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Dengue has had a significant global health impact, with a dramatic increase in

incidence over the past 50 years, affecting more than 100 countries. The absence

of a specific treatment or widely applicable vaccine emphasizes the urgent need

for innovative strategies. This perspective reevaluates current evidence

supporting the concept of dual protection against the dengue virus (DENV)

through natural antibodies (NAbs), particularly anti-a-Gal antibodies induced by

the host’s gut microbiome (GM). These anti-a-Gal antibodies serve a dual

purpose. Firstly, they can directly identify DENV, as mosquito-derived viral

particles have been observed to carry a-Gal, thereby providing a safeguard

against human infections. Secondly, they possess the potential to impede virus

development in the vector by interacting with the vector’s microbiome and

triggering infection-refractory states. The intricate interplay between human GM

and NAbs on one side and DENV and vector microbiome on the other suggests a

novel approach, using NAbs to directly target DENV and simultaneously disrupt

vector microbiome to decrease pathogen transmission and vector competence,

thereby blocking DENV transmission cycles.
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Introduction

Dengue, also known as break-bone fever, stands as one of the fastest-growing

reemerging diseases globally (1). It is a vector-borne illness caused by four serotypes of

the dengue virus (DENV), transmitted to humans by Aedes mosquitoes. Given their high

morbidity and mortality rates, vector-borne diseases, including dengue, pose a significant

threat to public health (2–4). The World Health Organization (WHO) reports a dramatic

increase in dengue incidence worldwide, with cases soaring 30-fold in the last 50 years (5).
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Currently, about half of the global population is at risk of dengue,

solidifying DENV’s epidemiological significance (6, 7).

Endemic in over 100 countries, dengue primarily affects

developing nations in South-East Asia, the Western Pacific, and

The Americas (5). For example, Paraguay has faced periodic

outbreaks since 1988, when DENV-1 was first detected, followed

by the introduction of DENV-2, DENV-3, and DENV-4 in

subsequent years (8, 9). Co-circulation of these serotypes has led to

significant epidemic outbreaks (9), with the largest reported in 2020,

totaling 223,782 suspected cases (8). Dengue, initially confined to

sub-tropical and tropical regions, has now emerged in Europe. While

initial cases were imported, autochthonous cases have risen since

2010, notably in France (10). In 2023, Europe recorded 105

autochthonous cases, with Italy and France reporting the majority

(11). Recently, an autochthonous outbreak of dengue in the Paris

Region of France during September–October 2023 was reported (12).

The anticipated rise in global dengue cases underscores the ongoing

need for research to enhance our understanding of the infection

process and develop effective strategies for DENV control. Factors

such as expanding mosquito habitats, population growth, climate

change, poor urban planning, and insecticide resistance contribute to

the increased risk of dengue infections (13–17).

Currently, only one DENV vaccine is available, Dengvaxia®,

which is restricted to individuals over 9 years old with prior dengue

exposure in hyperendemic areas (18). This underscores the need for

novel approaches to develop efficient vaccines against DENV.

The microbiome, crucial for human health, plays a central role

in host defense against pathogens (19). Natural antibodies (NAbs)

induced by the host’s gut microbiome (GM) (20–22), act as a

primary defense mechanism (23), targeting various glycans and

providing antigen-specific protection against pathogens (22).

Notably, anti-Gala1-3Galb1-4GlcNAc-R (a-Gal) antibodies, the

most abundant NAbs in humans, demonstrate a cytotoxic role

against a-Gal-expressing pathogens, including viruses like DENV

(24). While the direct effect of anti-a-Gal antibodies to DENV in

humans remains to be tested, their elevated levels in active DENV

infection (25) suggest a potential role in dengue. In addition, recent

research indicates that vaccines targeting vector microbiome can

induce bacteria-specific antibodies, which, when acquired by blood-

sucking vectors, reduce vector fitness and modulate the vector

microbiome, reducing pathogen loads (26, 27).

