
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yuan Li,
Shandong University, China

REVIEWED BY

Lu-shan Xiao,
Southern Medical University, China
Wenjian Hu,
Southwest Medical University, China

*CORRESPONDENCE

Zhenjun Xu

xzj881225@163.com

Dongjin Wang

wangdongjin@njglyy.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 11 January 2024
ACCEPTED 14 March 2024

PUBLISHED 02 April 2024

CITATION

Jiang X, Luo Y, Li Z, Zhang H, Xu Z and
Wang D (2024) Identification of diagnostic
biomarkers and immune cell infiltration in
coronary artery disease by machine learning,
nomogram, and molecular docking.
Front. Immunol. 15:1368904.
doi: 10.3389/fimmu.2024.1368904

COPYRIGHT

© 2024 Jiang, Luo, Li, Zhang, Xu and Wang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 02 April 2024

DOI 10.3389/fimmu.2024.1368904
Identification of diagnostic
biomarkers and immune cell
infiltration in coronary
artery disease by machine
learning, nomogram, and
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Zhenjun Xu3* and Dongjin Wang1,2,3*

1Department of Cardio-Thoracic surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical
Sciences & Peking Union Medical College, Peking Union Medical College Graduate School,
Nanjing, China, 2Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &
Peking Union Medical College, Beijing, China, 3Department of Cardio-Thoracic Surgery, Nanjing
Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
Background: Coronary artery disease (CAD) is still a lethal disease worldwide.

This study aims to identify clinically relevant diagnostic biomarker in CAD and

explore the potential medications on CAD.

Methods: GSE42148, GSE180081, and GSE12288 were downloaded as the

training and validation cohorts to identify the candidate genes by constructing

the weighted gene co-expression network analysis. Functional enrichment

analysis was utilized to determine the functional roles of these genes. Machine

learning algorithms determined the candidate biomarkers. Hub genes were then

selected and validated by nomogram and the receiver operating curve. Using

CIBERSORTx, the hub genes were further discovered in relation to immune cell

infiltrability, and molecules associated with immune active families were

analyzed by correlation analysis. Drug screening and molecular docking were

used to determine medications that target the four genes.

Results: There were 191 and 230 key genes respectively identified by the

weighted gene co-expression network analysis in two modules. A total of 421

key genes found enriched pathways by functional enrichment analysis.

Candidate immune-related genes were then screened and identified by the

random forest model and the eXtreme Gradient Boosting algorithm. Finally, four

hub genes, namely, CSF3R, EED, HSPA1B, and IL17RA, were obtained and used to

establish the nomogram model. The receiver operating curve, the area under

curve, and the calibration curve were all used to validate the accuracy and

usefulness of the diagnostic model. Immune cell infiltrating was examined, and

CAD patients were then divided into high- and low-expression groups for further

gene set enrichment analysis. Through targeting the hub genes, we also found

potential drugs for anti-CAD treatment by using the molecular docking method.
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Conclusions: CSF3R, EED, HSPA1B, and IL17RA are potential diagnostic

biomarkers for CAD. CAD pathogenesis is greatly influenced by patterns of

immune cell infiltration. Promising drugs offers new prospects for the

development of CAD therapy.
KEYWORDS
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1 Introduction

Coronary artery disease (CAD) is an atherosclerotic disease

caused by a variety of environmental, genetic, and other risk

factors. When aberrant lipid metabolism, endothelial injury, or

changed hemodynamics release proinflammatory substances,

inflammatory cells in the circulating pool congregate, penetrate

the coronary artery intima, and interact with vascular smooth

muscle cells (1, 2). Under the influence of colony-stimulating

substances, infiltrating monocytes develop into macrophages

and phagocytose lipoproteins, becoming foam cells. Eventually,

an area made up of a fibrous cap, apoptotic necrotic cells,

cholesterol crystals, and other extracellular material forms

because of the latter’s reduced capacity to migrate, grow,

mature, and die in the intima. This is also accompanied by

remodeling of the arterial wall (3–6). Plaque causes varying

degrees of narrowing of the arterial lumen. When the plaque

ruptures, the clot moves with the blood flow and if a blockage is

formed, it causes ischemia in the subsequent area, and in severe

cases, in other words, myocardial infarction (MI) (7, 8). It was

recorded that more than 700,000 people experience an AMI- or

CAD-related death per year (9).

