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Background: Glioblastoma (GBM), with its high recurrence and mortality rates,

makes it the deadliest neurological malignancy. Oxidative phosphorylation is a

highly active cellular pathway in GBM, and NFYB is a tumor-associated

transcription factor. Both are related to mitochondrial function, but studies on

their relationship with GBM at the single-cell level are still scarce.

Methods: We re-analyzed the single-cell profiles of GBM from patients with

different subtypes by single-cell transcriptomic analysis and further subdivided

the large population of Glioma cells into different subpopulations, explored the

interrelationships and active pathways among cell stages and clinical subtypes of

the populations, and investigated the relationship between the transcription

factor NFYB of the key subpopulations and GBM, searching for the prognostic

genes of GBM related to NFYB, and verified by experiments.

Results: Glioma cells and their C5 subpopulation had the highest percentage of

G2M staging and rGBM, which we hypothesized might be related to the higher

dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative

phosphorylation pathway activity is elevated in both the Glioma and C5

subgroup, and NFYB is a key transcription factor for the C5 subgroup,

suggesting its possible involvement in GBM proliferation and recurrence, and

its close association with mitochondrial function. We also identified 13

prognostic genes associated with NFYB, of which MEM60 may cause GBM

patients to have a poor prognosis by promoting GBM proliferation and drug

resistance. Knockdown of the NFYB was found to contribute to the inhibition of

proliferation, invasion, and migration of GBM cells.
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Conclusion: These findings help to elucidate the key mechanisms of

mitochondrial function in GBM progression and recurrence, and to establish a

new prognostic model and therapeutic target based on NFYB.
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Introduction

Glioblastoma (GBM) is the most common primary intracranial

malignant tumor (1) and is one of the deadliest malignant tumors

due to its strong invasive and value-adding ability, coupled with its

resistance to treatment, which results in most of them being able to

invade the brain parenchyma and grow (2). The clinical subtypes of

GBM can be categorized into low-grade glioblastoma (LGG), newly

diagnosed glioblastoma (ndGBM), and recurrent glioblastoma

(rGBM). Among these, LGG is an inert precursor of GBM, which

usually remains unchanged for a long time and its prognosis is

better proofread (3–6). In contrast, ndGBM and rGBM have a

relatively poor prognosis (7, 8). Currently, multimodal therapies,

such as maximal surgical resection, radiotherapy, and

temozolomide adjuvant chemotherapy, are considered the

primary treatment modalities for GBM. Although certain

emerging therapies, including targeted therapies and tumor-

treating fields, are gradually being integrated into GBM

management (9–11), the complex regulatory networks of GBM,

along with the tumor’s intrinsic drug-resistant phenotypes and

immunosuppressive microenvironment, pose challenges for

achieving sustained clinical efficacy with these novel treatment

modalities (12, 13). However, currently there is no significant

improvement in the prognosis of GBM patients in the last

decade, with a mean survival of 12–18 months, a 1-year survival

rate of 40%, and a 5-year survival rate of 5.6% (10, 14).

Unfortunately, despite the current standard of care, the

recurrence rate of GBM is consistently high, and once recurrence

occurs, not only is drug resistance elevated and treatment options

limited, but the median survival rate drops to less than 9 months

(15–18). Therefore, it is particularly important to explore the

mechanisms involved in the value-added and invasive ability of

GBM, to search for the possible causes of GBM recurrence, and to

investigate new therapeutic options and prognostic models.

Currently, there is relevant research on immune therapy and

related genetic pathways in GBM (19, 20). However, studies

investigating the oxidative phosphorylation and transcription

factor-related functions of GBM at the single-cell level are

still lacking.

Redox homeostasis is the basis for maintaining normal

physiological function and survival of cells (21), and oxidative

processes in tumor cells tend to be more intense than in normal
02
cells (22). These oxidative reactions are closely related to

mitochondria, where oxidative phosphorylation occurs in the

mitochondrial matrix, and are associated with the progression of

various cancers, and some products such as oxygen-containing

molecules—reactive oxygen species (ROS) (23–25)—have the

potential to damage DNA and increase the risk of cancer (26, 27).

In contrast, transcription factors are present in large quantities in

cells and specifically regulate gene expression through different

signaling pathways, thus regulating and influencing various

physiological activities of cells (28). The relationship between

transcription factors and tumors is very close; i.e., they can

inhibit the formation and progression of tumors, such as p53 and

FOXO3a (29, 30), and they can also deregulate and alter the signal

transduction in important signaling pathways, so as to make the cell

division and proliferation out of control, thus promoting the

progression of tumors, such as the well-known NF-kB (31, 32),

and can also enable tumor drug resistance by activating anti-

apoptotic genes (33) and lead to poor clinical prognosis of cancer

patients. The oxidative phosphorylation process occurring in

mitochondria can be regulated by the interaction between nuclear

transcription factors and mitochondrial proteins, as well as the

binding of regulatory elements in mitochondrial DNA (34, 35).

Recent literature has also revealed the regulatory role of

transcription factors in oxidative phosphorylation processes in

tumors. For instance, Zhao et al. discovered that the transcription

factor FXR activates DHRS9 to inhibit cellular oxidative

phosphorylation and suppress the progression of colon cancer

(36). Given the poor prognosis and invasive recurrence of GBM,

it is crucial to delve deeply into the specific mechanisms of GBM,

study the specific roles of relevant transcription factors in GBM, and

identify new therapeutic targets and approaches. These efforts are

essential for improving treatment outcomes for GBM patients and

establishing innovative prognostic models.

In this study, we conducted comprehensive research at the

single-cell level to elucidate the mechanisms underlying various

clinical subtypes of GBM. Employing a subtyping approach to study

Glioma, we delineated cellular trajectories and enriched functions

within relevant subgroups and explored the transcription factors of

key subgroups. Based on these findings, we hypothesized a strong

correlation between the progression of GBM and the oxidative

phosphorylation pathway, as well as the transcription factor NF-YB,

which was confirmed through our validated evidence. These studies
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contribute to a deeper understanding of GBM recurrence and

progression at the cellular level, aiming to provide insights for the

design of better treatment targets and prognostic models for GBM.
Methods

Downloading and processing of
relevant data

Data from one or more tumor regions of GBM patients

(GSE182109) were searched and downloaded through the

NCBI Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/), which contains a total of 44

single-cell data samples of GBM (GSM5518596-GSM5518639).