In this Perspective, we present the hypothesis that NAbs may

confer dual protection against dengue: firstly, by directly protecting

against DENV infections in humans, and secondly, by recognizing

bacteria in the vector’s microbiome, modulating the microbiome,

and reducing vector competence. Understanding the intricate

interplay among the host microbiome, NAbs, DENV, and vector

microbiome will shed light on the transmission of vector-borne

diseases, and holds promise for innovative disease prevention and

control approaches.
Human microbiome and NAbs

The human gut microbiome (GM), an intricate ensemble of

bacteria, archaea, protozoans (28), and viruses (29), forms a
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remarkable ecosystem within our bodies. Housing an astounding

population of approximately 100 trillion microorganisms in the

gastrointestinal tract alone (30), this microbiome surpasses the total

number of cells in the entire human body by almost threefold (31).

From a physiological standpoint, this microbial community,

constituting around 2% of an adult’s body mass, rivals the size of

vital organs such as the brain or liver (32), leading researchers to

aptly dub it the “forgotten” organ (33, 34). These diverse

microorganisms play a pivotal role in numerous processes,

contributing to nutrient provision, metabolizing indigestible

compounds, defending against opportunistic pathogens,

and possessing immunomodulatory properties (35–37).

Understanding the intricate interplay between the immune

system and GM is crucial for unraveling the association between

microbiome and protection to infectious agents.

The immune system’s connection to GM development involves

NAbs as key circulating elements, most of which are glycan-specific

NAbs (gsNAbs). Despite a limited understanding of the factors

governing their repertoire (38), B-1 cells spontaneously produce

these antibodies from early life, independent of external

immunological stimulation (39, 40). While controversy surrounds

the origin, repertoire, and physiological role of antibodies targeting

carbohydrate structures (41), the prevailing hypothesis suggests B-1

lymphocytes are stimulated by GM antigenic determinants (41).

In UDP-galactose:b-galactoside-a1-3-galactosyltransferase
(a1,3GT)-deficient mice, the gsNAbs repertoire gains diversity

between months 1 and 2 of life (21). Remarkably, by month 2,

about 41 glycans structures (6% of all glycans structures tested) were

highly recognized by at least 60% of a1,3GT-deficient mice sera.

Using high-throughput sequencing, the study by Bello-Gil et al. (21)

in a1,3GT-deficient mice analyzed GM diversity over 7 months.

Associations between gsNAbs and microbial diversity were identified,

linking certain bacterial orders to natural anti-glycan antibody

development. Microbiome diversity changes correlated with

variations in anti-glycan antibody levels and repertoire, suggesting

that continuous gut bacterial antigenic stimulation influences

antibody repertoire in a1,3GT-deficient mice. In humans, a

microchip format glycan array was used to characterize antibody

carbohydrate recognition patterns in 106 healthy donors’ sera (42). A

glycan library included various blood group antigens,

oligosaccharides, glycoproteins, glycolipids, tumor-associated

antigens, and bacterial/polysaccharides and lipopolysaccharides.

Antibodies in human sera interacted with at least 50 normal

human glyco-motifs, revealing surprising features like high

antibody binding to specific trisaccharides and sulfated glycans

(42). The study unveiled novel binding activities towards certain

glycans, such as Galbeta1-3GlcNAc (Le(C)) related glycans and 4’-O-

sulfated lactosamine. Notably, the study observed the absence or low

binding of antibodies to specific glycans, indicating selective

recognition. Antibodies were found to recognize short inner core

structures typical for glycolipids and glycoproteins as fragments of

larger glycans. Overall, the results suggest diverse and specific binding

patterns of antibodies to various glycans in mammals.

Despite uncertainties surrounding the physiological role and

origin of circulating anti-glycan NAbs (21), which underscore the

complexity of these antibodies, a growing body of evidence describes
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the functional involvement of anti-glycan antibodies in various

immunological mechanisms, both in health and disease (43–46).

In this context, it is noteworthy that the inactivation of the

UDP-galactose:b-galactoside-a1-3-galactosyltransferase (a1,3GT)
gene (ggta1), which ablated the expression of a-Gal in old-world