The genome-wide association studies (GWAS) identified 33

genetic variants associated with increased risk of CAD (10). A meta-

analysis showed that the G487A polymorphism in the ALDH2 gene

was significantly associated with an increased risk of CAD in the

Chinese population (11). Rare variant association studies (RVAS)

indicated that at least 11 genes have been shown to alter the risk of

coronary heart disease, including cholesterol metabolism (LDLR,

PCSK9, NPC1L1), triglyceride metabolism (APOA5, APOC3, LPL,

ANGPTL4, ANGPTL3), Lp(a) (LPA), non-high-density lipoprotein

(NHDL) cholesterol (ASGR1), and blood pressure-related variants

(SVEP1). Ferroptosis, cuproptosis, N6-methyladenosine (m6A),

and other modalities are simultaneously influencing CAD

progression (12–14). Dai et al. pointed out that the imbalance of the

flora structure is related to the disorder of lipid metabolism and

immunity, which promotes the occurrence of CAD. In addition, a

wide range of circulating metabolites can promote or inhibit vascular

atherosclerosis and plaque stability by affecting intestinal barrier, lipid

transport, and secretion of inflammatory factors (15).
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The investigation of alterations in disease-related gene expression

and the identification of such potential genes with the goal of

developing novel diagnostic and therapeutic strategies are both

made possible using the microarray technique. Gene expression

levels are an essential indicator for making a preliminary diagnosis

and can reveal the severity of several illnesses. The most pertinent

module with the clinical characters can be chosen using the weighted

gene co-expression network analysis (WGCNA) approach. Machine

learning algorithms have shown considerable promise in examining

the underlying relationship of high-dimensional data using either

supervised or unsupervised methodologies. The impact of diagnostic

biomarkers may be further evaluated using a nomogram, which was

verified by ROC and AUC. Molecular docking and drug screening

may offer new therapies on the CAD. Through each of these methods,

we investigate possible CAD target genes in this article, as well as the

function of immune cells in the illness, in order to fill the gap in

CAD research.
2 Materials and methods

2.1 Data collection and preprocessing

Three gene expression profile datasets (GSE42148, GSE180081,

and GSE12288) were accessed from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) by the National

Center for Biotechnology Information (NCBI). The mRNA expression

profiling dataset GSE42148 was downloaded as the training cohort,

which was annotated by GPL13607. GSE42148 contains 24 samples (13

samples with angiographically confirmed CAD and 11 population-

based asymptomatic controlled samples). All samples were obtained

from the enrolled patients’ whole blood. Single-molecule sequencing of

RNA (RNAseq) GSE180081 was obtained as the validation cohort

annotated by GPL14761. A total of 96 samples including 48 with LOW

coronary stenosis and 48 with mid and severe (MID+) coronary

stenosis were contained in GSE180081 annotated by GPL14761.

GSE12288 was utilized as a validation cohort by 110 CAD samples

and 112 control samples annotated by GPL96. For the problem of

multiple probes corresponding to the same gene, the average value was

retained using the limma package.
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2.2 Construction of the weighted gene
co-expression network analysis

WGCNA sought to identify co-expressed gene modules and

investigate the association between the gene network and the

phenotype of interest. Using the WGCNA package, the co-

expression network of all genes in the GSE42148 dataset was

built. Based on the weighted correlation coefficient, genes were

classified into multiple modules according to their shared

expression patterns, and the colors reflected the various modules.

We then selected the two modules with the strongest correlations

for subsequent analysis. The correlation between gene expression

and trait >0.2 and the correlation between gene expression and

module >0.8 were used as criteria for screening, and a total of 421

genes were finally identified.
2.3 Functional enrichment analysis

Functional enrichment analysis was applied to identify the

likely function of potential targets using the clusterProfiler

package. With the Gene Ontology (GO) database, we can learn

about the functional relationship of target genes at biological

process (BP), cellular component (CC), and molecular function

(MF) levels. Based on the annotation of the function of candidate

genes themselves, we can find various pathways in which the target

gene is involved in the human body through the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database. The

standard of p-value and the adjusted p-value were both set as 0.05.
2.4 Screening of the candidate immune-
related genes

The Immunology Database and Analysis Portal (ImmPort)

database (https://www.immport.org/) is a repository for storing

and sharing a wide range of immune-related resources. All the

immune-related genes were downloaded and then intersected with

the former 421 genes using the Venn package. We then validated

the intersected genes in GSE42148 and visualized them by violin

plots. Only six immune-related genes (IRGs) exhibited the same

trend as their own module.
2.5 Identification of the diagnostic
biomarkers by machine learning algorithms

The six IRGs were trained by these two machine learning

algorithms. The Random Forest (RF) model was formed by

multiple decision trees. Each decision trees may give a vote, with

the most votes ultimately being the final model predictions. Initial

screening was performed using the training cohort: 500 trees were

set as the total number of decision trees; 10-fold cross-validation

and importance scoring were carried out, sorting and visualizing

based on the least out-of-bag (OOB) error estimate; and finally the
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top five genes were selected. The eXtreme Gradient Boosting

(XGBoost) algorithm supports regression and classification

predictive modeling problems. It not only greatly reduces

computation time but also improves prediction accuracy. After

importing the data from training cohort, the model was stabilized at

a maximum of 17 iterations (nround). Based on the gene

significance score, the top five genes were selected. Both selected

genes were intersected. Finally, four hub genes were chosen and

recognized as diagnostic biomarkers for further correlation analysis.
2.6 Construction of nomogram