In The Cancer Genome Atlas (TCGA) database (https://portal.

gdc.cancer.gov) to download gene expression quantification RNA-

Seq and clinical data from GBM and normalized their data using

R software (R 4.3.0).
Quality control

The samples were processed using the R package DoubletFinder

to filter out and remove doublets at the cellular level (37, 38).

Subsequently, a further filtering step was performed to eliminate

low-quality data based on the following criteria: 1,200 < total

number of genes detected in a single cell (nFeature) < 6,000;

2,500 < total transcriptomic count in a single cell (nCount) <

8,000; mitochondrial gene proportion in a single cell < 25%; red

blood cell gene proportion in a single cell < 5%.
Downscaling clustering and
annotation process

Normalize the filtered single-cell data using the NormalizeData

function of the R package Seurat (39, 40), calculate the variance of

each gene through the FindVariableFeatures function, and screen

the top 2,000 highly variable genes from the gene expression matrix

based on the degree of gene dispersion and average expression (41).

Continue to standardize and center all genes by ScaleData function

and get rid of variant data. The CellCycleFeatures function was

utilized to calculate cell cycle scores and distribution effects. The

standardized highly variable genes were subjected to principal

component analysis (PCA) and downscaling of single-cell data

using the RunPCA function, and the batch effect of the samples

was eliminated through the R package harmony. Then, the PCA

downscaled cells were clustered by the FindNeighbors function

and FindClusters function in the R package Seurat. Based on

previous relevant literature, the cells in different clusters were

annotated by combining the Cellmarker database (http://bio-

bigdata.hrbmu.edu.cn/CellMarker/) and SingleR. We investigated

the sample sources of different subclusters and identified

differentially expressed marker genes among clusters by the

FindAllMarkers function.
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Staging and clinical subtyping of large
clusters of cells

We analyzed the cellular staging among GBM cell populations

and visualized them with UMAP to explore the related situation of

division and proliferation of GBM cell populations (42, 43), and

similarly, we followed the above method to investigate the

proportion and distribution of clinical subtypes of GBM cell

populations. In order to further investigate the correlation

between the stages and clinical subtypes, we also calculated the

G2M score and S score of different cell populations and clinical

subtypes, and visualized the gene expression of each cell population

of GBM by UMAP Functional analysis.
Cell population enrichment

We identified differentially expressed genes (DEGs) in different

cell populations of GBM, and the screening criteria were that DEGs

were required to be detected in 25% of the cells with p < 0.01, false

discovery rate (FDR) < 0.05, and |logFCfilter| >1, and the screened

DEGs of each cell population were subjected to a Gene Ontology

(GO) enrichment analysis. We also performed a Gene Set

Enrichment Analysis (GSEA) by calculating the DEGs between

Glioma and other clusters using the Kyoto Encyclopedia of Genes

and Genomes (KEGG). The set of marker genes collected in the

database (c2.cp.kegg. v7.5.1.symbols.gmt) was filtered and analyzed,

defining statistical significance as FDR < 0.05.
Metabolic analysis of large populations
of cells

We calculated the cellular metabolic pathway profiles of each

cell population, each stage, and each clinical subtype of GBM using

the R package scMetabolism, and had the top 20 pathways

visualized in the form of heatmaps. We further filtered out the

top three ranked pathways, investigated their distribution in

UMAP, and explored their expression in GBM macro-populations,

cell staging, and clinical subtypes.
Glioma subgroup correlation analysis

The FindNeighbors function and FindClusters function in the

Seurat package were used to analyze the correlation between

the Glioma cell clusters that were reclustered to calculate the

chromosome copy variation number (inferCNV) of different

subpopulations of Glioma, and to find the subpopulation marker

genes with reference to the percentage and total amount of gene

expression in each subpopulation of cells. The cellular staging and

clinical subtype proportions of the cell subpopulations were

calculated and visualized using UMAP. We further calculated the

G2M scores of each clinical subtype for each subpopulation and

counted the Glioma cell population and explored the density of
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subpopulation G2M scores in combination with UMAP plots of

G2M scores to find and identify key subpopulations. We calculated

the G2M score for Glioma scores for each subpopulation

intercellular DEGs for GO and GSEA enrichment function

analysis and explored the Glioma metabolic pathways of each

subpopulation and each clinical subtype, and visualized them in

heatmap format to explore the relevant metabolic and functional

profiles of each subpopulation.
Glioma cell subpopulation
trajectory analysis

In order to understand the metabolic pathways of Glioma

subpopulations, the progression of cell development and

differentiation among subpopulations was analyzed in a proposed

time series. The differentiation status of cell subpopulations was

predicted using the R package Cytotrace, with a score interval of 0–

1, and the score was positively correlated with cell stemness. We

also used slingshot to predict the cell clustering and downscaling

information based on the Glioma cell subpopulations to infer the

genealogical structure and proposed temporal sequence, and further

investigated the temporal expression of the key subpopulation C5

differentiation spectrum, cellular staging, and clinical subtypes in

order to explore the relevant properties of the C5 subpopulation.
Analysis of cell subpopulation interactions
and transcription factors

We employed the R package cellchat to computationally analyze

the intercellular interactions between various subpopulations of

Glioma and major cell groups within GBM. By predicting the

quantity and strength of interactions between cells based on the

average expression levels of receptors and ligands, we visualized

the different signal intensities transmitted to and from each cell

type. Additionally, we calculated the cell stemness genes within each

Glioma subpopulation. To investigate the top five transcription

factors (TFs) that exhibited the most significant changes in

expression proportions for each subpopulation, we utilized the

computational approach provided by pySCENIC. Firstly, we

employed GRNBoost to identify the potential target genes of each

TF. Then, utilizing DNA-motif analysis, we selected the potential

direct binding targets. Subsequently, we used AUcell to score the

activity of regulons in cells, ultimately selecting the top five TFs with

the highest scores. Finally, we explored the expression patterns of

these C5-related TFs across different subpopulations.
Clinical correlation and independent
prognosis analysis of C5 subpopulations

By reviewing the literature, we found that the key transcription

factor NFYB of the C5 subgroup has relatively little research

literature in GBM; in order to further study its interrelationship

with GBM, we extracted the target genes within the regulatory
Frontiers in Immunology 04
module of NFYB and took the intersection of them with the genes of

the normal and tumor tissues of GBM and merged them with the

filtered and standardized clinical data. Univariate Cox risk

regression analysis was performed using the coxph function in

the R package survival and validated by last absolute shrinkage and

selection operator (LASSO)-penalized Cox regression and

multivariate Cox risk regression analysis to obtain prognostic

differential genes (44, 45). The risk scores of the samples were

calculated (risk score = Xl is the relative expression level of

prognosis-related genes, coefl is the coefficient) (46, 47), and the

samples were divided into high- and low-risk groups according to

the median, and the distribution was examined by principal

component analysis (PCA). Heatmaps were used to visualize the

expression of prognostic genes in the high- and low-risk groups,

and the coef value of each prognostic gene was calculated. The

different time survival of the high- and low-risk groups was

demonstrated using Kaplan–Meier curves (48, 49), and the

prognostic specificity and sensitivity were verified by time-

dependent receiver operating characteristic (ROC) curves (50).

