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Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China, 3School of Mathematical
Sciences, Dalian University of Technology, Dalian, Liaoning, China
Numerous studies have shown that immune checkpoint inhibitor (ICI)

immunotherapy has great potential as a cancer treatment, leading to

significant clinical improvements in numerous cases. However, it benefits a

minority of patients, underscoring the importance of discovering reliable

biomarkers that can be used to screen for potential beneficiaries and

ultimately reduce the risk of overtreatment. Our comprehensive review

focuses on the latest advancements in predictive biomarkers for ICI therapy,

particularly emphasizing those that enhance the efficacy of programmed cell

death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors and

cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors immunotherapies. We

explore biomarkers derived from various sources, including tumor cells, the

tumor immune microenvironment (TIME), body fluids, gut microbes, and

metabolites. Among them, tumor cells-derived biomarkers include tumor

mutational burden (TMB) biomarker, tumor neoantigen burden (TNB)

biomarker, microsatellite instability (MSI) biomarker, PD-L1 expression

biomarker, mutated gene biomarkers in pathways, and epigenetic biomarkers.

TIME-derived biomarkers include immune landscape of TIME biomarkers,

inhibitory checkpoints biomarkers, and immune repertoire biomarkers. We also

discuss various techniques used to detect and assess these biomarkers, detailing

their respective datasets, strengths, weaknesses, and evaluative metrics.

Furthermore, we present a comprehensive review of computer models for

predicting the response to ICI therapy. The computer models include

knowledge-based mechanistic models and data-based machine learning

(ML) models. Among the knowledge-based mechanistic models are

pharmacokinetic/pharmacodynamic (PK/PD) models, partial differential

equation (PDE) models, signal networks-based models, quantitative systems

pharmacology (QSP) models, and agent-based models (ABMs). ML models

include linear regression models, logistic regression models, support vector

machine (SVM)/random forest/extra trees/k-nearest neighbors (KNN) models,

artificial neural network (ANN) and deep learning models. Additionally, there are

hybrid models of systems biology and ML. We summarized the details of these

models, outlining the datasets they utilize, their evaluation methods/metrics, and

their respective strengths and limitations. By summarizing the major advances in
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the research on predictive biomarkers and computer models for the therapeutic

effect and clinical utility of tumor ICI, we aim to assist researchers in choosing

appropriate biomarkers or computer models for research exploration and help

clinicians conduct precision medicine by selecting the best biomarkers.
KEYWORDS

tumor, ICI immunotherapy, biomarkers, computational models, prediction of
treatment effectiveness
1 Introduction

In the last few years, tumor immunotherapy research has

advanced rapidly due to the emergence of innovative therapies

such as immune checkpoint inhibitor (ICI) immunotherapy, cell

immunotherapy, and cancer vaccine (1). Compared to conventional

treatments, tumor immunotherapy has exhibited longer-lasting

effects (2–4). ICI therapy is a leading research direction of tumor

immunotherapies, with the most representative ICI being

programmed cell death protein 1 (PD-1)/programmed cell death-

ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen-4

(CTLA-4) inhibitors. These inhibitors restart the human immune

system to fight cancer, such as liver, lung, colon, breast, skin, etc.

(5). Yet, only a subset of patients achieves enduring efficacy and

survival with ICI therapy. Determining biomarkers that effectively

identify patients that will benefit from ICI would minimize

unnecessary therapy costs and severe toxicity for the non-

responders. Though biomarkers have guided ICI precision

therapy to some extent, they still only benefit a restricted number

of patients (6). Computer models can simulate and reproduce

dynamic changes in the immune system during immunotherapy,

conferring unparalleled advantages in inferring the law of

immunotherapy and predicting tumor ICI immunotherapy

response (7, 8).

In this review, we focused on reviewing predictive biomarkers

that impact the effectiveness of ICI therapy from the perspective of

tumor cells, TIME, and other dimensions (Figure 1). We also

discussed the various detection techniques for these biomarkers.

Moreover, we summarized the detailed information of these

biomarkers, outlining the datasets they adopt, their advantages

and disadvantages, and the methods or indicators for evaluation

(Supplementary Table S1). We also explored the limitations and

challenges of biomarker research for ICI therapy, such as the impact

of tumor heterogeneity, the lack of standardization in biomarker

detection and analysis, and the difficulty in translating research

findings into clinical practice.

Furthermore, we comprehensively reviewed computational

models for predicting the response to ICI treatment, including

mechanistic models based on bottom-up prior knowledge-based

systems biology and top-down data-driven ML models and hybrids
02
of both (Figure 1). We also summarized the details of these models,

outlining the datasets they adopt, their advantages and

disadvantages, and the methods or indicators for evaluation. A

summary of validated biomarkers and computer models, along with

their predictive performance and clinical utility, has been

incorporated to assist readers in quickly identifying the most

relevant biomarkers and models for their research or

clinical practice.
2 Biomarkers in immune checkpoint
inhibitor (ICI) Immunotherapy

2.1 Tumor cells-derived biomarkers

2.1.1 Tumor mutational burden (TMB) biomarker
TMB measures the quantity of somatic gene-coding mutations,

mainly consisting of single nucleotide variants (SNVs) and

insertions and deletions (INDELs) per DNA megabase (Mb).

TMB values positively correlate with the response to ICI therapy

in various cancer types, including bladder cancer, non-small cell

lung cancer (NSCLC), head and neck cancer and melanoma (9–12).

However, a mere small proportion of mutations may translate into

neoantigens that activate T cell responses (13). There are also other

causes of the lack of efficacy of ICI in TMB high tumors, such as the

immunosuppressive environment of the tumor (14), or poor

infiltration of immune cells (15). Hence, TMB-high may not

accurately predict the effectiveness of ICI therapy in all types of

cancer (16), whereas some patients with lower TMB may still

benefit from PD-1/PD-L1 blockade therapy (17). These cases

show that TMB cannot accurately distinguish tumor patients who

respond effectively to ICI therapy.

TMB detection technologies primarily consist of whole genome

sequencing (WGS), whole exome sequencing (WES), and gene

panels (Figure 2A). Although WGS offers a comprehensive view

for TMB detection, its usage is restricted due to high costs, long

processing times, and intensive data analysis needs. On the other

hand, while WES is typically regarded as the most accurate method

for TMB detection, it is often too costly and complex for routine

clinical use. As TMB values calculated based on gene panels are
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generally considered reliable due to their consistency with TMB

results measured fromWES data, gene panel-based technologies are

frequently employed in clinical practice (18). In practical

applications, the cutoff value of TMB is influenced by multiple

factors such as tumor types, sequencing platforms, number of genes

detected, and algorithms, making it difficult to achieve consistency

(19). And there is no clear optimal TMB value to maximize efficacy

in the pan-tumor population. Nevertheless, the combination of

TMB and other practical markers such as PD-L1 expression,

microsatellite instability (MSI) status can optimize the

stratification of responders and non-responders of patients

receiving ICI therapy (20, 21).