Four diagnostic biomarkers were used to establish the

nomogram model. The receiver operating characteristic (ROC)

curve and its area under curve (AUC) were both used to

determine the utility and accuracy of the nomogram model based

on the four genes. Calibration curve indicated that the model had a

good prediction value.
2.7 Correlation analysis between diagnostic
biomarkers and infiltrating immune cells

We used the CIBERSORTx online website (https://

cibersortx.stanford.edu/) to further explore the correlations between

diagnostic biomarkers and the 29 infiltrating immune cells in CAD

groups, which was presented through result visualization. The p-

value < 0.05 was recognized to be significantly important.
2.8 Correlation analysis among three
families of immune-related
active molecules

In order to investigate the significance of the four hub genes for

the immune system even more, we conducted a correlation study

between them and key genes from three families of immune-related

active molecules.
2.9 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was analyzed on the basis

of the full dataset, using a specific dataset to identify whether there

were differences between the two groups and whether specific

pathways were enriched between groups. The whole CAD

samples were selected and grouped into high and low expression

groups using the median expression values of the four genes and

then analyzed by the GSEA enrichment. There were 7,233 hallmark

gene sets downloaded from the Molecular Signatures Database

(MSigDB) online (https://www.gsea-msigdb.org/gsea/msigdb) as

the reference gene set, and clusterProfiler and GseaVis packages

were used for gene enrichment and visualization.
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2.10 Drug screening and
molecular docking

Drug screening and molecular docking were used to determine

medications that target the four genes. First, we searched the

Comparative Toxicogenomics Database (CTD) database (https://

ctdbase.org/) for a list of small-molecule compounds that might

either up- or downregulate the expression of the relevant genes.

From the Chemical Entities of Biological Interest (ChEBI) database

(https://www.ebi.ac.uk/), we subsequently retrieved the structures

of these small-molecule compounds. Furthermore, the AlphaFold

Protein Structure Database (https://alphafold.ebi.ac.uk/) provided

us with the anticipated protein structures encoded by the

aforementioned genes. AutoDock Vina was used to carry out

molecular docking ultimately.
Frontiers in Immunology 04
3 Results

3.1 Identification of key modules and genes
in WGCNA

The Pearson’s correlation coefficient was applied, and all samples

in GSE42148 were well clustered. The scale-free topology criterion with

R2 = 0.8 and the soft threshold b = 5 were set (Figure 1A). The

dendrogram of all genes was clustered based on a topological overlap

matrix (TOM, Figure 1B). Each branch in the clustering tree

represented one gene, and each color represented one module. A

total of 16 modules were identified and visualized as a module-trait

heatmap to describe the correlation between module genes and CAD

(Figure 1C). After calculating the corresponding correlation coefficient

and p-value, the purple module showed the strongest relationship with
B

C

D E

A

FIGURE 1

Identification of modules highly correlated with CAD. (A) Topology analysis and mean connectivity analysis for a series of soft threshold powers.
(B) Module clustering dendrogram assigned with different module colors. (C) Heatmap exhibited the relevance of different color modules to CAD.
(D) In the CAD group, the most highly correlated purple module was selected to present the correlation between module membership and gene
significance. (E) In the control group, the most highly correlated yellow module was selected to present the correlation between module
membership and gene significance.
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the CAD group (cor = 0.5 and p = 0.01) and the yellowmodule showed

the same with the control group (cor = 0.52 and p = 0.009). These two

modules were then selected for the further analysis. The module

membership (MM) and gene significance (GS) of the purple and

yellow modules showed a significant association (Figures 1D, E). There

were 191 and 230 key genes identified in the two modules,

respectively, with the standard of geneTraitSignificance > 0.2 and

geneModuleMenbership > 0.8 (Supplementary Tables 1, 2).
3.2 Functional pathway analysis

GO and KEGG functional analyses were conducted for further

explorations on the underlying roles on these key genes. GO

enrichment analysis revealed multiple BP (including “hippocampus

development,” “erythrocyte differentiation,” “regulation of DNA-

binding transcription factor activity,” “cytokine-mediated signaling

pathway,” and “inflammatory response to antigenic stimulus”), CC

(“membrane raft,” “azurophil granule lumen,” “azurophil granule,”

“primary lysosome,” and “lipid droplet”), and MF (“phosphotyrosine

residue binding,” “protein phosphorylated amino acid binding,”

“ubiquitin-like protein ligase binding,” “insulin receptor substrate

binding,” and “ubiquitin protein ligase binding”) levels enriched in

purple module and top five of each levels were visualized in

Figure 2A. KEGG enrichment analysis again enriched various

pathways, including “Signaling by CSF3 (G-CSF),” “RHO GTPases

Activate NADPH Oxidases,” “Regulation of signaling by CBL,”

