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HIV-infection of microglia and macrophages (MMs) induces neuronal injury and

chronic release of inflammatory stimuli through direct and indirect molecular

pathways. A large percentage of people with HIV-associated neurologic and

psychiatric co-morbidities have high levels of circulating inflammatory

molecules. Microglia, given their susceptibility to HIV infection and long-lived

nature, are reservoirs for persistent infection. MMs and neurons possess the

molecular machinery to detect pathogen nucleic acids and proteins to activate

innate immune signals. Full activation of inflammasome assembly and expression

of IL-1b requires a priming event and a second signal. Many studies have

demonstrated that HIV infection alone can activate inflammasome activity.

Interestingly, secreted phosphoprotein-1 (SPP1/OPN) expression is highly

upregulated in the CNS of people infected with HIV and neurologic

dysfunction. Interestingly, all evidence thus far suggests a protective function

of SPP1 signaling through mammalian target of rapamycin (mTORC1/2) pathway

function to counter HIV-neuronal injury. Moreover, HIV-infected mice knocked

down for SPP1 show by neuroimaging, increased neuroinflammation compared

to controls. This suggests that SPP1 uses unique regulatory mechanisms to

control the level of inflammatory signaling. In this mini review, we discuss the

known and yet-to-be discovered biological links between SPP1-mediated

stimulation of mTOR and inflammasome activity. Additional new mechanistic

insights from studies in relevant experimental models will provide a greater

understanding of crosstalk between microglia and neurons in the regulation of

CNS homeostasis.
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Introduction

Neurologic and gait disturbances were hallmark features of HIV-

1 disease in the 1980s demonstrating the profound negative impact of

the virus on central nervous system (CNS) functioning (1). The

clinical manifestations of NeuroHIV can include cognitive

impairment, depression, anxiety, and deficits in fine motor

movements (2, 3). Comprehensive neuropsychological testing is

used to identify people with HIV-associated neurocognitive

disorder, now more generally known as NeuroHIV, to reflect the

changing clinical spectrum of neurologic and psychiatric co-

morbidities (4–6). Seminal neuropathology studies on HIV-infected

post-mortem human brain tissue identified brain microglia and

macrophages (MMs) as the predominant cellular targets of the

virus (7–10). Through different mechanisms, HIV-infected

monocytes, T-cells, and viral particles cross the blood-brain-barrier,

which itself becomes impaired (11–14). Targeted antiretroviral

therapies (ART), first introduced in 1996, were highly effective at

blocking virus replication and sparing CD4+ T-cell death and

immune system dysfunction (15). Many ART regimens reach

pharmacological levels in the CSF; however, whether inhibitory

concentrations reach regions in the brain parenchyma, where HIV-

infectedMMs reside, remains unclear (16–18). Additionally, yolk sac-

derived microglia are relatively long-lived cells with a turnover of

many months, and their capacity for self-renewal provides a

sanctuary for HIV in brain tissue (19–21). Even under conditions
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of low-level HIV gene expression, immune activation in the form of

increased circulating pro-inflammatory cytokines and immune

markers are present in people with HIV on ART (22, 23).

HIV encodes nine genes that co-opt intrinsic immune cell

pathways normally used for growth, metabolism and homeostasis

(24, 25). Innate immune signaling is an early detection system

meant to thwart pathogen replication by activating the release of

inflammatory molecules that, in turn, prime adaptive immunity

(26–28). HIV-1 binds to CD4 and chemokine receptors, in a process

that initiates fusion of the viral and plasma membranes (Figure 1).

Neurons express chemokine receptors that support neuronal

development and maturation, but not CD4, and therefore, do not

allow HIV entry (33). Viral fusion is followed by the release and

trafficking of the preintegration complex (PIC) to the nucleus

(Figure 1). The PIC uncoating process within the nucleus was

first shown for primary human macrophages years ago (29, 31), but

only recently confirmed for T-cells (34). This mechanistic detail has

important implications for understanding whether HIV can delay

detection by nucleic acid sensors that activate Toll-like receptor

(TLR) signaling (24, 30). Importantly, in MMs, virus is packaged in

vesicular bodies and buds from the plasma membrane in contrast to

the cytopathic release of viral particles from T-cells (35, 36).