2.1.2 Tumor neoantigen burden (TNB) biomarker
Tumor neoantigens, as the primary target recognized by

cytotoxic T cells, play a crucial role in the success of

immunotherapy. The number of tumor neoantigens per megabase

of the tumor genome is known as TNB (22, 23). In clinical trials of

PD-1/PD-L1 antibody therapy, patients with a higher TNB had a

more prolonged overall survival (OS) (24, 25). However, resistance

to ICI treatment has also been reported in patients with high TNB

(26), indicating the need for further optimization of TNB as a

biomarker to predict ICI immunotherapy (27).

Many studies that evaluate TNB focus on predicting tumor

neoantigens, which are traditionally assessed based on the

prediction of binding affinity between the peptide and human
Frontiers in Immunology 03
leukocyte antigen (HLA) (28) (Figure 2B). However, this method

has limited accuracy due to factors such as sequencing data quality,

the accuracy of biological information tools, and the complexity of

tumor genetics. Therefore TNB inferred from identified

neoantigens does not have higher accuracy than TMB in

predicting ICI immunotherapy (29). To improve the accuracy of

neoantigen prediction, neoantigen heterogeneity should be

considered, including truncal and subclonal mutations and

changes in neoantigen immunogenicity resulting from

immunoediting. Recent studies have developed novel algorithms

such as the Cauchy-Schwarz index neoantigen (CSiN) score and the

immune-editing-optimized tumor neoantigen load (ioTNL)

algorithm to account for neoantigen heterogeneity and predict the

response to ICI therapy in various cancers (30, 31). Additionally,

multi-omics data, including tumor genomics, transcriptomics,

epigenomics, and proteomics, can provide more molecular

information for detecting neoantigen load and predicting

immunotherapy efficacy (13, 32). Tumor genomics serves as the

foundation for predicting neoantigen load (33), yet the integration

of multi-omics data can further refine this prediction. For example,

transcriptomic analysis can reveal which mutated genes are actually

being expressed at the RNA level (34), thus identifying potential

neoantigens that can be transcribed and translated into proteins,

essential for recognition by the immune system. Epigenomic data,

such as DNA methylation analysis, aids in understanding the

regulatory mechanisms of gene expression, pinpointing which
FIGURE 1

Multidimensional biomarkers and computer models to predict the response to ICI tumor immunotherapy. Multidimensional biomarkers include
tumor cells-derived biomarkers and TIME-derived biomarkers. 1. Tumor cells-derived biomarkers include TMB, TNB, MSI, PD-L1 expression, mutated
gene biomarkers in pathways, and epigenetic biomarkers. 2. TIME-derived biomarkers include the immune landscape of TIME biomarkers, inhibitory
checkpoint biomarkers, and immune repertoire biomarkers. 3. Liquid biopsy biomarkers (bTMB, ctDNA, CTCs, miRNAs). 4. Gut microbiome
biomarkers (Specific gut microbial signatures biomarkers, gut microbial population abundance biomarkers). 5. Metabolomics biomarkers (Plasma or
peripheral blood metabolite biomarkers, intestinal microbiota metabolite biomarkers). 6. Computer models for predicting response to ICI therapy
(Systems biology mechanistic models and machine learning models) (Created with Biorender). bTMB, blood-based tumor mutational burden; CTCs,
circulating tumor cells; ctDNA, circulating tumor DNA; miRNAs, microRNAs; MSI, microsatellite instability; TIME, tumor immune microenvironment;
TMB, tumor mutational burden; TNB, tumor neoantigen burden.
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neoantigens might not be effectively presented due to epigenetic

modifications (35). Proteomics, by directly measuring proteins on

the tumor cell surface and inside, can confirm which neoantigen

peptides are processed and presented by tumor cells to the immune

system (36). The combined utilization of these multi-omics data not

only enhances the accuracy of neoantigen load detection but also

assists in more accurately predicting patients’ responses

to immunotherapy.

2.1.3 Microsatellite instability (MSI) biomarker
MSI is a reliable biomarker for predicting the effectiveness of

ICI immunotherapy in clinical practice.MSI refers to INDELs

mutations in repeating microsatellites units due to a functional

defect in the mismatch repair (MMR) system that impairs the repair
Frontiers in Immunology 04
of DNA replication errors (37). Loss of MMR protein function

caused by MMR gene mutations leads to MSI-high (MSI-H) (38).

The food and drug administration (FDA) approved anti-PD1

blocking antibody pembrolizumab to be used in the therapy of

unresectable or metastatic solid tumors in patients with MSI-H/

deficient MMR (dMMR) in, 2017. This was the first time the FDA

had approved an antitumor treatment based on biomarkers rather

than tumor origin (39). However, MSI-H is relatively rare in most

cancer types, except for endometrial and colorectal cancer, with a

prevalence ranging from 0% to 16.5% across different cancer types

(40). Although the available evidence suggests that MSI-H/dMMR

is an effective biomarker to predict the effectiveness of ICI

immunotherapy in specific cancer types, more comprehensive

data is necessary to confirm the overall value of this biomarker.
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D E F

G H I

A

FIGURE 2

Multidimensional biomarkers detection methods to predict the response to ICI immunotherapy. The detection methods for tumor cells-derived
biomarkers include (A) TMB biomarker detection methods; (B) TNB biomarker detection methods; (C) MSI biomarker detection methods; (D) PD-L1
expression biomarker detection methods; (E) Epigenetic biomarkers detection methods. (F) Detection methods of TIME-derived biomarkers. (G)
Liquid biopsy biomarkers detection methods. (H) Gut microbiome biomarkers detection methods. (I) Metabolomics biomarkers detection methods
(Created with Biorender). ChIP-seq, chromatin immunoprecipitation followed by sequencing; CNVs, copy number variations; CPS, combined
positive score; ddPCR, droplet digital PCR; dMMR, deficient MMR; ELISA, enzyme-linked immunosorbent assay; FISH, fluorescence in situ
hybridization; GC-MS, gas chromatography- mass spectrometry; HLA, human leukocyte antigen; IC, immune cell; IHC, immunohistochemistry;
INDELs, insertions and deletions; IPS, immune proportion score; LC-MS, liquid chromatography- mass spectrometry; MeDIP, methylated DNA
immunoprecipitation; MSI-H, MSI-high; MSI-L/MSS, MSI-low/microsatellite-stable; MS-PCR, methylation-specific polymerase chain reaction; NGS,
next-generation sequencing; NMR, nuclear magnetic resonance; OUT, operational taxonomic units; PCR, polymerase chain reaction; pMMR,
proficient MMR; RNA-seq, RNA-sequencing; RRBS, reduced representation bisulfite sequencing; SNVs, single nucleotide variant; SVs, structural
variation; TC, tumor cell; TPS, tumor proportion score; WES, whole exome sequencing; WGBS, whole genome bisulfite sequencing; WGS, whole
genome sequencing.
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Various MSI assays have been developed, such as

immunohistochemistry (IHC), multiplex fluorescent polymerase

chain reaction (PCR) capillary electrophoresis, and next-

generation sequencing (NGS) (41) (Figure 2C). The IHC method

primarily detects the expression of MMR proteins in the nucleus,

including MutL homologue 1 (MLH1), postmeiotic segregation 2

(PMS2), MutS homologue 2 (MSH2), and MutS homologue 6

(MSH6). If any of these MMR proteins are absent, it is

considered dMMR, which is thought to cause high MSI.

