addition, McGee et al (93) described a case of

63-year-old female with lung adenocarcinoma developed extinct

hyperlipidemia, which may be caused by minimal change disease

under renal biopsy. Another case reported by Lee et al (94) revealed

a 68-year-old with ROS1 rearranged stage IV lung adenocarcinoma

presented proteinuria after receiving lorlatinib, and her symptoms

improved when reducing dose from 100 mg to 50 mg daily.

However, the related mechanism remained unknown.

Peripheral edema seems to be the most common adverse event

after ALK inhibitor therapy, occurring in nearly 50% of participants

under the first-generation crizotinib and the third-generation

lorlatinib, generally grade 1-2 adverse events (10). However, the

exact mechanism remained unknown, but a postulated mechanism
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referred to the inhibition of the c-MET pathway. In the kidney,

MET is expressed in the tubules, including proximal tubules,

proximal loop of Henle and the distal tubules. Inhibition of this

pathway may lead to electrolyte disorders (73). Peripheral edema

generally appears late in the therapy of ALK inhibitors, which

appears to be a late-onset cumulative effect. In patients with low-

grade edema, compression stockings, leg elevation, and lifestyle

changes should be advised first before starting dose adjustment (58).

Also, it is important to monitor renal function regularly and take

management with dose modification. Diuretics drugs may be a

proper choice for cases with more resistant.
4 BRAF inhibitors

BRAF, one of the oncogenic drivers, accelerates the RAS-RAF-

MEK-ERK pathway and induces cell growth and proliferation,

which plays a critical role in cancer progression (95).

Approximately 2-4% of patients with NSCLC have been shown to

have mutations in the BRAF gene (96).

Vemurafenib, an oral selective BRAF inhibitor, has been used in

treatment against NSCLC and melanoma harboring BRAF

mutation (97, 98). Vemurafenib, which is highly protein-bound,

is metabolized mainly in the liver and finally excreted in the feces

(94%), rarely through urine (1%), so it may be possible to use it in

patients with renal insufficiency at its usual doses. Similar to

vemurafenib, dabrafenib is highly bound to protein and is widely

distributed. However, dabrafenib is a higher drug for renal

elimination than vemurafenib (71% fecal excretion and 23%

urinary excretion). It can also be used for mild to moderate renal

impairment, but the terminology for patients with severe renal

impairment is lacking (99).

Proteinuria and decreased glomerular filtration rate are

common renal adverse events reported by vemurafenib (100).

Launay-Vacher et al (101) reported a case series about 8 patients

that glomerular filtration rate decreased varied from 20 to 74% after

vemurafenib therapy and concomitant use of other nephrotoxic

drug, such as cisplatin and zoledronic acid, and a patient received

renal biopsy revealing acute tubular necrosis. Electrolyte disorders

are common renal adverse effects in clinical practice. In a phase 2

trial combined dabrafenib and trametinib in patients with

BRAFV600E-mutant NSCLC, hypophosphatemia, hyponatremia

and hypercalcemia has been reported in patients (102).

The mechanism of renal injury caused by BRAF inhibitors is not

well understood, but may be related to their blocking of signal

transduction of downstream cellular pathways and increased

susceptibility of renal tubules to ischemic injury (103). When treating

with dabrafenib and vemurafenib, serum creatinine and electrolytes

must be routinely monitored and glomerular filtration rate calculated

before the first dose. Still, the mechanism has remained unclear yet.

Meanwhile, the associated cases are limited. Dabrafenib-related renal

toxicity is limited, but more data and time are needed before

concluding that these drugs are not nephrotoxic. Oncologists and

nephrologists need to be aware of the nephrotoxicities of these agents.
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5 VEGF inhibitors

After Folkman first proposed the angiogenesis theory of tumor

growth and metastasis, researchers have continued to make intense

efforts to target this pathway to stop tumor growth. One of the most

effective promoters is involved in the VEGF pathway (104). The

most widely used small-molecule drugs included bevacizumab,

sorafenib, sunitinib, axitinib, and pazopanib (13). In the kidneys,

VEGF is expressed in podocytes and maintains the normal function

of the glomerular endothelium (105).

Common renal adverse effects related to VEGF inhibitors in

lung cancer therapy include proteinuria, acute renal failure and

hypertension (106). Zhu et al (107) have shown that the incidence

of all-grade hypertension was 21% and a significantly higher

incidence in patients with renal cell carcinoma in a meta-analysis

of total 4609 patients treated with sunitinib. In the treatment of lung

cancer, bevacizumab is more likely to induce nephrotoxicity than

other VEGF inhibitors (108, 109).