monkeys, apes, and humans has bestowed upon this group of

primates a unique ability to produce high antibody titers against

the glycan a-Gal (47). Notably, among the diverse NAbs produced,

those targeting the carbohydrate antigen a-Gal are the most

abundant in humans, constituting 1%-5% of circulating

immunoglobulins (Ig). GM bacteria induce anti-a-Gal

immunoglobulins of the isotypes IgM and IgG, widely expressed

in humans (20), fish (IgM) (48–50), and birds (IgM and IgY) (51,

52). At elevated levels, these antibodies provide protection against

various infections, including malaria (22, 53), tuberculosis (48–50),

ectoparasite infestation (54, 55), and bacterial sepsis (56). Recent

research has unveiled the presence of a1,3GT genes, distinct from

ggta1, in 193 species and strains of bacteria within the human GM

(57). Among these bacteria are members of the Enterobacteriaceae

family (genus Escherichia) and Lactobacillaceae family (genera

Pediococcus and Lactobacillus) (Figure 1A).
NAbs and DENV glycosylation

The potential for glycan-targeting NAbs to confer resistance to

DENV in humans is a tantalizing prospect. The diversity of glycans

on the surface of DENV plays a crucial role in virus infection and is

of significant relevance in the context of neutralizing immune

responses. The DENV genome encodes various structural and

nonstructural proteins, with the envelope (E) glycoprotein being a

key player in viral pathogenesis (58). The E glycoprotein interacts

with host cell receptors, initiating the process of virus endocytosis

and inducing humoral immune responses, wherein neutralizing

antibodies can effectively reduce viral load (59).

While efforts to develop vaccines against DENV primarily focus

on stimulating immune responses towards the E glycoprotein (59),

the glycans attached to the E glycoprotein remain a complex and

not fully understood aspect of DENV (60). N-glycans on the E

glycoprotein influence proper protein folding, receptor interactions,

and immunogenicity (61). Notably, DENV E glycoprotein has two

potential N-linked glycosylation sites at asparagine-67 and

asparagine-153 (62), and the sugars added are heterogeneous,

consisting of high-mannose and paucimannose glycans (61, 63).

These glycans are critical for the virus’s ability to interact with

specific receptors, such as dendritic cell-specific ICAM3-grabbing

non-integrin (DC-SIGN), found on dendritic cells (DC) in the skin

(61, 64).

The interaction between high-mannose glycans on mosquito-

derived DENV particles and DC-SIGN facilitates the virus’s entry

into immature DC in the skin, a primary target during viral

pathogenesis (61). This interaction is crucial for understanding

the transmission and infection process of the virus (61). Moreover,
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the diversity of glycans on the virus surface has been explored as a

strategy for designing carbohydrate-based antiviral agents, as

demonstrated with oligomannosides inhibiting DC-SIGN-

mediated human immunodeficiency virus (HIV)-1 infection (65).

Despite progress, the analytical challenges in characterizing the

precise structures of glycans on the DENV E glycoprotein surface

persist due to their heterogeneity and variable glycosylation site

utilization (66). Recent technological advances, such as lectin

microarray and mass spectrometry, have become essential tools in

resolving this heterogeneity (67, 68). Studies have identified a wide

range of N-linked glycans on DENV, including mannose, N-

acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc),

fucose, and sialic acid (69). High-mannose-type N-linked

oligosaccharides and galactosylation were found to be major

structures, highlighting the complexity and diversity of glycans on

the DENV surface (69).

The importance of glycans is further emphasized by their

involvement in viral morphogenesis, infectivity, and tropism (62,

70). The heterogeneity of glycans on DENV E proteins derived from

insect and mammalian cells underscores the need for comprehensive

studies to characterize the N-linked sugar structures at each potential

glycosylation site (62).

Detailed information obtained through lectin array and mass

spectrometry reveals a high heterogeneity in N-glycans on DENV-

2, including mannose branching, high-mannose-type N-glycans,

galactosylation, bisecting GlcNAc, and sialylation (71). These

diverse glycan structures are crucial for understanding the virus-

host interactions, particularly with DC-SIGN on DC cells (72).

Computational docking experiments suggest specific glycans on the

DENV-2 surface as potential ligands for DC-SIGN, further

illuminating the intricate interplay between viral glycans and host

receptors (73).

The structural features of N-glycan structures on the surface of

mature DENV-2 derived from Aedes albopictus cells (24) may play a

crucial role in interactions with the immune system, particularly

with glycan-specific natural antibodies found in a1,3GT-deficient
mice (21). The presence of common glycan motifs such as galactose

(Gal), GalNAc, fucose, GlcNAc, and sialic acid in both DENV-2

surface and antibody specificities suggests a potential for

recognition by glycan-specific antibodies. For instance, the blood

group antigen structures, high-mannose features, and terminal

GalNAc residues found on DENV-2 may be targets for NAbs in

a1,3GT-deficient mice, a model for human a-Gal immunity.