Conversely, when all four MMR proteins are expressed, it is

considered low MSI or microsatellite-stable (MSS), indicating

proficient MMR (42, 43). PCR detection of MSI mainly adopts

the method of multiplex fluorescent PCR combined with capillary

electrophoresis (44). The detection sites used to determine MSI

status include the 2B3D National Cancer Institute (NCI) panel sites

(including two mononucleotide repeat unit sites and three

dinucleotide repeat unit sites) and five mononucleotide repeat

unit sites of the Promega panel (45, 46). NGS commonly detects

MSI, including WGS, WES, or gene panel (47). NGS detection of

MSI includes two main methods. The first method assumes MSI

status based on mutation load. The second method measures the

status of MSI by statistically examining differences in the

distribution of read numbers of a set of microsatellite loci with

different repeat lengths in tumor and standard samples (48).

Overall, the various assays available for detecting MSI status in

tumors offer clinicians a range of options. Therefore, it is essential to

evaluate and choose the appropriate method for clinical

use carefully.

2.1.4 PD-L1 expression biomarker
PD-L1 expression is the first clinically validated biomarker to

predict the curative effectiveness of PD-1/PD-L1 antibodies (49).

However, there are certain limitations to its accuracy. One

retrospective clinical study revealed that just 28.9% of patients

could be predicted for ICI treatment efficacy using PD-L1

expression as a useful biomarker (50). Furthermore, in recent

studies, treatment with PD-1/PD-L1 blockade is still effective for

some patients with negative PD-L1 expression (51, 52). The efficacy

of PD-L1 as a reliable biomarker may be influenced by the

heterogeneity of tumors and the tumor microenvironment

(TME). The TME is defined as the complex milieu surrounding a

tumor, which includes a variety of cell types, blood vessels, immune

cells, and extracellular components. This definition also takes into

account the dynamic nature of patients’ immune responses,

highlighting the intricate interactions that could affect biomarker

reliability (53, 54).

PD-L1 expression is mainly detected in clinical settings using

IHC methods. PD-L1 expression status can be assessed by

measuring various scoring metrics, including tumor proportion

score (TPS), tumor cell (TC) score, immune proportion score (IPS),

immune cell (IC) score, as well as combined positive score (CPS)

(55–57). These scores are methods to quantify the level of PD-L1

expression on tumor and immune cells. The statistical thresholds

for PD-L1 expression assessment vary across different cancer types

(Figure 2D). Establishing a standardized benchmark for expression
Frontiers in Immunology 05
assessment is necessary to improve the accuracy of using PD-L1

expression as a predictor in guiding ICI treatment.

2.1.5 Mutated gene biomarkers in pathways
Oncogenic mutations or gene expression changes in cancer cells

can activate or inhibit various signaling pathways, such as the

interferon-g (IFN-g), mitogen-activated protein kinase (MAPK),

phosphatidylinositol 3-kinase (PI3K), transforming growth factor-b
(TGF-b), and tumor necrosis factor-a (TNF-a) pathways, which
can affect PD-L1 expression (Figure 3) and the TME, ultimately

impacting ICI therapy efficacy. These pathway-related genetic

mutations or gene expression changes may be potential

biomarkers for predicting ICI immunotherapy efficacy (58). These

biomarkers are presently subject to clinical and preclinical

investigations. To date, they have not received approval from the

FDA for clinical application (59).

The IFN-g pathway is activated when IFN-g receptor 1/2

(IFNgR1/2) on tumor cells are recognized by IFN-g, activating the

Janus kinase/signal transducers and activators of transcription

(JAK/STAT) pathway, then inducing the expression of PD-L1 to

inhibit the ICI therapy (60). Gene mutations in proteins related to

the IFN-g pathway, such as IFNgR1/2 and signal transducer and

activator of transcription 1 (STAT1), can lead to resistance to ICI

therapy, making them potential predictive biomarkers of efficacy

(61, 62).

Gene mutations that activate or inhibit the MAPK pathway may

also serve as practical biomarkers to predict PD-1/PD-L1 blockade

therapy. In lung adenocarcinoma, growth factors and IFN-g can up-

regulate PD-L1 expression levels through MAPK signaling and

affect response to immunotherapy (63). In addition, inhibition of

the mitogen-activated protein kinase kinase (MEK) and B-Raf

proto-oncogene, serine/threonine kinase (BRAF) mutations can

enhance the curative efficacy of PD-1/PD-L1 inhibitors (64).

Deletion of phosphatase and tensin homolog (PTEN), a tumor

suppressor gene, in tumor cells causes the serine/threonine kinase

Akt phosphorylation, enhancing the PI3K/Akt signaling pathway

and ultimately up-regulating the expression of PD-L1, leading to T

cell inactivation (65). PTEN-deficient metastatic melanoma patients

have lower levels of inflammation-related gene expression and

tumor-infiltrating lymphocytes, reducing anti-PD-1 therapy

response (66).

High expression levels of TGF-b ligand TGFB1 and its receptor

TGFBR2, two crucial genes of the TGF-b signaling pathway, are

associated with non-response and decreased OS in tumor patients

treated with ICI immunotherapy (67). It has been demonstrated

that TGF-b can boost the expression of PD-L1 in a Smad2-

dependent manner (68). TGF-b can activate the PI3K/Akt/

mammalian target of rapamycin (mTOR) and Smad3 pathways to

induce epithelial-mesenchymal transition (EMT) (69), which has

been associated with the up-regulated expression of PD-L1 (70).

Furthermore, TGF-b up-regulates the presentation of the

myocardin related transcription factor-A (MRTF-A), promoting

the combination of nuclear factor kappa-light-chain-enhancer of

activated B cells/p65 subunit (NF-kB/p65) and the PD-L1

promoter, ultimately leading to the activation of PD-L1
frontiersin.org
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expression (71). In addition, TNF-a can activate the NF-kB
pathway, leading to the demethylation of the cluster of

differentiation 274 (CD274) promoter and the promotion of PD-

L1 expression (72). However, high levels of PD-L1 expression after

ICI treatment have been associated with poorer treatment

outcomes (73).