We further investigated the correlation between prognostic genes

and risk scores. We also calculated the correlation between age,

race, and risk score in the sample and plotted a nomogram to

predict the prognosis of ovarian cancer patients in conjunction with

the risk score using R packet rms (51), which was validated using

ROC curves and decision curve analysis (DCA).
Immune correlation and
enrichment analysis

We performed immune infiltration analysis of patients in high-

and low-risk groups using the xCell and CIBERSORT

deconvolution algorithms. We investigated the correlation

between immune infiltration and risk scores as well as prognostic

genes. Furthermore, we utilized the R package “estimate” to

calculate the immune score, stromal score, tumor purity score,

and overall score of the tumor microenvironment in the high- and

low-expression groups. We also explored the TIDE (Tumor

Immune Dysfunction and Exclusion) scores in the high- and low-

risk groups. The expression patterns of immune checkpoint-related

genes in the high- and low-expression groups were estimated using

the Wilcoxon test and visualized in relation to risk scores and

prognostic genes. Differential gene expression analysis between the

high- and low-risk groups was performed using the limma package

in R, with the following filtering criteria: |log2FoldChange| > 1 and

FDR (BH) adjusted threshold (padj) < 0.05. GO and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was conducted using the “clusterProfiler” R package

(52–54).
Cell culture

Both the U87 MG cell line and the U251 MG cell line were

obtained from the American Type Culture Collection (ATCC). The

two cell lines were cultured in F12K medium containing 10% fetal
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bovine serum (Gibco BRL, USA) and 1% streptomycin/penicillin

and PRMI1640 medium (Gibco BRL, USA), respectively, under

standard conditions (37°C, 5% CO2, 95% humidity).
Cell transfection

NFYB knockdown was achieved using small interfering RNA

(siRNA) constructs (GenePharma, Suzhou, China). The

transfection protocol was performed according to the steps

described for Lipofectamine 3000RNAiMAX (Invitrogen, USA).

Cells were inoculated in six-well plates at 50% fitness and then

infected with negative control (si-NC) and knockdown (Si-NFYB-1

and Si- NFYB -2). Each transfection was performed using

Lipofectamine 3000RNAiMAX (Invitrogen, USA).
Cell viability assay

Cell viability of U87 MG cells and U251 MG cells after

transfection was detected by CCK-8. The cell suspension was

inoculated at a density of 5 × 103 cells per well in a 96-well plate

and incubated for 24 h. CCK-8 marker (10 mL; A311-01, Vazyme)

was added to each well, and incubated away from light at 37°C for 2

h. Cell viability was assessed by detecting the absorbance of the

enzyme marker (A33978, Thermo) at 450 nm on days 1, 2, 3, and 4,

respectively. The average OD values were calculated and plotted on

a line graph.
5-Ethyl-2'-deoxyuridine proliferation assay

Transfected U87 MG cells and U251 MG cells were inoculated

in six-well plates at a density of 5 × 103 cells per well and cultured

overnight. A 2× EdU working solution was prepared by adding 10

mM EdU solution in serum-free medium, added to the cell culture

and incubated at 37°C for 2 h. The medium was removed and

washed with PBS, and the cells were fixed by adding 4%

paraformaldehyde for 30 min. Cells were then treated with

glycine (2 mg/mL) and 0.5% Triton X-100 for 15 min. Cells were

incubated with 1 mL 1× Apollo and 1 mL 1× Hoechst 33342 for 30

min at room temperature. Cell proliferation was quantified by

fluorescence microscopy.
Wound healing

The transfected cells were inoculated in six-well plates and

cultured until the cell density reached 95%. First, use a 200-mL
sterile pipette tip in the cell culture wells to pass through the cell

layer in a straight line, and then gently rinse the culture wells with

PBS. Change the medium to continue cell culture. Photographs of
Frontiers in Immunology 05
the scratch at the same location at 0 and 48 h were collected and the

width of the scratch was measured.
Transwell experiment

Cells were starved in serum-free medium for 24 h before the

experiment. After treatment with the addition of matrix gel (BD

Biosciences, USA), the cell suspension was added to the upper

chamber containing Costar and serum medium was added to the

lower chamber. Cells were incubated in an incubator for 48 h. After

incubation, cells were fixed with 4% paraformaldehyde and stained

with crystal violet to observe the invasive ability of the cells.
Results

Classification of GBM macroclusters

We downloaded tumor single-cell data from one or more

regions of 2 patients with LGG (LGG03 and LGG04), 11 patients

with ndGBM (ndGBM01 to ndGBM11), and 5 patients with rGBM

(rGBM01 to rGBM05) from the GEO database, which contained a

total of 44 samples (GSM5518596–GSM5518639) (Supplementary

Figure 1A). The doublet cells in the samples were eliminated by the

R package DoubletFinder, and the samples were further filtered out

of other poor-quality cells (Supplementary Figure 1B). We found

that the distribution of cells with different staging was relatively

concentrated in the PCA plots (Supplementary Figure 1C),

indicating that the cell staging had less impact on our findings

overall. We selected the top 2,000 highly variable genes

(Supplementary Figure 1D), downscaled them using RunPCA,

and intercepted the top 30 dimensions for further analysis

(Supplementary Figures 1E, F). We also presented the top 10

highly variable genes in the top nine dimensions in a heatmap

(Supplementary Figure 1G). Through dimensionality reduction and

clustering, we categorized GBM into 44 clusters (Figure 1A), and

further annotated and integrated the clusters into nine large groups

of cells by the R package singleR and the Cellmarker database, and

combined them with related literature, whose cell types and

numbers were T_NK (23,768), Glioma (99,047), Mixed (6,279)