Additionally, the recognition of sulfation modifications and

complex oligosaccharide structures by NAbs (21) could further

contribute to the recognition of DENV particles.

The interaction between these NAbs and DENV-2 glycans,

particularly after mosquito transmission, may influence the

immune response to the virus. The recognition of specific glycan

motifs on DENV-2 by NAbs could potentially modulate immune

reactions and contribute to the overall understanding of the host-

pathogen dynamics in DENV-2 transmission via Ae. albopictus

mosquitoes. Further experimental studies would be necessary to
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validate and elucidate the detailed mechanisms underlying the

interactions between DENV glycans and NAbs in the context of

mosquito transmission.

Notably, the glycan profile of DENV-2 includes the presence of

a-Gal structures (24). This a-Gal motif was associated with signals

from lectins, such as Amaranthus caudatus agglutinin (ACA),

Ricinus communis agglutinin (RCA) 120, Euonymus europaeus

lectin (EEL), Bandeirea simplicifolia agglutinin (BS)-I, Bauhinia

purpurea lectin (BPL), and Psophocarpus tetragonolobus lectin

(PTL)-II (24). The source of a-Gal in DENV is proposed to be

the mosquito salivary glands (22), as it is absent in DENV amplified

in humans after the initial wave of infection. Interestingly, the

enzyme responsible for a-Gal production, a1,3GT, has not been

identified in arthropod genomes, suggesting the involvement

of other galactosyltransferases in the synthesis of this

glycan in arthropods (74–76). Indeed, genes like alpha-1,4-

galactosyltransferase, beta-1,3-galactosyltransferase, and alpha-

1,4-galactosyltransferase have been reported in ticks (75–77).

Moreover, orthologs of some of these genes, exhibiting a1,3GT
activity in ticks (76), have been identified in mosquitoes (74).

Importantly, the existence of Gal and a-Gal structures on the

surface of DENV-2 raises the possibility that they may serve as

targets for anti-a-Gal NAbs in humans (Figure 1B).

Patients with active DENV infections exhibit significantly

elevated levels of anti-a-Gal IgM and IgG (25), suggesting a

plausible involvement of these antibodies in the dengue infection
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process. In the examined population, dengue IgM positive patients

demonstrated significantly higher levels of anti-a-Gal IgM (25).

This suggests that IgM antibodies targeting a-Gal play a role in the

early immune response during DENV infection. Specifically, anti-

a-Gal IgM may be involved in the immediate recognition and

neutralization of the virus inoculated with mosquito saliva into

dermal and epidermal cells. This initial response could contribute to

the containment of the virus at the site of entry, potentially limiting

its dissemination and preventing systemic infection. On the other

hand, the study reveals a correlation between anti-a-Gal IgG levels

and severe dengue symptoms (25). The delayed production of anti-

a-Gal IgG, occurring after the expected first wave of viremia,

suggests that this antibody isotype may play a distinct role in the

later stages of infection. Unlike IgM, IgG is associated with a more

prolonged immune response and is capable of providing long-term

protection. The increased levels of anti-a-Gal IgG may function as a

protective antibody, potentially limiting additional DENV

transmission through mosquito bites. This could be especially

relevant in dengue hyperendemic areas, where repeated exposure

to the virus is common. However, the study also found anti-a-Gal
IgG to be correlated with severe dengue symptoms, suggesting a

dual role in protection and disease progression. The potential roles

of anti-a-Gal antibodies present a dichotomy, with the antibodies

possibly acting protectively against DENV infections and/or

contributing to antibody-dependent enhancement (ADE) in

DENV infection (78). The protective and ADE affects may not be
frontiersin.or
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FIGURE 1

Dual role of natural antibodies. (A) Human gut microbiota contains bacteria that express a-Gal epitopes, which in turn, stimulates the production of
anti-a-gal antibodies. (B) After vector bites, humans acquire mosquito-derived DENV particles containing a-Gal epitopes that are recognized by
natural anti-a-Gal antibodies. These antibodies could contribute to the containment or neutralization of the virus limiting its propagation. On the
other hand, (C) natural anti-a-Gal antibodies can be acquired by mosquitoes during the bloodmeal. These antibodies can reach the gut lumen of
mosquitoes and target bacteria that express a-Gal epitopes in mosquito microbiota (D) leading to a shift in the bacterial community and structure.
Modulation of the mosquito microbiota by natural anti-a-Gal antibodies may (E) impair the development of dengue virus in the mosquito limiting
the number of viruses to be transmitted. Abs, antibodies. Figure created with BioRender.com.
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mutually exclusive, and concentration-dependent effects of anti-a-
Gal antibodies, coupled with population studies, are essential for a

conclusive understanding of this phenomenon (25).