In the identification of mutated gene biomarkers within

signaling pathways, a suite of advanced detection technologies are

currently employed, with NGS playing a pivotal role. NGS facilitates

whole-genome sequencing, whole-exome sequencing, and targeted

gene panel sequencing, not only identifying known genetic

mutations but also uncovering novel mutation events, thereby

significantly expanding the scope of mutated gene biomarker

detection (74). Additionally, quantitative real-time PCR (qPCR)

and digital PCR (dPCR), renowned for their exceptional sensitivity

and rapid response, have become the methods of choice in both

clinical and research settings for detecting specific known

mutations. fluorescence in situ hybridization (FISH) and

microarray technologies also provide precise capabilities for

mutation gene localization and expression level analysis. With the

continuous advancements in biotechnology, emerging techniques

such as single-cell sequencing and RNA sequencing are being

employed in mutation detection, offering more accurate tools for

cellular-level variant analysis (75–77). The integrated application of

these advanced technologies, coupled with robust bioinformatics

analysis, now enables us to more comprehensively and deeply

unravel mutated genes within signaling pathways, thereby

enhancing the precision in detecting predictive biomarkers for

cancer ICI immunotherapy efficacy.
Frontiers in Immunology 06
2.1.6 Epigenetic biomarkers
Epigenetic variation in tumor cells has been linked to tumor

progression and changes in immune response, suggesting that it can

serve as a valuable biomarker for predicting the effectiveness of ICI

therapy (78). This variation includes DNA methylation,

modifications of histones, and other chromatin remodeling

activities (79). Guerreiro et al. investigated that the combination

of DNA repair gene RAD51B promoter methylation RAD51Bme+

with PD-L1+ was more effective in predicting the response to ICI

therapy than either marker alone in NSCLC (80). Darvin et al.

found that histone acetylase overexpression is involved in the

expression of PD-L1 induced by EMT, contributing to immune

evasion (81). Loss of function in polybromo 1 (PBRM1), a subunit

of the switch/sucrose‐non‐fermentable (SWI/SNF) chromatin

remodeling complex, is related to improved clinical outcomes in

patients receiving PD-1 antibody therapy (82).

Recent advancements in DNA methylation sequencing

technology have enabled the identification of differentially

methylated genes or methylation signatures as predictive

biomarkers of the efficacy of ICI treatment (83). This technology

includes whole genome bisulfite sequencing (WGBS), reduced

representation bisulfite sequencing (RRBS), methylated DNA

immunoprecipitation (MeDIP), DNA methylation chips, and

methylation-specific polymerase chain reaction (MS-PCR), among

others (Figure 2E). MS-PCR is commonly used in clinical testing to

analyze site-specific methylation of individual CpG islands (84).

Chromatin immunoprecipitation followed by sequencing (ChIP-

seq) is usually used to investigate histone-specific modifications at

specific locations throughout the genome (85). Additionally, the
FIGURE 3

Genetic mutations or gene expression changes in various signaling pathways affect PD-L1 expression. The signaling ways include IFN-g, MAPK, PI3K,
TGF-b, and the TNF-a signaling pathways (Created with Biorender). JAK/STAT, Janus kinase/signal transducers and activators of transcription;
mTOR, mammalian target of rapamycin; NF-kB, nuclear factor kB; PTEN, phosphatase with tensin homology.
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overall levels of histone modifications can be assessed through

enzyme-linked immunosorbent assay (ELISA) or western blot

techniques (86) (Figure 2E).
2.2 Tumor immune microenvironment
(TIME)-derived biomarkers

2.2.1 Immune landscape of TIME biomarkers
Understanding the immune landscape of the TIME is critical in

p r ed i c t i n g t h e e ffi c a c y o f immuno th e r ap y , a s an

immunosuppressive TIME can hinder its effectiveness. Cell type,

abundance, location, and function within the TIME may impact

tumor immunotherapy efficacy (58). A range of methods is available

to quantify the different cellular components of tumor tissue.

Traditional experimental techniques, such as flow cytometry and

IHC, may have limited utility due to low tissue availability or high

costs (87). NGS data for analyzing immune cells primarily come

from bulk sequencing, such as transcriptome and methylation data,

single-cell sequencing data, and spatial transcriptome sequencing

data (Figure 2F). The transcriptome and methylation data analysis

can be divided into three methods: a non-reference strategy and two

reference-based methods - deconvolution and scoring (88). More

recently, single-cell sequencing has enabled the characterization of

immune cell status within the TIME at a single-cell level, allowing

for identifying novel tumor-associated immune cell subsets at a

finer resolution (89). The development of spatial transcriptomics

sequencing has allowed the study of spatial distribution

characteristics within the TIME, thereby obtaining spatial

biomarkers to predict the effect of immunotherapy (90). In the

tumor microenvironment (TME), fibrosis, marked by an excessive

buildup of the extracellular matrix, particularly collagen, leads to

hardened and thickened tissue structures. This condition can hinder

immune cell infiltration and functionality, thereby impacting the

efficacy of ICI therapy. As such, fibrosis within the TME is identified

as a significant biomarker, aiding in the prediction of ICI

therapeutic outcomes. The influence of fibrosis on both the TME

structure and immune cell functions within the TIME highlights its

critical role in modulating tumor immune responses, underscoring

the importance of further investigation into fibrosis for enhancing

immunotherapy strategies (91, 92).

2.2.2 Inhibitory checkpoints biomarkers
In addition to CTLA-4 and PD-1/PD-L1, the TIME contains

other inhibitory checkpoints such as T-cell immunoglobulin and

mucin-domain-containing molecule 3 (TIM-3) plus TIM-3 ligands,

lymphocyte-activation gene 3 (LAG-3). TIM-3 up-regulated by T

cells has also been proposed as a candidate biomarker to track the

progress of ICI therapy. During treatment with PD-1/PD-L1

inhibitors, TIM-3 upregulation may suppress T helper cell type 1

(Th1) cell responses and decrease the expression of cytokines like

TNF-a and IFN-g, leading to drug resistance in cancer patients (61,

93). In addition, LAG-3 has been shown to up-regulate Treg activity

and inhibit Teff activity, which can create a TIME that suppresses

immune responses (94). Therefore, monitoring the expression of
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LAG-3 is crucial for predicting ICI therapy response, but the

expression of LAG-3 is not routinely used in the clinic (59).

2.2.3 Immune repertoire biomarkers
The immune repertoire consists of all the T cell receptors

(TCRs) and B cell receptors (BCRs) in an individual. These

receptors bind to self-antigens or foreign antigens, such as

external viruses and bacteria, triggering an immune response.

Therefore, TCRs and BCRs are crucial in immunotherapy (95,

96). For example, patients receiving anti-CTLA-4 therapy

demonstrate longer survival when exhibiting low baseline TCR

clonality and the presence of clones with large expansion after

treatment. In contrast, these factors do not exist in patients

receiving anti-PD-1 therapy (97). The finding suggests that TCR

clones may be biomarkers for predicting the response to

ICI therapy.