Pericytes (2,207), ECs (1,816), Oligodendrocytes (5,384), Smooth

Muscle Cells (SMCs) (262), Other (799), and Myeloid_cells

(99,329) (Figures 1B, C), in which the Glioma and Myeloid_cells

cell number and distribution range were larger. We also screened

the top 10 marker genes of nine large clusters of cells and explored

their correlations with cell staging scores and with clinical subtypes

(Figure 1D), and we found that marker genes of Glioma and

Myeloid_cells cells were highly correlated with clinical subtype-

expressed genes, especially ndGBM and rGBM, and we

hypothesized that these two large clusters of cells might have a
frontiersin.org
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greater tumor relevance. We also analyzed the sample sources of the

major clusters of cells (Figure 1E) and found that the Glioma and

Myeloid_cells cell clusters had relatively more sample sources.
Correlation analysis of clinical subtypes
and cell stages

The G1 phase is the quiescent phase before DNA replication at

the end of division, the S phase is the DNA replication phase, and

the G2M phase involves the preparation for cell division and

mitosis, and any abnormality in these phases will likely lead to

tumorigenesis. Combined with cellular staging, we found that G2M

was concentrated in both Glioma and Myeloid_cells (Figures 2A–

C), in which the proportion and distribution of G2M was obviously

higher than that of Myeloid_cells, but the distribution was

obviously uneven, and the proportion of S was probably

concentrated in one of its subpopulations. The proportion and
Frontiers in Immunology 06
distribution of G2M in Glioma was significantly higher than that in

Myeloid_cells, but the distribution was not uniform, which might

be concentrated in a certain subpopulation, and the proportion of S

was the highest in all groups of cells (Figures 2O, P), suggesting that

a certain subpopulation of Glioma had a more vigorous replicative

and divisive proliferative ability. LGG, ndGBM, and rGBM

represent clinical subtypes or different states of gliomas, of which

LGG is a low-grade Glioma, which is slow-growing, poorly invasive,

and has a good prognosis. ndGBM refers to non-enhancing

glioblastoma, which also has relatively strong invasive ability and

poor prognosis, while rGBM belongs to recurrent Glioma, which

not only has the fastest growth and strongest invasiveness, but also

tends to have the worst prognosis. Combined with the clinical

subtypes of GBMs, we found that the distributions of ndGBMs and

rGBMs in Glioma were highly correlated to the distribution

location of G2Ms in Glioma (Figures 2D–F). Instead, by looking

at the proportional bar graphs of the major groups of clinical

subtypes (Figures 2Q, R), we found that the highest percentage of
A

B

D

E

C

FIGURE 1

Classification of large groups of GBM cells. (A) A total of 44 samples from 19 GBM patients were clustered into 44 clusters. (B) According to different
MARKER genes, the ovaries were annotated into nine cellular macrogroups of T_NK, Glioma, Mixed, Pericytes, ECs, Oligodendrocytes, SMCs, Other,
and Myeloid_cells, respectively. (C) Distribution of cells in each cell macrocluster of GBM. (D) Graph of the expression of the first five MARKER genes
in each macrocluster. (E) Distribution of the 44 sample sources.
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LGG in Glioma may be due to the overly concentrated distribution

of LGG subtypes in Glioma, which is not in conflict with our finding

that the distribution of ndGBM and rGBM overlapped and was

concentrated in the UMAP plots, which suggests that subtyping can
Frontiers in Immunology 07
be continued in Glioma to identify subpopulations with higher

dividing and invasive abilities. We also explored the G2M scores

and S scores for each subpopulation, as well as cellular staging and

clinical subtype (Figures 2G–N), and we found that the Glioma
A B

D E F

G IH J

K L M N

C

O P

Q R

S

T

FIGURE 2

Staging and clinical subtypes of large population cells. (A–C) Plots of the distribution of clinical subtypes LGG, ndGBM, and rGBM in major
populations of GBM cells. (D–F) Plots of the distribution of cell staging G2M, S, and G1 in major populations of GBM cells. (G) Distribution of UNMP
for the G2M.Score. (H–J) Plots of G2M.Score violin in major populations of GBM cells, cell staging, and clinical subtypes. (K) UNMP distribution
maps. (L–N) S.Score violin maps of GBM large populations of cells, cell staging, and clinical subtypes. (O, P) Situation maps of the proportion of cells
between GBM large populations of cells and the clinical subtypes LGG, ndGBM, and rGBM. (Q, R) Situation maps of the proportion of cells between
GBM large populations of cells and the cell staging periods G2M, S, and G1. (S, T) nFeature and UNMP distribution plots for nCount.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1368685
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1368685
scores were relatively high in all but OTHER cells, and the G2M

scores and S scores gradually increased in LGG, ndGBM, and

rGBM, indicating a gradual increase in DNA replication and cell

division capacity. We also calculated the DNA expression and

replication and found that it was also concentrated in a

subpopulation of Glioma (Figures 2S, T).
Frontiers in Immunology 08
Functional analysis of cell enrichment in
large GBM populations

We calculated DEGs for each cell population of GBM tumor

tissues and demonstrated them for the top five genes (Figures 3A–I).

Then, we performed GO enrichment function analysis on DEGs of
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FIGURE 3

Enrichment analysis of major clusters of cells. (A–I) Differential gene distribution map of GBM large population cells and other cells, in which the top
five selected genes from each of the high-expression and low-expression genes are shown. (J) GO enrichment analysis map of GBM large
population cells. (K–T) GSEA enrichment analysis map of Glioma, in which the top five pathways from each of the low-expression group and the
high-expression group were selected.
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large cell populations (Figure 3J), and we found that in

Glioma, the enrichment of pathways related to oxidative

function was significantly increased, among which “Oxidative

phosphorylation” and “Aerobic respiration” ranked high. Through

GSEA enrichment analysis (Figures 3K–T), we found that the

“Respiratory electron transport chain”, “Aerobic electron transport

chain”, “Mitochondrial ATP synthesis coupled electron transport”,

“Oxidative phosphorylation”, and “Proton motive force-driven ATP

synthesis” pathways were significantly enriched in the high-expression

group, and most of them were related to the oxidative respiration

pathway, while the “Positive regulation of immune response” pathway

was enriched in the high-expression group. “Positive regulation of
Frontiers in Immunology 09
immune response”, “Adaptive immune response based on somatic

recombination of immune”, “Positive regulation of immune effector

process”, “Regulation of immune response”, and “Leukocyte mediated

immunity” were significantly enriched in the low-expression group,

which were mostly related to immune function.
Metabolic analysis of GBM cell populations

In order to study the pathways related to cellular metabolism,

we calculated the metabolic pathways of GBM cell populations, cell

stages, and clinical subtypes (Figures 4A–C), and found that the
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FIGURE 4