“Parasite infection,” “Neutrophil degranulation,” “Leishmania
Frontiers in Immunology 05
phagocytosis,” “Leishmania infection,” “Interleukin-3. Interleukin-5

and GM-CSF signaling,” “Inactivation of CSF3 (G-CSF) signaling,”

and “Fcgamma receptor (FCGR) dependent phagocytosis”

(Figure 2B). Figures 2C, D show GO and KEGG enrichment

analyses in yellow module same steps as above.
3.3 Screening and validating on IRGs

To further discover more information on IRGs, 191 key genes in

purple module and 230 key genes in yellow module were both

intersected with 1,793 immune genes downloaded from the

ImmPort database (Figures 3A, C). There were 13 and 11 IRGs

obtained and examined their expression levels in validation dataset,

respectively. Only three genes (ADIPOR1, CSF3R, and IL17RA)

upregulated in purple module and three genes (EED, HSPA1B, and

UBR1) downregulated in yellow module (Figures 3B, D). These six

IRGs were then selected into further analyses.
3.4 Machine learning for
diagnostic biomarkers

We first established the RF model using six IRGs (Figure 4A). In

descending order of variable importance were EED, IL17RA,

ADIPOR1, HSPA1B, CSF3R, and UBR1, respectively (Figure 4B).

The XGBoost algorithm was then used to identify the hub genes.

The variables with varying degrees of relative importance were EED,
B

C D

A

FIGURE 2

Functional enrichment analysis of modules. (A, B) GO enrichment analysis (A) and KEGG pathway enrichment analysis (B) of 191 genes belong to the
purple module in the CAD group. (C, D) GO analysis result (C) and KEGG enrichment analysis result (D) for 230 genes corresponding to the yellow
module in the control group.
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HSPA1B, CSF3R, UBR1, IL17RA, and ADIPOR1, in descending

order (Figure 4C). Top five genes of each algorithm were intersected

to determine the hub genes. Results showed that four hub genes,

CSF3R, EED, HSPA1B, and IL17RA, were obtained and recognized

as the diagnostic biomarkers for CAD (Figure 4D). The correlation

analysis of expression levels of four hub genes is shown in Figure 4E.
Frontiers in Immunology 06
3.5 Construction of the nomogram model
for CAD prediction

Based on the four hub genes mentioned above (CSF3R, EED,

HSPA1B, and IL17RA), we constructed a nomogram model to

predict CAD. As Figure 5A shows, our model performed well in
B C

D E

A

FIGURE 4

Machine learning for hub genes. (A, B) Random Forest analysis of HIGs. (C) The ranking of candidate genes based on the variable relative importance
using the XGBoost algorithm. (D) The intersection Venn diagram of RF-top five genes and XGBoost top five genes. (E) The correlation analysis
between GSF3R, EED, HSPA1B, and IL17RA. RF, random forest.
B

C D

A

FIGURE 3

Identification of central genes. (A) The intersection Venn diagram of immune genes from the ImmPort database and key genes of the purple
module. (B) Split violin plots showed the mRNA expression level of ADIPOR1, CSF3R, and IL17RA. (C) The Venn diagram revealed the key genes from
the intersection between immune-related genes and core genes from the yellow module. (D) Split violin plots showed the mRNA expression level of
EED, HSPA1B, and UBR1. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1368904
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1368904
CAD prediction. We executed an ROC analysis to further evaluate

the nomogram model’s predictable power and the AUC was 0.902

(Figure 5B). The calibration curve also showed good predictive

value (Figure 5C). GSE180081 and GSE12288 datasets were

validated the utility and accuracy of the nomogram model. Both

ROC indicated good predictive value, and the AUC values were

0.706 and 0.73, respectively (Figures 5D, F). Calibration curves also

showed good predictive value (Figures 5E, G).
3.6 Correlations with immune cells

We used CIBERSORTx online websites to calculate and

predicted the abundance of hub genes among immune cells. As

Figures 6A, B show, CSF3R exhibited positive relationships with M0

macrophages (R = 0.62, p = 0.0015) and neutrophils (R = 0.57, p =

0.0043). Instead, memory B cells (R = −0.53, p = 0.009) and CD8+ T

cells (R = −0.45, p = 0.027) negatively related with CSF3R

(Figures 6C, D). Only resting NK cells (R = 0.44, p = 0.031)

showed three families played pivotal roles in CAD a positive

relationship with EED (Figure 6E). For the HSPA1B gene,

activated dendritic cells (R = 0.44, p = 0.031) and resting NK cells

(R = 0.43, p = 0.036) indicated positive correlations whereas CD4+

T memory resting cells (R = -0.47, p = 0.022) indicated negative

(Figures 6F–H). Moreover, M0 macrophages (R = 0.62, p = 0.0015),

neutrophils (R = 0.49, p = 0.017), and CD4+ T naive cells (R = 0.48,

p = 0.017) all showed positive correlations with IL17RA
Frontiers in Immunology 07
(Figures 6I–K). CD8+ T cells negatively correlated with IL17RA,

in contrast (Figure 6L).
3.7 Immune-related active molecules of
three families played pivotal roles in CAD