Several studies support the notion that anti-a-Gal antibodies
can act as neutralization antibodies against various pathogens,

including Plasmodium spp (22, 53), Mycobacterium (48–50),

Leishmania spp (79), and Trypanosoma cruzi (80). Geographical

variations in anti-a-Gal antibodies were observed (25, 81),

suggesting an association with the progression of dengue disease

(25). The study also indicates age-related correlations with anti-a-
Gal antibody levels (25), introducing complexities that warrant

further investigation. Overall, the evidence provides valuable

insights into the roles of anti-a-Gal antibodies in the context of

DENV infection, emphasizing the need for comprehensive and

context-specific evaluations of their functions and implications.
DENV and vector microbiome

The interaction between mosquitoes and the DENV is complex,

involving various factors that influence vector competence and,

consequently, the transmission of the virus. One crucial element is

the mosquito microbiome, particularly the midgut microbiome,

which plays a significant role in shaping the vector’s ability to

transmit pathogens (82, 83). Studies have shown that the

microbiome in the mosquito gut influences key physiological

processes related to pathogen transmission (84, 85). For instance,

the depletion of gut bacteria renders mosquitoes more susceptible to

DENV, and the reintroduction of specific bacterial species results in

decreased viral load (86–88). In contrast, the colonization of

mosquito larvae with Salmonella sp. increases DENV infection in

adult mosquitoes compared to those colonized with a mixture of

different bacteria in the family Enterobacteriaceae (89).

Furthermore, altering the mosquito microbial community

through exposure of larvae to a pathogenic Bacillus thuringiensis

(90), enhances adult mosquito susceptibility to DENV but not to

Chikungunya virus (CHIKV) (91). These findings suggest

pathogen-specific interactions within the mosquito microbiome.

The midgut microbiome is presumed to exert antiviral activity

through both direct and indirect mechanisms, involving the

activation of innate antiviral responses and the production of

antimicrobial peptides (AMPs) (87, 88). Additionally, specific

bacteria, such as Chromobacterium sp. isolated from the mosquito

midgut, produce compounds that directly inhibit DENV

attachment and invasion within host cells (92), while Serratia

odorifera bacteria can increase DENV-2 infections in Ae. aegypti

(93). In addition, studies on genetically selected DENV-resistant

and -susceptible Ae. aegypti strains suggest that certain bacterial

genera may serve as biomarkers for vector competence (94, 95). The

impact of the midgut microbiome on vector competence for

DENV-2 is further highlighted by findings showing that B

vitamin provisioning or introduction of B vitamin-autotrophic

bacteria increases viral replication (96).

The impact of Wolbachia infections on vector competence for

DENV is a notable aspect of mosquito microbiome research.
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Wolbachia, a type of endosymbiont, can block the development

of pathogens such as DENV and Zika virus (ZIKV) in specific host–

pathogen–Wolbachia combinations (97–103). Control strategies

based on Wolbachia include the use of large numbers of

Wolbachia-infected males for population suppression or

elimination through incompatible insect technique (IIT), causing

a population crash (104, 105). Alternatively, spreading a pathogen-

blocking Wolbachia strain could replace local permissive natural

vectors with refractory insects, and this strategy is being evaluated

in field trials to reduce DENV transmission by Ae. aegypti

mosquitoes in various regions (106). Stable Wolbachia infections

have been detected in natural Anopheles populations, challenging

the previous belief that anopheline mosquitoes are resistant to

colonization by these bacteria (107, 108). Interestingly, the

microbiome composition of Ae. aegypti is not critical for

Wolbachia-mediated inhibition of DENV (109).