Metabolic pathway map of GBM large population cells. (A) Top 20 metabolic pathways of GBM large population cells. (B) Top 20 metabolic
pathways of G2M, S, and G1 staged cells. (C) Top 20 metabolic pathways of LGG, ndGBM, and rGBM clinical subtypes cells. (D–O) “Oxidative
phosphorylation”, “Glycolysis/Gluconeogenesis”, and “Glutathione metabolism” pathways and the distribution of UNMP in the GBM cell population,
cell staging, and clinical subtype scores. The distribution of UNMP in GBM cells, cell staging, and clinical subtype scores were plotted. **** means p
< 0.0001.
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“Oxidative phosphorylation”, “Glycolysis/Gluconeogenesis”, and

“Glutathione metabolism” pathways all scored high in GBM

populations. “Gluconeogenesis” and “Glutathione metabolism”

pathways all scored high, and their expression was further

visualized in the major GBM clusters by UMAP (Figures 4D–O),

of which the “Oxidative phosphorylation” pathway had the highest

score, which is related to oxidative stress and was highly expressed

in Glioma and rGBM, and thus we speculated that it might be a key

pathway in tumors.
Frontiers in Immunology 10
Correlation analysis of Glioma subgroups

Through G2M staging and clinical subtype analysis, we found

that there were subpopulations of cells with strong dividing and

proliferating ability in Glioma. Therefore, we further clustered the

large Glioma population and divided it into eight cell groups,

sequentially C0–C7, and selected a marker gene for each

subpopulation by combining the expression and percentage of

marker genes (Figure 5A). By calculating the CNV of each
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FIGURE 5

Glioma cell subpopulation and correlation analysis. (A) UNMP distribution of cell subpopulations. (B) Heatmap of CNV status of cell subpopulations.
(C) Expression of the top five marker genes in each subpopulation of cells. (D, E) UNMP distribution of subpopulation of cells in each clinical subtype
of LGG, ndGBM, and rGBM. (F, G) UNMP distribution of subpopulation of cells in each cell staging of G2M, S, and G1. (H) UNMP distribution of score
of G2M. (I–K) Box plot of G2M.Score for Glioma cell subpopulations, cell staging, and clinical subtypes. (L) Density plot of G2M.Score for Glioma
subpopulation cells. **** means p < 0.0001.
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subpopulation of cells (Figure 5B), we found that the subpopulation

of cells all had an increased mutation on chromosome 7 and a

deletion of the mutation on chromosome 10. We also investigated

the first 5 marker genes of each subpopulation and cell staging and

clinical subtype correlation (Figure 5C). We then examined the

proportion of cell staging in each subpopulation of cells

(Figures 5D, E), and we found that the C5 cell subpopulation had

the highest percentage of G2M, while the C3 subpopulation had the

highest percentage of S staging, suggesting that this cell population

had the most rapid dividing and proliferating ability, while the C3

subpopulation had the second highest. We also calculated the

clinical staging of the cell subpopulations (Figures 5F, G) and

found that the rGBM percentage was higher in the C3, C4, and

C5 subpopulations, indicating that the tumor cells in these

subpopulations were more aggressive and malignant.

Furthermore, we investigated the G2M scores of each

subpopulation and clinical subtype (Figures 5H–L), and found

that the G2M scores of the C5 subpopulation and ndGBM and

rGBM were higher, suggesting that the tumor cells of the

subpopulations with high dividing ability were also relatively

more invasive and malignant, which was in line with our
Frontiers in Immunology 11
prediction. Among these subpopulations, the c5 subpopulation

had the highest G2M score and a relatively high percentage of

rGBM, so we speculated that the C5 subpopulation might be

associated with tumor recurrence, division, and invasiveness, and

might be a key subpopulation of Glioma. By GO enrichment

function analysis (Figure 6A), we found that the enrichment

pathways of the C5 subgroup were mostly related to cell

reproduction and division functions, such as “Chromosome

segregation” and “Mitotic nuclear division”. The metabolic

pathway analysis (Figures 6B–D) showed that “Oxidative

phosphorylation” scored significantly higher in the key subgroups

of C5 and G2M, as well as the clinical subtypes of ndGBM and

rGBM, and we hypothesized that “Oxidative phosphorylation” is a

key component of C5, G2M, and rGBM. We hypothesized that

“Oxidative phosphorylation” may play a key role in the recurrence

and progression of GBM. We also further analyzed the GSEA

enrichment of the C5 subgroup (Figures 6E–J), and found that

the pathways enriched in the high-expression group are

predominantly associated with cell proliferation and replication,

such as “Cell division,” “Nuclear chromosome segregation,” and

“Nuclear division.” Conversely, pathways enriched in the low-
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FIGURE 6

Enrichment analysis and cell metabolism analysis of Glioma cell subpopulations. (A) GO enrichment analysis plot of Glioma cell subpopulations. (B) Top 20
metabolic pathway plots of Glioma cell subpopulations. (C) Top 20 metabolic pathway plots of cell subpopulations of each staging cell of G2M, S, and G1.
(D) Top 20 metabolic pathway plots of cell subpopulations of each clinical subtype of LGG, ndGBM, and rGBM. (E–J) GSEA enrichment analysis plots of cells
of subpopulation of C5, with three cells selected from the low-expression group versus the three pathways that were selected from each of the high-
expression groups.
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expression group are associated with tumor cell migration and

invasion, such as “Cell-cell adhesion via plasma-membrane

adhesion molecules,” “Transport across blood-brain barrier,” and

“Synapse assembly”.
Proposed chronological analysis of GBM
cell subpopulations

We predicted the differentiation of each subpopulation of

Glioma cells using the R package Cytotrace (Figures 7A, B), and

found that both C3 and C5 were less differentiated. To understand

the cell subpopulation temporal trajectory relationship, we inferred

the temporal order of the cell subpopulations by slingshot

(Figures 7C–F) and found three trajectories in which the C5

subpopulation was located at the end of trajectory 3 and passed

through the C3 subpopulation. Therefore, we hypothesized that C3

and C5 subpopulations are highly correlated and that the C5

subpopulation is the most aggressive and destructive

subpopulation of the tumor. In addition, we also explored the

temporal trajectory changes of BIRC5, the marker gene of

subpopulation C5, with trajectory direction, clinical subtype, and

cellular staging (Figures 7G–I), and found that it was highly
Frontiers in Immunology 12
overlapped with ndGBM and rGBM in the clinical subtypes and

G2M in the cellular staging, which also illustrated the replicative

and proliferative ability of the C5 subpopulation and the

malignancy degree from the side.
Interaction and transcription factor analysis
of GBM cell subpopulations