We examined the correlations with the three main immune

families’ compounds to delve even further into the probable

immunological roles into four hub genes. As Figure 7A shows,

most molecules (especially TNFRSF1B and TNFRSF6B) in the

tumor necrosis factor (TNF) family had strong relationships with

four hub genes. Members in the chemokine family such as CCR1,

CCR2, CCR5, and CXCL2 exhibited significantly important

correlations with hub genes (Figure 7B). Similarly, human

leukocyte antigen (HLA) family members such as HLA-DRA,

HLA-E, and HLA-F correlated with hub genes (Figure 7C). To

sum up, biological pathways including these three families might

play pivotal roles in CAD generation and progression.
3.8 GSEA analysis in the CAD group

Based on the median expression value of four hub genes, we

divided the CAD group into high and low groups respectively and

performed a GSEA. Figures 8A–D represent GSF3R, EED, HSPA1B,

and IL17RA high expression groups’ results, respectively. TGSF3R
B

C

D E F G

A

FIGURE 5

Construction and validation of the hub genes. (A) Diagnostic nomogram of the four hub genes. (B-G) ROC curve and nomogram calibration curves
in the training cohort and external validation cohort.
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high expression group was mostly enriched in “TNF-a signaling via

NF-kB,” “PI3K/AKT/mTOR signaling,” “Mitotic spindle,” “Wnt/b-
catenin signaling,” and “Peroxisome” (Figure 8A). The EED high

expression group was mostly enriched in “TNF-a signaling via NF-

kB,” “Interferon alpha response,” “Inflammatory response,” “P53

pathway,” and “Hypoxia” (Figure 8B). The HSPA1B high

expression group was mostly associated with “Interferon alpha

response,” “TNF-a signaling via NF-kB,” “Interferon gamma

response,” “P53 pathway,” and “Hypoxia” (Figure 8C). IL17RA

was mostly associated with “P53 pathway,” “TNF-a signaling via

NF-kB,” “KRAS signaling up,” “Cholesterol homeostasis,” and

“Mitotic spindle” (Figure 8D).
3.9 Potential drug screening and molecular
docking for hub genes

Using the CTD database, we searched possible drugs that could

upregulate EED or HSPA1B expression and downregulate CSF3R

or IL17RA expression, respectively, since CSF3R and IL17RA are

risk factors and EED and HSPA1B are protective factors in CAD.

Supplementary Table 3 displays many medications together with
Frontiers in Immunology 08
their binding energies. Particularly, the most stable combination

ability was revealed by CSF3R-FOLIC-ACID (−8 kcal/mol,

Figure 9A), EED-amiodarone (−8.2 kcal/mol, Figure 9B),

HSPA1B-cephaloridine (−6.9 kcal/mol, Figure 9C), and IL17RA-

DOXORUBICIN (−7.4 kcal/mol, Figure 9D).
4 Discussion

A complex, chronic, and ever-evolving inflammatory condition

called coronary atherosclerosis is defined by remodeling of the

coronary arteries, which blocks the heart’s ability to get oxygen.

Acute coronary syndromes, stable angina, heart failure, sudden

cardiac death, and other clinical manifestations are just a few of its

many clinical manifestations. MI, which is driven by both genetic

and environmental susceptibility and the interactions between these

factors, has been identified as the leading cause of death worldwide.

Owing to aging demography, hypertension, diabetes, obesity,

unhealthy lifestyles, and environmental changes after prosperous

economic promotions, the incidence of CAD has been

tremendously increased worldwide (16, 17). For decades,

hundreds of genetic loci that are strongly associated with CAD or
B C D

E F G H

I J K L

A

FIGURE 6

Immune characteristics of hub genes. The correlation between the infiltration of immune cells and mRNA expression level of core genes, CSF3R (A-D),
EED (E), HSPA1B (F-H), and IL17RA (I-L).
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CAD-related traits have been discovered by GWAS, but only

individuals who inherit a combination of several variants are

most at risk of developing the disease (10, 18, 19). When

coronary atherosclerosis develops an unstable phase with the

systemic inflammatory system reacting vigorously, MI may

happen. Unstable atherosclerotic plaques, characterized by large

lipid pools, high levels of macrophages, a dearth of collagen, and

thin caps of plaques may rupture and completely or incompletely

occlude the artery due to thrombus formation, which results in an

ST elevation MI (STEMI) or a non-STEMI, respectively (20, 21). So

far, research on CAD needs further advances. This may allow for a

better understanding of how CAD develops and affects our immune

system and on the other hand unravel the deeper meaning behind

the disease.