The clonal diversity of the immune repertoire is assessed by

analyzing the sequence characteristics of the V(D)J recombination

fragments of the complementarity-determining region 3 (CDR3)

region from the receptor gene, which can be used as a biomarker to

predict the therapeutic effect of ICI (Figure 2F). Early tools for

sequencing analysis of immune repertoires include IgBLAST (98),

iHMMune-align (99), and IMGT/V-QUEST (100). MiXCR can

correct PCR errors and precisely analyze sequencing data for BCR

and TCR (101). IGoR can accurately identify V(D)J rearrangements

(102). TRUST4 finds many CDR3s with high precision and

sensitivity (103). Integrating artificial intelligence algorithms with

BCR and TCR sequencing data may lead to more accurate

identification of patient subgroups likely to respond positively to

ICI therapy.
2.3 Liquid biopsy biomarkers

In the past decade, the development of non-invasive techniques

for tumor diagnosis, such as liquid biopsy, has dramatically

accelerated the pace of tumor research (104). Potential sources for

the development of fluid biopsy biomarkers for tumor ICI therapy

include blood-based TMB (bTMB), circulating tumor DNA

(ctDNA), circulating tumor cells (CTCs), and microRNAs

(miRNAs), among others (105). As a non-invasive and replicable

biomarker for forecasting ICI treatment efficacy, bTMB offers

tremendous advantages in predicting clinical outcomes for cancer

patients (106). Identifying alterations in ctDNA levels can predict a

patient’s response to immunotherapy sooner than traditional

imaging evaluations (107). In addition, positive PD-L1 expression

status in CTCs can expect a response to immunotherapy (108).

Incorvaia et al. reported that directly identified miRNA expression

profiles of patients before and after treatment could be used to

assess the dynamic molecular changes underlying PD-1 inhibitor

nivolumab treatment and predict the response to treatment (109).

Detection of ctDNA in liquid biopsy includes quantitative PCR

and NGS (110) (Figure 2G). Droplet digital PCR (ddPCR) is an

advanced form of quantitative PCR and provides exceptional

sensitivity and precision for nucleic acid quantification (111).
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NGS detects ctDNA mutations using non-targeted sequencing and

targeted deep sequencing methods. Non-targeted sequencing

encompasses WGS and WES. Leary et al. used the PARE method

to detect ctDNA genomic rearrangement breakpoints in plasma

samples via whole genome analysis (112). Targeted deep

sequencing, such as tagged-amplicon deep sequencing (Tam-Seq),

cancer personalized profiling by deep sequencing (CAPP-Seq), and

gene panel methods, captures specific genomic regions enriched in

ctDNA by PCR or hybridization (113). NGS can identify ctDNA

mutations, such as SNVs, INDELs, copy number variations

(CNVs), structural variations (SVs), etc. Nevertheless, the

sensitivity and specificity of ctDNA detection by NGS depend on

sequencing depth, bioinformatic analysis pipelines, and parameters

(113, 114). CTC enrichment and detection can be achieved through

biophysical and antibodies-based methods. Antibody-based

methods detect cell surface markers, such as epithelial cell

adhesion molecule (EpCAM) on CTCs. For example, the

CellSearch® system, an FDA-approved automated CTC counting

system, uses EpCAM-based detection (115). FISH can also detect

CTCs, where chromosomal aberrations can be observed (116). NGS

detects CTCs by non-targeted sequencing (WGS, WES, RNA-

sequencing (RNA-seq)) and targeted sequencing gene panel

methods. WGS, WES, and gene panels can detect CTC mutations,

including SNVs, INDELs, CNVs, SVs, etc. (117–120), and RNA-seq

allows for gene expression detection (121). Sequencing techniques

enable the identification of differentially mutated or expressed genes

in ICI treatment-responsive and non-responsive patients, making

liquid biopsies a valuable source of biomarkers for ICI

therapy (Figure 2G).
2.4 Gut microbiome biomarkers

Regulation of the intestinal flora on human immunity directly

affects the effect of tumor immunotherapy (122–124). The impact of

PD-1/PD-L1 blocking treatment is compromised in antibiotic-

experienced cancer patients, and survival is significantly reduced

(125–127). Melanoma patients exhibited distinct microbial

signatures in their intestines, with Lachnospiraceae spp. being

associated with a favorable c l in ica l response , whi le

Streptococcaceae spp. was associated with an unfavorable clinical

response (128). Zheng et al. found that patients with good responses

to treatment had a higher population richness of the gut microbiota

and gene counts than cancer patients with poor answers. The

compositional richness of the intestinal microbiota is closely

related to the effect of immunotherapy (129). Therefore, the gut

microbiota can affect and predict the clinical impact of

immunotherapy on cancer.

Various molecular detection methods are available for

analyzing intestinal microbes, including quantitative real-time

PCR, targeted NGS such as 16S ribosomal RNA (rRNA) gene

amplicon analysis, non-targeted NGS sequencing, and mass

spectrometry (MS) (130) (Figure 2H). Quantitative fluorescence

PCR in real-time is a simple and effective method for detecting the

specific number of bacteria in the sample, with strong specificity
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(131). The data analysis of 16S amplicon sequencing includes

operational taxonomic units (OTUs) classification and estimation

of biological species and abundance, enabling significant difference

analysis between the response and non-response groups to obtain

biomarkers for efficacy prediction of ICI treatment (132, 133).

Metagenomics extracts the total DNA of environmental

microorganisms for non-targeted sequencing (134). Two analysis

methods are commonly used for metagenomic sequencing to obtain

the composition and abundance of microbial species. The first

method directly compares the reads to reference genomes or

feature gene sets. The second method involves getting high-

quality bacterial genomes based on assembly and then using

genome sequence annotation and alignment to obtain species

composition and abundance. Combining these two methods

usually yields more accurate results (135). MS technology is used

for metaproteomics detection. It can accurately and efficiently

identify the distinct protein components in human gut

microbiota, enabling species identification and quantitative

analysis (136, 137). Predictive biomarkers of ICI therapy can be

identified by analyzing the significant differences in gut microbiome

species or abundance between patients who respond to ICI

treatment and those who do not.
2.5 Metabolomics biomarkers

Metabolites are crucial in exploring new predictive biomarkers

for ICI therapy in cancer patients (138). In one investigation, the

analysis of metabolites in plasma from NSCLC patients before and

after nivolumab treatment using liquid chromatography-MS (LC-

MS) or gas chromatography-MS (GC-MS) showed that a

combination of four metabolites could effectively predict the

therapeutic effect of the PD-1 inhibitor (139). Higher cholesterol

levels in the bloodstream have been linked to longer OS and

progression-free survival (PFS) in cancer patients treated with ICI

(140). Short-chain fatty acids (SCFAs), metabolites from the host

intestinal microbiota, are critical in regulating immune cell

response. SCFAs-focused microbial metabolites may be a new

biomarker to predict the immunotherapy response (141).

Nuclear magnetic resonance (NMR) spectroscopy and MS are

widely used techniques for directly detecting metabolites in

metabolomics research (142, 143). MS is divided into LC-MS and

GC-MS (144) (Figure 2I). The spectrum produced by NMR is

linearly related to the compound concentration. However, due to its

low sensitivity, NMR is often used to identify and analyze simple or

purified samples. On the other hand, combining MS and

chromatographic separation offers high sensitivity and specificity.