Bevacizumab, a recombinant human monoclonal antibody that

binds to all known vascular endothelial growth factor A (VEGF-A)

subtypes and exerts antiangiogenic effects by blocking the binding of

VEGF-A to VEGF receptors (primarily VEGFR-1 and VEGFR-2) on

the surface of endothelial cells, as VEGF-A binds to VEGFR-1 and

VEGFR-2 to promote endothelial cell proliferation, activate survival

pathways, and form new blood vessels. Therefore, bevacizumab plays

an important role in the treatment of advanced cancer, including

NSCLC (109, 110). The most common renal impairment of

bevacizumab is proteinuria in clinical practice (111). In a pooled

analysis of bevacizumab-treated patients including patients

diagnosed NSCLC, the incidence of proteinuria of any grade was

8.2% and 4.6% in the bevacizumab and control groups, respectively,

while the incidence of grade 3/4 proteinuria was 1.4% and 0.2%,

respectively (108). Another population-based retrospective cohort

study revealed that patients treated with bevacizumab had a

significantly 1.35-fold higher risk of CKD than those who did not

receive bevacizumab (109).

The main mechanisms related to proteinuria may include the

interference with podocytes endothelial VEGF axis signaling, increased

intraglomerular pressure caused by secondary hypertension and

subacute glomerular thrombotic microangiopathy. The most

common histopathological manifestations of the kidney caused by

VEGF inhibitors is thrombotic microangiopathy, followed by

glomerular lesions and interstitial nephritis (112, 113).

Inhibition of the VEGF pathway may lead to hypertension. A

possible mechanism is that VEGF is a mediator of endothelium-

dependent vasodilation, leading to upregulation of nitric oxide

synthase. Meanwhile, capillary rarefaction and increased

prostacyclin production play a role in exacerbating hypertension

(112, 114). Monitoring of proteinuria during treatment is also

important, especially during the treatment with bevacizumab.

Patients with proteinuria ≥2.0 g/24 h need to suspend the

medication. And if there is a proteinuria > 3.0 g/24 h or if

nephrotic syndrome occurs, permanent discontinuation of the

medication is required. When this happens, we may consider

switching to other drugs. For example, in patients with nephrotic

syndrome associated with gefitinib therapy, we may consider
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erlotinib as a potential treatment option. Acute kidney injury and

other renal dysfunction may occur during the treatment, so creatinine

and urea levels should be determined. Increased monitoring

frequency is required when creatinine levels increase >1 to 1.5-fold

baseline. If the creatinine concentration increases 1.5-fold baseline,

administration of methylprednisolone is required. A renal biopsy

should also be considered. The administration of drugs should be

delayed when creatinine levels increase >3-fold baseline (111).
6 Discussion

In targeted therapy for lung cancer, especially EGFR and ALK

inhibitors, may damage the glomeruli, renal tubules or any other part

of the nephron, leading to deterioration of renal function and the

appearance of various clinical symptoms such as AKI, electrolyte

disturbances, nephrotic syndrome and glomerulonephritis (12).

EGFR was expressed in the kidney, so EGFR inhibitors may cause

AKI, renal failure or renal impairment. Mutation of EGF gene also

resulted in the activation of TRPM-6 type channel and thus

hypomagnesemia occurred. In addition, EGFR inhibitors may

cause hypophosphatemia and hypocalcemia by affecting the Na/Pi

(sodium-phosphate) co-transporter channels (26). The ALK

inhibitors may cause peripheral edema by inhibiting the c-MET

pathway and associate with an acute increase in serum creatinine by

inhibiting of a creatinine transporter, thus interfering with the

secretion of creatinine in the proximal tubule (73).

The kidney is vulnerable to injury from the targeted therapy used

to treat lung cancer, so we recommend routine physical examinations,

imaging, serum or urine monitoring in these patients. It is important to

improve awareness of the factors that that enhance nephrotoxic risk.

These factors include specific patient characteristics, nephrotoxicity of

the substance itself and renal handling of the causative substance.

Electrolyte disorders including hypophosphatemia, hyponatremia,

hypokalemia and hypocalcemia can be life-threatening.

Therefore, it is advisable to check electrolyte levels prior to the

initiation of therapy, and then routinely monitor the electrolyte

levels to prevent the development of severe complications caused by

electrolyte disorders. Drugs should not be discontinued unless the

symptoms are very severe.
7 Conclusion

In recent years, significant progress has been made in the early

diagnosis and treatment of cancer, which has a significant impact on

prolonging the survival of patients. However, nephrotoxicity may

happen after initiation of the therapy and this may force reduction or

discontinuation of the medication. Nephrotoxicities induced by

targeted therapy cause manifestations of various forms, ranging

from nephrotic syndrome to acute kidney injury. Currently, there

is limited data onmany kidney-related toxicities, especially new drugs

released in recent years. Yet, the relevant mechanism has remained

unclear. It is necessary to further study the potential mechanism of

the effect of these drugs on the kidney. It is important to monitor the

renal function when initiating the targeted therapy and pay close
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attention and regular follow-up. In the future, further studies should

be carried out and animal experiments are needed to explore the

potential mechanism of these drugs on the kidney and reduce renal

adverse events.
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