In this study, we developed explorations on the diagnostic gene

markers of CAD, validation on diagnostic model, excavations on

immune cell infiltration and immune-related active molecules, and

discoveries on promising meditations therapy were investigated.

WGCNA implements both weighted and unweighted correlation

networks, focuses on the underlining relationships between genes

and clinical information, and then determines the most relevant

module. By constructing a WGCNA co-expression network, the

purple and yellow modules were chosen. Limited standards further

selected 191 and 230 key genes in two modules, respectively. GO
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and KEGG analyses revealed that most genes were enriched in

multiple inflammation-related pathways. Screening for IRGs and

selection of candidate genes were conducted. Moreover, two

different machine learning algorithms, RF model and XGBoost,

were utilized to determine the hub genes. The diagnostic nomogram

model was established based on four hub genes. ROC and AUC as

well as the calibration curves co-validated the accuracy of our

model, which performed well in both training and validation

cohorts. By comparing genes’ expression to calculate the

abundance of immune cell infiltration, we found that various

immune cells, especially myeloid cells and NK/T cells, strongly

correlated with hub genes. Immunocorrelation analysis further

validated the strong relationship between CAD and the immune

system. Molecular docking and identification of potential drug

targets provided new prospects for the treatment of CAD.

CSF3R, also called colony-stimulating factor 3 receptor, encodes

protein that is the receptor for colony-stimulating factor 3 (CSF3).

CSF3R mutations can be detected in approximately 80% of patients

with chronic neutrophilic leukemia (CNL), and CSF3R mutations

are now used as specific diagnostic molecular markers for CNL and

atypical chronic myeloid leukemia (aCML) (22). It is reported that

proteins encoded by CSF3R may also function in cell surface

adhesion and recognition processes. CSF3R signals through the

JAK-STAT pathway, the non-receptor tyrosine kinase SYK, and the
B

C

A

FIGURE 7

Relationship between immune-related active molecules and hub genes. Correlation analysis between the TNF family (A), chemokine family (B), and
HLA family (C) members and the hub genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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SRC family kinase LYN (23). Our study found that CSF3R

expression was increased in the CAD group whereas the gene

showed a positive association with neutrophils and macrophages,

but negative with B and T cells. A previous study declared that an

increased neutrophil-to-lymphocyte ratio (NLR) may act as a

biomarker on adverse cardiovascular outcomes (24, 25).

Interestingly, canakinumab (a selective anti-IL-1b monoclonal

antibody) decreased neutrophil counts to lower NLR, which in

turn decreased adverse endpoint events of cardiovascular disease

with no discernible effect from lipid levels, which may indicate that

neutrophil played a more vital role (26). Folic acid, also known as

vitamin B9, must be formed through food intake and converted by

gut microbes through digestion (27). As a coenzyme in the

production of purines and pyrimidines, as well as in the

conversion of one-carbon units and the methylation cycle, folic

acid performs a variety of roles in the body (28). In recent years, a

number of prospective and retrospective case–control studies have

proved that a high level of plasma homocysteine is associated with

risk cardiovascular disease (CVD) (29). Folic acid intake is

effective in lowering homocysteine levels and thus reducing

adverse cardiovascular events. There is proof that homocysteine

increases the adhesion between neutrophils and endothelial cells

(30). This phenomenon results in neutrophils moving across the

endothelial layer while causing damage and shedding of

endothelial cells. High doses of folic acid have also been found

positively related with nitric oxide (NO), which may provide

another prevention and treatment of CVD (31). On the other
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hand, monocytes develop into macrophages in response to colony-

stimulating factors and form foam cells by phagocytizing low-

density lipoprotein particles. Folic acid was found to protect

against the progression of diabetic nephropathy in mice by

inhibiting M1 macrophage polarization through inhibition of the

nuclear factor-gene binding (NF-kB) signaling pathway in a

mouse model (32). A study showed that a mixture of folic acid

and methyl donors (e.g., folate, choline, and vitamin B12) reduced

IL1B, TNF-a expression, and secretion of related proteins in

THP-1 monocytes/macrophages. Furthermore, folic acid and

choline reduced CCL2 mRNA levels, demonstrating that folic

acid may help control the progression of chronic inflammation

in inflammation-related diseases (33).