The MS raw data analysis tools include XCMS (145), MZmine

(146), and IP4M (147). Statistical analysis, including univariate and

multivariate analysis, is primarily used to identify differential

metabolite peaks between responders and non-responders to ICI

therapy (148). Then, the annotation of metabolites is performed on

the differential metabolic peaks, and the biological functions of the

differential metabolites are analyzed through pathway enrichment,

which is used to predict the therapeutic effect of ICI.
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2.6 Challenges, limitations, and
future perspectives

It’s essential to acknowledge the challenges and limitations of

this field, such as the impact of tumor heterogeneity, the lack of

standardization in biomarker detection, and the complexities of

translating research into clinical practice. Further research into

these areas will likely yield more nuanced insights and refinements

in biomarker discovery and utilization. At the same time, we are

confronted with the dual challenge of integrating diverse omics data

without substantially increasing costs and identifying the minimal

biomarker combination that can accurately predict responses

to immunotherapy.

Tumor heterogeneity serves as a principal source of variability

in treatment responses, a phenomenon not only observed between

distinct tumors but also within individual tumors. This directly

impacts the expression and detection of biomarkers, thereby

influencing the prediction of treatment outcomes. Future research

should delve deeper into the essence of tumor heterogeneity and

explore strategies for overcoming this challenge through precise

biomarker combinations.

Moreover, the lack of standardization in biomarker detection

warrants attention. Variabilities in detection methodologies and

standards across different laboratories compromise the comparability

of results, adding layers of complexity to the translation of research

findings into clinical practice. Thus, establishing unified detection

standards and methodologies is imperative for enhancing the accuracy

and reliability of biomarker detection.

The complexity of translating research outcomes into clinical

applications is equally critical. Despite the potential of research to

provide valuable biomarker insights, applying these discoveries in a

clinical setting necessitates overcoming several hurdles, including

cost, feasibility of technology transfer, and applicability across

diverse patient populations.

Looking forward, the integration of various omics data, such as

genomics, transcriptomics, and metabolomics, promises to offer a

more comprehensive view of the tumor and its microenvironment.

Although such integrative research requires sophisticated modeling

techniques to process and analyze extensive datasets, it also poses

significant cost challenges. Therefore, balancing the enhancement

of predictive accuracy with cost control emerges as a pressing issue

that demands resolution.

Identifying the minimal combination of biomarkers for effective

prediction of immunotherapy responses is both complex and crucial.

This task involves not only assessing the dependency of biomarkers on

the tumor’s histological type but also considering the use of advanced

technologies like machine learning and artificial intelligence to discern

the most promising biomarker combinations from data. Strategies to

address tumor heterogeneity might include the development of new

biomarkers that reflect various aspects of the tumor, such as gene

expression, metabolic state, and immune environment. Additionally,

customizing treatment plans based on specific tumor characteristics of

patients could improve therapeutic effectiveness and precision.

Overall, future research requires not only technological and

methodological innovation but also conceptual breakthroughs to

tackle the current challenges and limitations. By integrating and
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analyzing multiple types of omics data, developing novel biomarkers,

and formulating precise treatment strategies, we can advance toward

more accurately predicting responses to immunotherapy.

Interdisciplinary collaboration, involving the concerted efforts of

biologists, data scientists, clinicians, and patients, will be key to

achieving this goal. Through such collaboration, we anticipate

overcoming existing challenges and providing patients with more

effective and personalized treatment options.
3 Computer models to predict the
response to ICI therapy

While the administration of ICI antibodies via intravenous

infusion is a straightforward process, the real complexity in

tumor immunotherapy lies in understanding the biological

mechanisms of the treatment and accurately predicting patient

responses. This challenge is exacerbated by the intricate interplay

of immunosuppressive and immunostimulatory components

within the tumor microenvironment, which significantly

complicates the prediction of therapeutic outcomes (149, 150). A

system-level framework is necessary to comprehend the dynamic

temporal and spatial relationships between cellular and molecular

types. Mechanistic modeling in systems biology can help achieve

this by modeling multivariate biomarkers with dynamic

characteristics and extracting essential parameters based on prior

knowledge, allowing for systematic evaluation of immunotherapy

predictive biomarkers (151). Various mechanistic models, including

pharmacokinetic/pharmacodynamic (PK/PD) models, partial

differential equations (PDE) models, signal network-based

models, quantitative systems pharmacology (QSP) models, and

agent-based models (ABMs), can be used for predicting the

efficacy of ICI therapy. Supplementary Table S2 describes the

detailed information of these mechanistic models, including the

advantages and disadvantages of the models, the datasets used,

evaluation methods/metrics, biomarkers, etc. Data-driven ML

models capture rules from complex cancer changes, resulting in

good prediction results even without a complete understanding of

the underlying biological mechanisms. Furthermore, the features

and parameters of ML models contain a wealth of latent

information that can be utilized to explore new biomarkers (152,

153) (Figure 4). Additionally, Hybrid models, by combining prior

knowledge with multimodal data using computer models, help to

discover more accurate biomarkers of systematic dynamics.
3.1 Knowledge-based mechanistic models

3.1.1 Pharmacokinetic/pharmacodynamic (PK/
PD) Models

PK/PD models are typically created using ordinary differential

equations (ODEs), which involve abstracting data into dynamic

systems (154). PK/PD models can be used to identify biomarkers

for predicting the curative effects of anti-PD-1/PD-L1 (7). For

instance, Netterberg et al. developed a PK/PD quantitative model

to explore circulating biomarkers capable of predicting early tumor
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response to PD-L1 inhibitor atezolizumab in NSCLC (155). In

addition, Liu et al. developed population pharmacokinetic (PPK)

models to describe the PK characteristics of the PD-1 antibody

nivolumab. It has been reported that the change in clearance rate of

nivolumab is associated with disease state after treatment.

Specifically, patients with better disease response and survival

showed greater reductions in baseline clearance, leading to higher

exposure to drugs during stable conditions (156).

3.1.2 Partial differential equations (PDE) models
In addition to using ODEs, partial differential equations (PDEs)

can also be applied to simulate spatiotemporal tumor growth and

predict the effectiveness of ICI therapy (157). For example, Siewe

et al. utilized the PDE system to create a mathematical model of

cancer cells, immune cells, and cytokines to explain the primary

drug resistance of PD-1 antibody therapy. This model also

identified two cancer parameters that could potentially be

biomarkers to predict the effectiveness of combination therapy

using both anti-PD-1 and anti-TGF-b treatments (158).

3.1.3 Signal networks-based models
The dynamics of tumor signaling networks in cancer patients

treated with ICIs can be modeled using ODEs, which predict their

response to immunotherapy. For instance, Brogden et al. used ODEs

to model protein-protein interactions at each step in the signaling

pathway and modeled the reaction at each specific node as the

Michaelis-Menten equation. They constructed a patient-specific

predictive calculation model based on annotating a patient-specific

spectrum of genetically deleterious mutations in cancer networks. This

model was utilized to predict the expression of various chemotactic

and immunosuppressive factors, which can help predict the

effectiveness of PD-1 blockade therapy in tumor patients (159).