The interaction between DENV and its mosquito vectors is a

multifaceted process intricately influenced by the mosquito

microbiome, especially within the midgut. This microbiome is

vital for determining the mosquito’s vector competence,

influencing both susceptibility and resistance to DENV through

mechanisms such as modulation of the immune response,

production of antimicrobial peptides, and direct inhibition of

viral processes. The dynamic interplay between different bacterial

species within the mosquito gut and their pathogen-specific effects

on DENV transmission highlights the potential for microbiome-

targeted interventions in controlling dengue spread. Future research

should aim to deepen our understanding of these complex

interactions and explore innovative strategies for manipulating

the mosquito microbiome.
Disrupting vector microbiome with
NAbs to block DENV

Beyond directly targeting viral particles, another avenue for

defense against DENV involves directing NAbs towards vector

microbiota (Figure 1C). To interfere with DENV development

within mosquitoes, we can draw parallels from recent

advancements in tick-borne pathogens (26) and avian malaria (27).

Ticks, akin to mosquitoes, transmit medically significant pathogens,

such as Borrelia afzelii causing Lyme borreliosis (110). Targeting

keystone taxa of tick microbiome through anti-microbiota vaccines

has proven effective in altering tick feeding (54) and influencing the

taxonomic and functional profiles of bacterial communities (111).

The success of this approach is highlighted by recent findings in tick

research, where perturbation of tick microbiome resulted in a lower

load of the pathogen B. afzelii (26).

Applying a similar approach to mosquitoes, we can develop anti-

microbiota vaccines that elicit host antibodies against specific bacteria

or their products, disrupting the delicate balance in the mosquito

midgutmicrobiome (27, 112) (Figure 1D). This strategy finds support

in recent success with anti- microbiome vaccines applied to

mosquitoes in avian malaria research (27). For instance, when

Culex quinquefasciatus mosquitoes fed on Escherichia coli-
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immunized canaries, there were deviations from the typical

microbiome changes induced by the malaria parasite Plasmodium

relictum (27). This resulted in reduced pathogen levels in both

midguts (oocyst) and salivary glands (sporozoites) of the vector

(27). The application of anti-microbiota vaccines targeting keystone

taxa of mosquito microbiome, as exemplified by Enterobacteriaceae,

can be harnessed to alter vector feeding behavior and modulate the

taxonomic and functional profiles of the mosquito microbiome.

Drawing from the successes observed in avian malaria and Lyme

Borrelia control in mosquitoes and ticks, respectively, through anti-

microbiota vaccination, we could explore a similar approach to

disrupt DENV within mosquitoes. This involves leveraging the

modulation of the vector’s midgut microbiome by host antibodies

to significantly impede the development of the pathogen (Figure 1E).

Moreover, a hierarchical shift in the Ae. albopictus microbiome

caused by an anti-microbiota vaccine, leading to increased

fecundity and egg-hatching rate in female mosquitoes, provides

additional insights (112). The impact of host antibodies on

mosquito microbiota and life traits, exemplified by the significant

increase in fecundity and egg-hatching rate in mosquitoes fed with

blood of Chryseobacterium-immunized rabbits (112), suggests that

specific alterations to the microbiota can influence mosquito fitness

and reproduction. This highlights the potential of targeted vaccines

to induce infection-refractory states in the mosquito microbiome

(113), thereby disrupting the life cycle of vector-borne pathogens

like DENV. As network analyses revealed alterations in the

hierarchical organization of bacterial communities, this

information can guide the rational design of anti-microbiota

vaccines to reduce vector fitness and block pathogen transmission

effectively. In summary, leveraging the knowledge gained from tick

and mosquito studies, anti-microbiota vaccines represent a

promising tool for disrupting the development of tick-borne and

mosquito-borne pathogens within their respective vectors.
Discussion

The alarming surge in dengue cases globally (1), especially in

hyperendemic areas like Paraguay, necessitates innovative

approaches to combat this reemerging disease. The lack of

specific treatments or widely applicable vaccines underscores the

urgency for novel strategies. Leveraging the intricate interplay

between human microbiome, NAbs, and vector microbiome

presents a promising frontier.

The unique ability of NAbs, particularly those targeting a-Gal,
to recognize and combat pathogens provides a foundation for

exploration. While the role of these antibodies face to dengue

virus infection is still unknown and needs further investigation,

we hypothesize that anti-a-Gal antibodies may limit the

dissemination of DENV by complement-mediated and antibody-

mediated opsonization since it was found that mosquito-derived

DENV particles carry a-Gal epitopes on its surface (114).