The polycomb-group (PcG) protein family induces cell

differentiation through transcriptional repression. PcG proteins

are part of two major transcriptional repression complexes, PRC1

and PRC2. PRC2 (polycomb repressive complex 2) is an important

epigenetic modifying enzyme complex, whose catalytic activity

depends on at least four subunits: the catalytic subunit EZH2

(zeste gene enhancer homolog 2), EED (embryonic ectodermal

developmental protein), SUZ12 (zeste12 homolog 1 repressor 2),

and RBBP46/48 (histone binding protein also known as RBBP7/4)

(34). PRC2 functions as a transcription genetic regulator and is

essential for several biological activities, including DNA repair and

stem cell maintenance. Clinically, EZH2 firstly discovered involving

in prostate cancer and is a major transcriptional target of the E2F-

PRB tumor-suppressor pathway. Disrupting the interaction
B

C D

A

FIGURE 8

GSEA enrichment analysis of hub genes. GSEA analysis result of hub genes from CSF3R high- and low-groups (A), EED high- and low-groups
(B), HSPA1B high- and low-groups (C), and IL17RA high- and low-groups (D).
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between EZH2 and EED may be helpful to tumor inhibition. In

addition to demonstrating that epigenetically abnormal disorders

can be reversed by epigenetic re-regulation, previous studies have

shown that deletion of EED in cardiomyocytes contributes to the

development of dilated cardiomyopathy, which may be related to

the aberrant accumulation of H3K27ac (lysine residue 27 on histone

H3 that undergoes acetylation) (35). Figure 6E shows that EED

positively correlated with resting NK cells. JAK3 inhibitors were

able to significantly reduce natural killer/T-cell lymphoma cell

growth in an EZH2 phosphorylation-dependent manner (36).

Study has shown increased apoptosis of NK cells in patients with

CAD, suggesting that NK cells might play an inhibitory role in the

disease (37). Amiodarone is a class III medication that primarily

functions as an antiarrhythmic by blocking cardiac potassium

channels and voltage-gated sodium channels (38). Amiodarone

can also selectively dilate the coronary artery while lowering

peripheral resistance and slowing the heart rate through non-

competitive inhibition of adrenergic receptors (39). Han et al.

indicated that amiodarone resulted in an increased expression of

EED (40). Amiodarone-treated neural stem cells (NSCs)
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significantly upregulated multiple transcription factors that were

involved in TNF-a receptor-mediated apoptosis through the

formation of the DNA-binding complex AP-1. From Figure 7A,

which further illustrates the strong association between EED and

the TNF family, we hypothesize that amiodarone may affect EED

expression through its modulation of the TNF molecular pathway,

which is involved in the progression of CAD. A more in-depth

discussion is needed on the relationship between amiodarone

and EED.

HSPA1B (heat shock protein family A member 1B), one of the

isoforms in HAP70, is a stress-inducible molecular chaperone

whose key role involves the refolding and degradation of

polypeptides, forming complexes with other heat shock proteins

(e.g., HSP90), stabilizing existing proteins against aggregation, and

mediating the folding of newly translated proteins in the cytoplasm

and organelles (41). In addition, HSP70 secreted into the

extracellular matrix leads to the upregulation of the expression of

proinflammatory factors such as TNF by stimulating signaling

cascades (42). This confirms that HSPA1B is closely related to the

TNF family, as shown in Figure 7A. We found that HSPA1B may be
B
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FIGURE 9

Small-molecule drug molecular docking. The 3D structure diagrams of molecular docking presented the small-molecule drug targeting CSF3R (A), EED
(B), HSPA1B (C), and IL17RA (D) respectively. The 3D structure diagrams presented the molecular docking result of CSF3R with folic acid (A), EED with
amiodarone (B), HSPA1B with cephaloridine (C), and IL17RA with doxorubicin (D).
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correlated with T cells. A single-cell pan-cancer study last year

detected a novel CD4+/CD8+ T-cell subtype characterized by a high

expression of heat shock protein genes such as HSPA1A, HSPA1B,

and other stress-response-related genes, known as the stress

response (TSTR) (43). Meanwhile, NF-kB expression was

upregulated in this cell subset, and the signaling pathway

mediated by NF-kB plays a key role in regulating the cellular

stress response. Results also showed that TSTR cells were in low

abundance or undetectable in healthy/non-involved tumor tissues,

whereas they were highly enriched in primary tumors or metastases,

mainly localized in the tumor hypoxic microenvironment. In light

of this, it is suggested that HSPA1B may function by activating

several signaling pathways and contribute significantly to the

development of CAD under specific conditions. Cephaloridine is

a broad-spectrum class of antibiotics that is more widely used in

clinical practice. It can produce bactericidal effects by attacking the

bacterial cell wall. Furthermore, Rokushima et al. suggested that

cephaloridine might induce the expression of HSPA1B (44). Our

study found that HSPA1B had a higher affinity for cephaloridine,

which might laterally suggest that inflammatory factors play an

important role in CAD. However, renal damage might result from

high doses of cephaloridine (45). Cytochrome P450 bioactivation,

mitochondrial dysfunction, lipid peroxidation, and other factors

could be the causes.