3.1.4 Quantitative systems pharmacology
(QSP) models

Compared to clinical trials, QSP models have advantages in

exploring biomarkers that can predict the response of PD-1/PD-L1

blocked therapy by spanning multiple temporal and spatial scales
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(160). Zhang et al. developed a personalized prediction model for

the curative response to ICI in triple-negative breast cancer by

integrating single-cell tumor data and a spatial QSP model. Their

model, consisting of a four-compartment QSP model representing

the entire patient and an ABM that simulated spatiotemporal

cellular and molecular interactions within the tumor

compartment’s three-dimensional space, accounted for antigen

burden and TME heterogeneity (161).

3.1.5 Agent-based models (ABMs)
ABMs are commonly used to simulate three-dimensional

spatial interactions at the tissue or cell level and have been widely

used to evaluate cancer drug resistance and efficacy (162). ABM

combines other models to build multiscale agent models to simulate

ICI treatment and achieve quantitative prediction of combinations

of therapeutic biomarkers (163). Storey et al. constructed a

multiscale model that combined ABM and PDE models to

simulate the response of glioblastoma to combined treatment

with PD-1 inhibitor therapy and oncolytic virus therapy.

According to the model simulations, the level of tumor

antigenicity, which is determined by the tumor-mediated

proliferation rate of T cells, has a more significant impact on

therapeutic outcomes than the killing efficiency of T cells (164).

These studies emphasize the significance and practical value of

using ABMs in conjunction with other models for deeply

understanding and predicting cancer treatment responses,

particularly in the context of complex dynamics at the tissue and

cellular levels.
3.2 Machine learning (ML) models

ML approaches can extract multi-dimensional latent features

from biological multi-omics sequencing data, including genomic,

epigenomic, transcriptomic, proteomic, and metabolomic data, to

explore predictive markers of efficacy in ICI therapy (165, 166).

These ML approaches generally entail data collection and selection,

feature engineering, model building, validation, optimization, and
FIGURE 4

The computer models for predicting responses to immune checkpoint inhibitor therapy. The computer models include 1. Systems biology
mechanistic models; 2. Machine learning models. ABMs, agent-based models; ODEs, ordinary differential equations; PDEs, partial differential
equations; PK/PD, pharmacokinetic/pharmacodynamic; QSP, quantitative systems pharmacology; ROC, receiver operating characteristic.
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evaluation. Various ML algorithms have been employed in

predicting the effectiveness of cancer immunotherapy, including

linear regression, logistic regression, support vector machine

(SVM), random forest, extra tree, k-nearest neighbor (KNN),

artificial neural network (ANN) and deep learning, among others

(167). In addition, hybrid models of systems biology and ML are

explained (Supplementary Table S3).

3.2.1 Linear regression models
A linear regression model can capture the potential linear

relationship between ICI treatment response levels and tumor

patients’ cell molecular profiles (168). Common linear regression

models include the ridge regression model, the least absolute

shrinkage and selection operator (lasso) regression model, and the

elastic net regression model. Elastic net regression can learn a sparse

model similar to lasso regression but also has the stability of ridge

regression (169). Xue et al. initially identified CpG probes linked to

the objective response rate (ORR) of PD-1/PD-L1 blockade therapy,

and then developed a lasso regression model using these probes for

predicting the treatment’s efficacy (170). Sun et al. created an elastic

net regularized regression method to obtain a radiomic signature-

based non-invasive predictor of tumor-infiltrating CD8 cells to

predict the curative response of PD-1/PD-L1 antibodies (171).

3.2.2 Logistic regression models
Compared to the linear regression model, the logistic regression

model introduces nonlinear factors by introducing the signature

mapping function. It estimates model parameters using the

maximum likelihood method and gradient descent for

classification tasks (172–174). For instance, Park et al. developed

a multivariate logistic regression model to predict ICI treatment

response in metastatic urothelial carcinoma, with high-risk groups

predicted by the model associated with worse survival outcomes

(175). Refae et al. utilized elastic net penalty logistic regression to

predict the therapeutic effect of anti-PD-1/anti-PD-L1 based on

single nucleotide polymorphisms (SNPs) data related to

immunogenetics in advanced cancer patients. They identified

gene SNPs related to TME associated with ICI treatment efficacy

(176). Zhang et al. used lasso logistic regression to select dynamic

serum markers for metastatic or recurrent nasopharyngeal

carcinoma and developed a risk score prediction model for PD-1

inhibitor therapy. The model’s predicted probability of efficacy was

consistent with the observed probability of prediction (177).

3.2.3 Support vector machine (SVM)/random
forest/extra tree/k-nearest neighbor
(KNN) models

Other ML models, such as SVM, random forest, extra tree, and

KNN, have been applied to predict response to ICI treatment (178,

179). SVM finds the maximummargin hyperplanes among different

data classes, while random forest algorithms perform classification

or regression tasks by constructing many decision trees (180). One

advantage of random forest is the ability to evaluate the importance

of features while training a highly accurate model, and the learning

process is fast (181, 182). The extra tree uses a series of decision
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trees to make final predictions about the class or category to which

the data point belongs, but it uses the entire original sample rather

than sub-sampling and replacing the data like a random forest

(183). KNN is a simple and effective algorithm that finds the K

nearest neighbors of a test sample in the feature space and classifies

the sample based on the majority class of its neighbors. However,

KNN requires high computational time costs and memory

requirements, making it less suitable for large datasets (184).

Multiple ML models are often constructed to predict cancer ICI

therapy response, and the best-performing model is then chosen to

identify potential biomarkers. For example, Shang et al. developed a

prediction model for immunotherapy response based on DNA

methylation immune scores using lasso regression, SVM, and

random forest models, with the lasso regression model

performing best (178). Peng et al. developed several classification

models based on the gut microbiome dataset from gastrointestinal

cancer patients, including elastic net, SVM, random forest, extra

tree, and KNN. The accuracy of all models except the SVM model

was above 0.9, suggesting that the microbiome has excellent

potential as a biomarker to predict the curative effect of PD-1/

PD-L1 blockade (185). ML-based approaches have demonstrated

outstanding potential in guiding clinical treatment.
3.2.4 Artificial neural network (ANN) and deep
learning models

ANN imitates the behavioral characteristics of the biological

neural network and uses artificial neurons to form a nonlinear data

modeling system. It’s an adaptive information processing systemwith

a learning capacity that can change its internal structure in response

to external inputs (186). Multilayer perceptron (MLP) is a forward-

structured ANN that utilizes multiple layers of artificial neurons to

learn complex nonlinear relationships between input and output data

(187, 188). MLP is well-suited for predicting ICI therapy response as

it can effectively capture the complex relationship between multiple

features and treatment response. Yang et al. constructed anMLP deep

learning model that distinguishes treatment responders from non-

responders by combining multi-omics data from advanced NSCLC

patients treated with PD-1/PD-L1 inhibitors, showing an excellent

differentiated performance (165).

In addition to MLP, deep neural networks (DNNs) with two or

more hidden layers have better feature representation and complex

mapping modeling capabilities than shallow neural networks (189).

Peng et al. developed a DNNmodel that predicts the response to ICI

therapy in lung adenocarcinoma patients using somatic mutations.