We calculated the strength and number of interactions between

cell subpopulations and large populations of cells and visualized

them with circle plots (Figures 8A, B), and we found that the C5

subpopulation appeared to have a higher number of interactions

with large populations of SMCs, and within subpopulations,

interactions were more closely related to C0 and C3. We also

further investigated the receptor–ligand pairs between the C5

subpopulation and other subpopulations (Figures 8C, D), and we

found that PTN-PTPRZ1 and PTN-NCL were more closely

exchanged between C5 and the subpopulations. By studying cell

stemness genes, we found that NES, SOX2, and EZH2 were more

significant in C5 (Figure 9A). We also further investigated the

transcription factors of each subpopulation (Figure 9B) and found

that MYBL1, TP73, E2F8, NFYB, and E2F2 scored more
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FIGURE 7

Proposed chronological analysis of cell subpopulations. (A, B) Cytotrace scores of cell subpopulations. (C-F) Slingshot-based temporal trajectory
maps of cell subpopulations with three trajectory differentiation directions. (G–I) Trajectory changes of marker gene BIRC5 with trajectory directions,
clinical subtypes, and cellular staging.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1368685
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1368685
significantly in the C5 subpopulation. We also further investigated

the expression of these transcription factors in other subpopulations

(Figures 9C–I) and found that the transcription factors in C5 were

also significantly expressed in the C3 subpopulation, which, in

combination with the finding that C5 and C3 were located in the

same time trajectory and had higher G2M and S staging, may

suggest that there is some correlation between these transcription

factors and the ability to divide and proliferate.
Prognostic correlation analysis

Firstly, NF-YB serves as a crucial transcription factor for the key

subgroup C5. Secondly, there has been relatively limited literature

on the relationship between NF-YB and GBM, as well as the specific

mechanisms involved. Therefore, we chose to conduct further

research on this transcription factor to elucidate its specific

mechanisms in oxidative phosphorylation and its role in the

progression of GBM, as well as its relevance in GBM prognosis.

We extracted key subgroups of C5 transcription factor target genes

within the NFYB regulatory module and took the intersection with

the GBM differential genes downloaded from the TCGA database,

and by univariate Cox risk regression analysis, we screened 19

prognostic genes associated with them (Figure 10A) and verified

that these genes were stable and well behaved by LASSO Cox risk
Frontiers in Immunology 13
regression analysis (Figures 10B, C). Finally, 13 genes associated

with prognosis were confirmed by multivariate risk Cox risk

regression analysis, of which TMEM60, MCTP2, VKORC1L1,

ABHD12, FAM120AOS, CCM2, ETV4, FGR, ACCS, and

TUBA1C were high-risk genes, while ILKAP, ZNF823, and ILF2

were low-risk genes. We calculated the risk scores of each sample

and divided them into high-risk and low-risk groups according to

the median (Figure 10D), and we evaluated the relationship

between survival status and survival time between the high- and

low-risk groups (Figure 10E) and found that the number of patients

who died significantly increased and was more centrally distributed

as the risk score increased. We also examined the expression of

prognostic genes in the high- and low-risk groups (Figure 10F) and

calculated coef values (Figure 10G), with TMEM60 being the

highest and ILF2 being the lowest. The expression of TMEM60

and ILF2 was minimized by Kaplan–Meier curves (Figure 10H) to

compare the survival rates of the high- and low-risk groups at

different times, and it was found that the survival rates of the low-

risk group were higher, and the results were meaningful with p <

0.0001. The ROC curves (Figure 10I) showed that the values of the

area under the curve (AUC) at the 1-year, 3-year, and 5-year

periods were 0.72, 0.76, and 0.83, respectively, which indicated

that the prediction models’ performance was stable and good. We

further investigated the correlation between each prognostic gene

and risk score (Figure 10J) and found that it was in line with our
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FIGURE 8

Interaction analysis between cell subpopulations and large population cells. (A) Plot of the number of interactions between Glioma cell
subpopulations and GBM large population cells; the thicker lines represent the higher number. (B) Plot of the intensity of interactions between
Glioma cell subpopulations and GBM large population cells; the thicker lines represent the higher intensity. (C, D) Plot of points of the degree of
interactions between C5 subpopulation and other cell subpopulations and large population cells with receptor ligands.
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previous findings and visualized the top eight genes with strong

correlation with risk score (Figure 10K). In addition, we explored

the correlation between clinical factors such as age, gender, and

ethnicity with risk scores (Figures 11A–C) and plotted nomograms

based on risk scores versus clinical factors to predict the survival

rates of different GBM patients at 1 year, 3 years, and 5 years

(Figure 11D), which were validated using ROC curves and DCAs,

and the ROC results showed that the AUC values of 1 year, 3 years,

and 5 years were 0.69, 0.69, and 0.81 (Figure 11E), respectively,

indicating that the sensitivity and specificity of the model were

relatively good. The DCA (Figure 11F) also showed that the

predictive ability of the new model was higher than that of the

traditional model, indicating that the model we constructed has a

better clinical predictive value.
Immune correlation and
enrichment analysis

We calculated the immune cell infiltration in the high- and low-

risk groups (Figures 12A, B) and further compared the immune cell

differences between the high- and low-risk groups (Figures 12C, D),

and found that macrophage M2 had the highest proportion, while M1
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was highly expressed in the low-risk group, and we hypothesized that

M1 might have good prognostic correlation. By correlation analysis of

immunization with risk scores and prognostic genes (Figure 12E), we

found that macrophage M1 was positively correlated with prognosis

and negatively correlated with risk scores, which confirmed our

speculation, whereas macrophage M0 was the opposite. We

speculate that macrophage M1 and M0 may regulate tumor

invasion and dividing ability in a non-directional manner and may

pass through certain pathways of the transcription factor NFYB in

order to fulfill related functions and interconvert each other. By

comparing the tumor microenvironment-related scores in the high-

and low-risk groups (Figures 12F–I), we found that the tumor purity

score was higher in the low-risk group, whereas the immune score,

stromal score, and total score were higher in the high-risk group. The

tumor TIDE score (Figure 12J), on the other hand, showed a high

score in the high-risk group, indicating the probability of immune

escape in the high-risk group. We finally also calculated the immune

checkpoint scores of the tumors and found that the low-risk genes

were mostly negatively correlated with the immune checkpoints

(Figure 12K), while the high-risk genes were mostly positively

correlated, among which CD200 and VTCN1 were positively

correlated with the low-risk genes and negatively correlated with the

risk scores, so we presumed that they might have a certain inhibitory
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FIGURE 9