Interleukin 17A (IL17A) is a proinflammatory cytokine secreted

by activated T lymphocytes and belongs to the IL17 family (46). It is

effective in inducing maturation of CD34+ hematopoietic

precursors into neutrophils. Interleukin 17A receptor (IL17RA)

binds to and functions with low affinity for IL17A. Through the

secretion of IL17A, CD4+ T helper 17 (TH17) cells attract

neutrophils and stimulate inflammatory responses (46). A

positive correlation between IL17RA and neutrophils is exhibited

in Figure 6J. Figure 7B also indicates that IL17RA strongly

correlated with the chemokine family. IL17A mainly acts on non-

immune cells, leading to generate chemokines such CXCL1,

CXCL6, and CXCL8, which attracts neutrophils without directly

acting on them. Receptors on neutrophils in vessels detect these

chemokines, activating subsequent signals that facilitate neutrophil-

directed movement (47). Furthermore, active neutrophils provide

positive feedback on this procedure in order to improve

recruitment. Neutrophil infiltration is inhibited, and chemokine

expression is downregulated when IL17A expression is inhibited or

when IL17A receptors (IL17RA) are damaged (48). There is a

positive correlation among IL17RA, M0 macrophages, and CD 4+

T naive cells but negative with CD8+ T cells, as shown in

Figures 6K, L. Polarizing effects of IL7RA on immune cells may

have implications for CAD. Downregulating the IL7RA expression

may prevent CAD progression by modulating the distribution of

macrophages, neutrophils, and T-cell subtypes. Doxorubicin is a

cytotoxic anthracycline broad-spectrum antibiotic commonly used

as a tumor chemotherapeutic agent. Doxorubicin downregulates the

basal phosphorylation of AMPK and downstream acetyl-CoA

carboxylase and also induces apoptosis and autophagy (49). A

study reported a high dose of doxorubicin used to create a

myocardial injury model in wild-type (WT) and CRTH2 (a

prostaglandin D2 receptor) receptor-deficient (CRTH2 KO) mice
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(50). The latter mice demonstrated a significant improvement in

cardiac function and a decrease in mortality when compared with

the former mice. Additional cardiac pathology sections of

myocardial injured animals showed that CRTH2 KO mice had

considerably lower cardiomyocyte apoptosis. These suggest that

CRTH2 deficiency attenuates doxorubicin-induced myocardial

injury in mice. Doxorubicin may induce an increased expression

of IL17A protein, which can be strongly suppressed by

thymoquinone (51). We found a total of four drugs through

molecular docking. These four drugs are all commonly used in

clinical practice, and by repurposing these, we may conduct several

prospective studies to offer fresh approaches to the management of

CAD. Despite the potential medications identified in our study,

there are still unknowns waiting for exploration.

This work investigated and identified four diagnostic

biomarkers, created a nomogram, explored the relationships with

immune cells and immune families, and excavated the underlying

drug therapies, all of which were helpful for further research on

CAD. Nowadays, adjusting drug function has become a new

strategy for disease treatment. With the deepening of disease

mechanisms and the continuous improvement of therapeutic

regimens, a variety of medications have been applied to the

treatment of diseases. Based on this strategy, we can screen hub

genes for targeted drugs with the aim of proposing a therapeutic

approach to modulate poor prognosis.

Despite these meaningful findings, our study still has a few

drawbacks. Firstly, we used only one database for bioinformatics

excavating and found four diagnostic biomarkers. In order to be

more relevant to clinical issues, we used the WGCNA package for

initially searching potential markers. To avoid bias caused by

samples’ selection, multiple datasets were utilized for validation.

Secondly, although artificial intelligence is currently emerging and

widely applied in both oncology and non-oncology fields, rational

use of machine learning methods for screening of feature genes

becomes particularly important. Here, we use both the RF and

XGBoost methods to build the models. The RF runs quickly, is

highly adaptive, and can produce more features. The XGBoost

method is optimized with each screening round to lower the

likelihood of overfitting, which somewhat offsets the drawbacks of

the random forest algorithm. By complementing each other, hub

genes were identified. Thirdly, information regarding the precise

molecular pathways by which genes, miRNAs, and transcription

factors affect these diseases is still lacking. Additional experimental

and clinical research is required to confirm the function of the hub

genes and the in vivo effectiveness of the potential therapeutic drugs

that have been identified. The utilization of nomogram necessitates

the collaboration and validation of more centers. Should the chance

present itself, we will carry out multicenter prospective experiment

in the future.
5 Conclusion

This investigation came to the conclusion that CSF3R, EED,

HSPA1B, and IL17RA are the diagnostic biomarkers in CAD. The

outcomes of this investigation also showed that immune reactions
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might be involved in the development and progression of CAD.

Additionally, it was discovered that four hub genes had great

relationships with a range of immune cell types. Immune-related

molecules like those listed above are predicted to have a pivotal role in

the emergence and progression of CAD. Additionally, it is probable

that promising drugs will support the selection of immunotherapy

targets and the improvement of immunomodulatory therapy for

CAD patients.
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