This approach is feasible because there is a strong association

between two classifications - durable clinical benefit (DCB) and

no durable benefit (NDB) - and various factors such as TMB,

neoantigen counts, PD-L1 expression, and the level of immune cell

infiltration (190). Arbour et al. constructed a deep natural language

processing model to estimate response evaluation criteria in solid

tumors that have blocking treatment with PD-1/PD-L1. The model

accurately predicted the onset and date of cancer progression and

the best overall response (191).

The convolutional neural network (CNN), another type of

DNN, is a feedforward neural network that uses convolution
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calculations and is widely used in computer vision (192, 193). CNN

can achieve good data fitting by extracting features through

convolutional layers, sharing information in convolutional

kernels, and effectively reducing parameters through pooling

layers (194). Hu et al. developed a CNN model to predict the

impact of PD-1 inhibitor therapy in cancer patients based on

hematoxylin and eosin (H&E)-stained images, yielding promising

results (195). These findings suggest that deep learning-based

models could be integrated into routine clinical practice to screen

patients who may benefit from ICI treatment.

3.2.5 Hybrid models of systems biology and
machine learning (ML)

The novel integrative computational approach that combines

systems biology and ML offers a powerful tool for predicting the

therapeutic effects of ICI at the individual level. Przedborski et al.

developed a systems biology-informed neural network model that

combines both approaches. The model generates simulated clinical

data from a systems biology model and extracts patient features to

distinguish treatment responders from non-responders using a

classification neural network model. The transfer learning strategy

is then applied to enhance the model’s predictive ability using actual

clinical data (196). The advantage of hybrid models is that they

bridge the gap between the two disciplines. Systems biology can

generate infinitely simulated data to scale up small clinical datasets,

while ML can process multi-omics high-throughput data.

Moreover, systems biology models can simultaneously provide

mechanistic explanations from a biological perspective that

cannot be explained by ML (197).
4 Conclusion

Although ICIs have significantly improved cancer treatment,

their clinical efficacy remains limited. This underscores the

importance of identifying biomarkers to predict patients’

responses to ICI therapy. This review summarizes the advances in

biomarker research for ICI treatment, providing a comprehensive

classification and overview of these markers. These include tumor

cells-derived biomarkers such as TMB, TNB, MSI, and PD-L1

expression, mutated gene biomarkers in pathways, and epigenetic

biomarkers. Additionally, the scope encompasses TIME-derived

biomarkers, including the immune landscape of TIME

biomarkers, inhibitory checkpoints biomarkers, and immune

repertoire biomarkers. We also discuss liquid biopsy biomarkers,

gut microbiome biomarkers, and metabolomics biomarkers.

Currently, clinically used biomarkers include TMB, MSI, and PD-

L1 expression. However, these biomarkers often do not effectively

predict ICI therapeutic responses in the majority of tumor patients,

leading researchers to move beyond the use of a single biomarker

and expand the spectrum of explored biomarkers. The article not

only elaborates on various biomarkers used to predict tumor ICI

treatment response or tolerance and their respective pros and cons

but also introduces various laboratory and clinical methods for their

detection. Advances in multi-omics sequencing, single-cell, and

spatial biology techniques offer a holistic understanding of
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coordinated anti-tumor systemic immunity. Owing to these

advancements, more multi-dimensional ICI response biomarkers

have been identified and validated (198–200). Multi-omics

sequencing offers a comprehensive insight, allowing a

multifaceted evaluation and understanding of the interplay

between tumors and the immune system. Single-cell technologies

enable the resolution of different types of biomarkers at the

individual cell level. Spatial biology techniques reveal cellular

spatial distribution within tissue structures, aiding in

understanding how biomarkers function within the tumor

microenvironment. However, these techniques come with high

costs, stringent sample preparation requirements, and complex

data analysis. Translating multi-dimensional ICI response

biomarker data into clinically meaningful interpretations and

applications remains challenging.

Computational prediction models are transforming the way we

use clinical biomarkers, a change that is evident not only in current

applications but also in ongoing research. These models, by

integrating multimodal data related to the immune system and

historical knowledge, have established mechanistic models within

systems biology aimed at revealing the mechanisms of

immunotherapy and identifying key factors for its efficacy (201,

202). Their main advantage lies in the ability to integrate data from

different disciplines and previous knowledge, aiding in the

explanation and understanding of complex biological system

mechanisms. This interdisciplinary integration offers the

possibility to discover and validate new biomarkers, as well as to

optimize the application of existing ones, thereby advancing

personalized medicine. However, challenges such as the

complexity of these computational models, the significant

demand for computational resources, and the difficulty in

accurately estimating model parameters still persist. ML methods

have become crucial in the research and clinical application of

immunotherapy due to their exceptional data-fitting capabilities

and feature engineering. Yet, their predictive logic often lacks

transparency, limiting their wider adoption. To address this, there

is a push for developing interpretable ML models, which would

enhance the explainability and credibility of model predictions and

serve as an important research direction. To delve deeper into the

dynamic nature of cancer and immune responses, it is necessary to

combine mechanistic models in systems biology with advanced

computational tools like neural networks and deep learning. The

fusion of these approaches can reveal the intrinsic mechanisms of

cancer immunotherapy, extracting valuable information and

patterns from vast datasets to provide a more comprehensive

perspective. This not only aids in making smarter and more

adaptive predictions of tumor ICI treatment outcomes, ensuring

greater precision, but also provides cancer patients with more

accurate and comprehensive dynamic biomarkers, fostering more

personalized immunotherapy (160).

Beyond the challenges of model complexity, computational

demands, and ML transparency, effectively harnessing vast

datasets from diverse sources and ensuring their security pose

significant challenges. Addressing the challenge necessitates the

establishment of a robust data management platform. Such a

platform must ensure the standardization of datasets to facilitate
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1368749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1368749
interoperability and maintain stringent privacy safeguards to

protect patient information. This infrastructure would serve as a

pivotal nexus between the theoretical models developed through

research and their practical deployment in clinical settings. By

providing a standardized and secure environment for data

handling, the platform would not only streamline the adoption of

computational models in clinical workflows but also promote the

reproducibility of research findings across different institutions.

To successfully establish a data management platform, it’s

crucial to coordinate the expertise of professionals from diverse

disciplines. Specialists in biology, computing, medicine, and data

analysis should collaborate not only to collect and annotate data but

also to process and do data quality control, enhancing the utility of

the data. Such teamwork is essential for building predictive models

for ICI therapies that are meaningful in a real-world medical

context. In refining these tools and models, transparency and

interpretability are key. The objective is to make both the data

and the models understandable, which will increase the credibility

of in silico analyses and support their clinical translation. This

clarity is essential to ensure that the insights derived from

computational research can be confidently applied to inform

treatment decisions, thereby bridging the gap between research

and clinical application.

Through these measures, we can fully harness the potential of

biomarkers and computational models to provide more accurate

and personalized treatment options for cancer patients, ultimately

achieving the goal of precision medicine. With continuous

technological advancements and strengthened interdisciplinary

collaboration, the future holds greater breakthroughs in the field

of cancer treatment.
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