Analysis of stemness genes and transcription factors in cell subpopulations. (A) Expression of stemness genes in each subpopulation of Glioma. (B) Top five
transcription factors in each subpopulation of cells in Glioma. (C–I) UNMP plot of C5 subpopulation of Glioma and the distribution of top five transcription
factors in the subpopulation.
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effect on the tumors, whereas CD44, LAIR1, etc. might have a certain

protective effect on the tumors. By enrichment analysis, we found that

in GO analysis (Figure 13A), the enriched pathways were mostly

related to chemokines and immunity, such as “chemokine-mediated

signaling pathway”, “regulation of ERK1 and ERK2 cascade”, and

“leukocyte migration”, and in KEGG (Figure 13B), they were also

associated with certain chemokines and signaling pathways, such as

the “IL-17 signaling pathway”, “Chemokine signaling pathway”, and

“Cytokine–cytokine receptor interaction”, and we hypothesize that the
Frontiers in Immunology 15
transcription factor NFYB may achieve certain pathway functions

through the regulation of transcription factors to achieve certain

promotion or inhibition of tumors.
Experimental result/laboratory finding

We selected a total of two GBM cell lines for experiments, and

compared the experiments by setting up a negative control group
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FIGURE 10

Independent prognostic analysis. (A) A total of 19 prognosis-related differential genes. (B) LASSO analysis coefficient spectrum distribution of 13 prognostic
genes. (C) Optimal cross-validation of parameter selection in LASSO regression. (D) Categorization of patients into high- and low-risk groups based on risk
scores. (E) Distribution of patients in high- and low-risk groups. (F) Heatmap of the distribution of prognostic-related genes. (G) Coef values of prognostic-
related genes. (H) High- and low-risk groups’ Kaplan–Meier prognostic analysis curves. (I) Time-related ROC curves with area under the curves (AUCs) of
0.72, 0.76, and 0.83 at 1, 3, and 5 years. (J) Correlation analysis between genes and risk scores and OS. (K) Dot plots of the top eight prognostic genes that
had a strong correlation with risk scores.
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and a knockdown infection group. In the cell activity assay

(Figures 14A, B), we found that CCK-8 assay showed a significant

decrease in cell viability after NFYB knockdown. In the colony

formation assay (Figure 14C), the number of colonies in BFYB

knockdown cells was significantly lower than that in the negative

control group. In the cell value-added assay experiment

(Figure 14D), the cell numbers of both GBM cell lines with NFYB

knockdown were lower than those of the negative control. In the

Transwell assay experiment (Figure 14E), the staining areas of both

cell lines with knocked-down NFYB were significantly smaller than

those of the negative control. In the wound healing assay

experiment (Figure 14F), the width of the 48-h scratch was

significantly higher in both cell lines with knocked-down NFYB

than in the negative control group. Therefore, through the

experiment, we found that the proliferation, migration, and

invasion ability of the U87 MG cell line and the U251 MG cell

line with knocked-down NFYB were reduced, indicating that NFYB

has a positive effect on the proliferation, migration, and invasion

ability of GBM, and can promote the progression of GBM tumors.
Discussion

GBM is a common malignant tumor of the nervous system, and

the number of deaths due to GBM in the United States can reach

approximately 15,000 per year (www.braintumor.org), and the

average survival of GBM patients is only 14.6 months, even with

adequate surgery and related radiotherapy and chemotherapy (8).

Moreover, treated GBM patients are highly susceptible to

recurrence, and even surgery, as the primary therapy, has been
Frontiers in Immunology 16
shown to cause tumor recurrence in preclinical models (55, 56), and

recurrent GBM is often accompanied by high invasiveness and

proliferation, as well as resistance to conventional therapy (57, 58).

Therefore, we hope to search for the key mechanisms of GBM

value-added and recurrence through single-cell analysis, in order to

find new treatment directions and construct prognostic models.

By studying the various subgroups of GBM, we found that there

were significantly more G2M-staged cells in the Glioma group, the

distribution of which was concentrated in one of the Glioma

subgroups, and the location was relatively overlapped with that of

ndGBM and rGBM, which indicated that their dividing and value-

added and invasive abilities might be stronger. In the GO and GSEA

enrichment analysis of the Glioma subgroup, oxidative respiration-

related pathways all scored high, such as oxidative phosphorylation,

and correspondingly, Glioma immune-related pathways scored low.

According to the relevant literature, oxidative phosphorylation

occurs mainly in the mitochondria and plays a crucial role in

some vital processes of tumors (59–62). Certain studies have shown

that tumor stem cells with high metastatic and tumorigenic capacity

are more dependent on oxidative phosphorylation (63, 64), and the

process of oxidative phosphorylation also generates ROS, induces

mutations, and suppresses the immune response, which has a

tumor-promoting effect (65, 66). Garofano et al. found that GBM

relies primarily on oxidative phosphorylation for energy and shows

a marked vulnerability to inhibitors of its process (67), whereas

Janiszewska et al. found that inhibition of IMP2 leads to impaired

delivery of mRNA to the mitochondria and facilitates the assembly

process of Complex I and Complex IV. This leads to an abnormal

GBM oxidative phosphorylation process, which, in turn, impairs

GBM tumor value-adding capacity (68). We found that enrichment
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FIGURE 11

Clinical correlation analysis. (A–C) Analysis of the correlation between risk scores and age, gender, and ethnicity factors. (D) Survival column line
plots of GBM patients at 1, 3, and 5 years. (E) Time-dependent ROC plots, with AUCs of 0.69, 0.69, and 0.81 at 1, 3, and 5 years, respectively. (F) DCA
of prognostic models.
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analysis revealed a high enrichment of oxidative phosphorylation

function in Glioma, while the key subgroup C5 was enriched in

pathways related to cell division and proliferation capacity.

Moreover, within the metabolic pathways, the oxidative

phosphorylation score of C5 was notably significant, indicating a

potential correlation between oxidative phosphorylation and the

division and proliferation capacity of C5 subgroups, possibly

contributing to tumor progression. Additionally, the ROS

generated during oxidative phosphorylation can inhibit immune

responses, induce the secretion of extracellular vesicles, and further
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enhance the production of IFN and IL-6 by macrophages, thereby

suppressing immune responses in the tumor microenvironment

(69–71). This finding aligns with our GSEA results, indicating a

close association between the enriched pathways in the low-

expression group and immune-related processes.