Neutralization of viruses by anti-a-Gal antibodies could also be

another plausible mechanism of inhibition of virus propagation. It
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has been found that swine serum supplemented with exogenous

anti-a-Gal antibodies neutralized Pseudorabies virus grown in a

porcine kidney cell line (115). Anti-a-Gal antibodies in DENV-

infected humans may exert a dual mechanism of inhibition of

DENV by neutralization and lysis. However, this hypothesis

remains to be tested. If these antibodies indeed play a role in

resisting DENV, harnessing them could be a groundbreaking

strategy for developing effective and innovative vaccines (81, 116).

Furthermore, the modulation of vector microbiome, inspired by the

success of Wolbachia in impeding pathogen development (83), and

microbiota-targeted vaccines (26, 27), introduces a dual-pronged

approach. Directly targeting viral particles in humans and

interfering with the virus’s lifecycle within mosquitoes could

significantly mitigate DENV transmission.

The emergence of dengue in non-endemic regions like Europe

emphasizes the need for continuous research and innovation.

Autochthonous cases underscore the adaptability of the virus and

the urgency of devising global strategies against its spread. While

the implementation of Wolbachia in field trials is a promising step,

further research into identifying and understanding human

microbiome bacteria that induce protective NAbs is essential.

This knowledge could provide a foundation for tailored

interventions and vaccine development.

Incorporating anti-microbiota vaccination strategies into the

fight against DENV represents a novel and innovative approach

that leverages the host’s immune response to disrupt the vector

microbiome, thereby impeding the mosquito’s ability to transmit the

virus. Target populations for receiving these vaccinations would

ideally include individuals in both endemic and non-endemic

regions who are at high risk of exposure to DENV. In endemic

areas, vaccination efforts could focus on communities with high

transmission rates to reduce the overall burden of disease and

interrupt the transmission cycle. In non-endemic regions,

vaccinations could be targeted toward travelers to endemic areas,

healthcare workers, and military personnel who may be exposed to

DENV through their activities. The timing of vaccinations should be

strategically planned to coincide with periods of increased mosquito

activity and before the peak dengue season in endemic regions to

maximize the protective effects of the vaccine. This preemptive

approach would allow the host immune system sufficient time to

develop antibodies against the targeted microbiota components

before exposure to DENV-carrying mosquitoes.

While the concept of altering the vector microbiome by

vaccinating hosts presents a promising avenue for controlling

DENV transmission, it is crucial to underscore that this strategy

is still in its developmental stages. Extensive research is needed to

ascertain the efficacy and safety of these vaccines. Critical

considerations include determining the specific bacterial targets

within the mosquito microbiome that, when disrupted, would most

effectively reduce vector competence without adversely affecting the

host. Additionally, it is imperative to evaluate the long-term effects

of such vaccinations on both the host’s microbiome and ecosystem

biodiversity to ensure that they do not inadvertently cause harm. As

we explore the potential of anti-microbiota vaccinations, it is
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essential to maintain a cautious and evidence-based approach. This

involves conducting rigorous preclinical and clinical trials to fully

understand the implications of these vaccines on human health and

mosquito populations. The development of these vaccines should be

complemented by ongoing surveillance of vector populations and

continued research into the complex interactions between hosts,

vectors, and pathogens. This comprehensive strategy will ensure

that anti-microbiota vaccinations, once proven safe and effective,

can be seamlessly integrated into existing vector control and disease

prevention frameworks, offering a novel tool in the global effort to

combat DENV and other vector-borne diseases.

In conclusion, the exploration of NAbs induced by human

microbiome as potential weapons against DENV opens up exciting

avenues for research and intervention. By strategically directing

these antibodies to target viral particles and vector microbiome, we

may unlock new possibilities in the fight against dengue. The

urgency of the situation demands collaborative efforts to bridge

the gap between research findings and practical, scalable solutions,

ultimately paving the way for a dengue-resistant future.
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et al. Assessment of the safety and efficacy of an oral probiotic-based vaccine against
aspergillus infection in captive-bred humboldt penguins ( Spheniscus humboldti).
Front Immunol. (2022) 13:897223. doi: 10.3389/FIMMU.2022.897223

52. Mateos-Hernández L, Risco-Castillo V, Torres-Maravilla E, Bermúdez-
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