By studying the transcription factors of C5, a key subgroup with

high dividing and proliferative capacity, we found that NFYB scored

high in less relevant studies, which aroused our interest. NFYB is

one of the subunits of NFY, which is a ubiquitous heterotrimeric

transcription factor consisting of three subunits, namely, NFYA,
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FIGURE 12

Immune correlation analysis. Heatmap of prognostic genes, tumor microenvironment, and immune cell situation in high- and low-risk groups. (B) Difference
in immune cell ratio between high- and low-risk groups. (C) Difference in immune cell type scores. (D) Difference in immune cells between high- and low-
risk groups. (E) Immunocell correlation with prognostic genes, risk scores, and OS. (F–I) Immune scores, stroma scores, tumor purity scores of tumor
microenvironment of high- and low-risk groups, and the overall score difference plot. (J) TIDE score violin plot for high- and low-risk groups. (K) Degree of
correlation between immune checkpoints and risk scores and prognostic genes. * means p < 0.05; ** means p < 0.01; *** means p < 0.001; **** means p
< 0.0001.
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FIGURE 13

GO and KEGG enrichment analysis. (A) GO enrichment analysis of differential genes in high- and low-risk groups. (B) KEGG enrichment analysis of
differential genes in high- and low-risk groups.
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FIGURE 14

In vitro experimental validation of NFYB. (A, B) CCK-8 assay showed that cell viability was significantly reduced after NFYB knockdown. (C) Colony formation
assay showed that the number of colonies in NFYB knockdown cells was significantly lower than that in the negative control group. (D) EdU staining showed
that NFYB knockdown inhibited the proliferation of U87 MG and U251 MG cells. (E) Transwell assay revealed that NFYB knockdown significantly slowed
down the invasion of U87 MG and U251 MG cells. (F) Scratch assay showed that NFYB knockdown significantly slowed down the migration of U87 MG and
U251 MG cells. ** means p < 0.01; *** means p < 0.001.
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NFYB, and NFYC, and can co-recognize the CCAAT box (72, 73).

NF-YB contains histone motifs and can form dimers, which can

drive the transcription of certain cell cycle-related genes, especially

in the promoters of genes regulated in the G2M phase, suggesting

that NF-YB can be involved in the regulation of cellular value-

adding and apoptosis (74–77). Jiang et al. (78) found that

knockdown of NFYB resulted in the downregulation of the

apoptosis suppressor AIP5 and apoptosis inducer SIVA1

appeared upregulated, indicating that the presence of NFYB could

promote cell division and value-added abilities, inhibit apoptosis,

and promote tumor progression. More studies have shown that the

high expression of NFYB is closely related to the elevation of tumor

resistance to chemotherapeutic agents (79, 80). Our study also

found that the C5 subgroup with high NFYB expression had the

highest G2M score and a relatively higher proportion of rGBM,

indicating that NFYB is highly associated with GBM proliferation

and recurrence resistance, consistent with previous studies on

NFYB in other cancers. Interestingly, NFYB also has a close

relationship with mitochondria, not only participating in various

mitochondrial-related signal transduction pathways, but also

regulating mitochondrial function and activity through the

NFYB-1–SPP-8 axis, which has a positive effect on extending

mitochondrial lifespan (81). Moreover, we found that oxidative

phosphorylation, a metabolic process that also occurs in

mitochondria, has a certain promoting effect on GBM. Therefore,

we speculate that NFYB may be related to oxidative

phosphorylation, and that targeting NFYB can inhibit oxidative

phosphorylation and mitochondrial respiration, thereby

suppressing GBM progression, recurrence, and resistance.

Through the prognostic analysis of NFYB transcriptional

regulatory module genes and GBM differential genes, we finally

identified 13 genes associated with prognosis, in which high-risk

genes stood for the majority. Among them, TMEM60 was the gene

with the highest risk score, which belongs to the transmembrane

protein family (TMEM), and TMEMs are mostly involved in

adverse events related to tumors, such as TMEM88 that leads to

proliferation, migration, and invasion of gastric cancer tumors

through the JAK2/STAT3 pathway (82). It has been previously

reported that TMEM60 was closely associated with poor prognosis

in GBM patients (83), but no correlation analysis was given, while

Yang et al. (84) also found that high expression of TMEM60 would

lead to poor prognosis in GBM patients and hypothesized that it

might be related to immunosuppression. We found that TMEM60

belongs to the transcriptional regulatory module gene of NFYB, and

realized that it may promote cell proliferation and drug resistance

and lead to poor prognosis of GBM patients, and by targeting and

regulating NFYB, we can make TMEM60 low expression to inhibit

proliferation, invasion, and drug resistance of GBM cells, which will

be beneficial to the prognosis of patients. Moreover, we found that

the proliferation, migration, and invasion ability of GBM were

greatly reduced by knocking down NFYB; thus, we hypothesized

that NFYB is a high-risk transcription factor for GBM and also has

the possibility to be used as a potential therapeutic target. However,

the recurrence and resistance of NFYB in GBM, and the specific

relationship and mechanism between NFYB and oxidation-related

pathways still need to be verified by further experiments.
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In summary, our study explored the specific mechanisms of

GBM progression at the single-cell level, investigated the role of the

transcription factor NF-YB and oxidative phosphorylation in GBM,

and validated these findings through experiments. We also

identified high-risk genes associated with prognosis. These studies

will contribute to understanding the progression, recurrence, and

drug resistance mechanisms of GBM, guiding new treatment

strategies, identifying novel therapeutic targets, and providing

new directions for the prognosis and diagnosis of GBM.
Conclusion

In this study, we systematically explored the clinical subtypes of

GBM and the associated mechanisms with the oxidative pathway

using single-cell data. We identified the highly proliferative C5

subgroup and the transcription factor NFYB, which were

subsequently validated through cell experiments. Our research

confirms the significant role of transcription factors in GBM

progression, providing new insights for future GBM studies. We

discovered that targeting NFYB and the oxidative phosphorylation

pathway could serve as potential key targets for GBM treatment and

recurrence resistance. This finding opens new avenues for the

treatment and prognostic diagnosis of GBM in the future.
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SUPPLEMENTARY FIGURE 1

Data quality control and dimensionality reduction clustering. (A, B) Quality
control and filtered GBM single-cell related data. (C) Filtered GBM cell staging

assay, including G1, G2M, and S stages. (D) Selected the top 2,000 highly
variable genes based on gene expression and dispersion, indicating the top 10

highly variable genes. (E) Generated a PCA dimensionality reduction plot with
the top 30 dimensions out of 50 selected. (F) PCA plots showcasing different

sample sources after dimensionality reduction. (G) Heatmap of the top 10

highly variable genes in the first nine dimensions.
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