Microglia not only protect the brain from pathogens and injury,

but also serve critical roles in maintaining neuronal viability, proper

synaptodendritic function and integrity in development and over the

lifespan (20, 21, 37–39). Understanding the mechanisms by which
FIGURE 1

HIV lifecycle and relevance to inflammasome activation. (1) At target cell plasma membrane domains, HIV envelope protein gp120 trimer (red) binds
to the CD4 receptor (yellow). Conformational alterations expose binding surfaces for coreceptor CCR5 on the Env trimer (green). (2) Fusion of Env
with the cell plasma membrane is followed by uncoating and release of the preintegration complex (PIC) which contains a few molecules of reverse
transcriptase, integrase and two copies of HIV RNA (vRNA) (29–31). Should the integrity of the PIC be compromised, viral RNA and proteins could be
detected by innate immune sensors and thus initiate an inflammasome priming. (3) The actin cytoskeleton and specific microtubule motors
transport the PIC to the nucleus (32). (4) The PIC can enter the nucleus in several ways including direct nuclear import and induced invaginations
(24, 30). Degradation of the nucleoprotein coat would expose vRNA outside the nucleus, and provide another opportunity to activate innate antiviral
responses. After reverse transcription (5), integration (6), transcription (7), and translation (8), viral proteins, vRNA, and (9) certain host proteins
assembled at the inner plasma membrane surface. This mobilizes cytoskeletal proteins and molecular forces that facilitate budding (10), (11) release
and maturation of new viral particles (32). Macrophages and microglia unlike T-cells are much more resistant to the cytopathic effects of HIV
replication and therefore undergo innate immune activation in a sustained fashion. The figure was created with BioRender.
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HIV-1 affects microglial innate immune function is key to addressing

the brain as a source of pathologic neuroinflammation correlated

with neurological and psychiatric comorbidities (18, 23, 40, 41).

Below, we discuss what is known about HIV activation of the

inflammasome, particularly as it relates to microglia and neurons

and the expression of specific pro-inflammatory cytokines that

remain elevated in people with NeuroHIV. We then discuss

another innate sensor, secreted phosphoprotein-1 (or osteopontin,

SPP1/OPN), and its intersection with the mammalian target of

rapamycin pathway (mTOR) and potentially the inflammasome to

provide a unifying view of putative mechanistic connections and cell-

type dependent crosstalk between the pathways.
HIV activation of inflammasome
signaling in the CNS

As the exploration of inflammasome function has progressed,

NLRP3 is implicated in a variety of neurodegenerative diseases,

including NeuroHIV (42–48). The inflammasome is a multiprotein

complex involved in the immune and inflammatory response.

Different inflammasomes types exist in the nucleotide-binding

oligomerization domain, Leucine-rich-containing proteins (NLR)

family (49). However, all inflammasomes contain key components

including: NALP/NLR protein, PYCARD/ASC (Apoptosis-

associated speck-like protein containing a CARD), and an

enzyme responsible for pro-inflammatory cytokine activation

(50–52). The NLRP3 inflammasome complex interacts with

caspase-1 to activate IL-1b and IL-18 (53, 54). Both are pro-

inflammatory cytokines that play various roles throughout

the body. In microbial infections, the increase in IL-1b
secretion is responsible for recruiting innate immune cells. In

neurodegenerative diseases, IL-1b levels increase in response to

microglial activation and neuronal injury (55, 56). IL-18 induces

IFN production in T-cells and natural killer cells, promotes the

production of other cytokines, and is suggested to exacerbate

demyelination and cellular infiltration (44, 57).

NLRP3 inflammasome assembly needs two signals: a priming

and an activating signal (58–60). Of the many ways to prime the

inflammasome, the most studied route is through NFkappaB-

dependent signals (Figure 2). Many ligands can prime the NLRP3

inflammasome, including lipopolysaccharide (LPS) and TLR

inducers like dsRNA (59–61). During reverse transcription,

dsRNA can be detected by intracellular, endosome-bound TLR3

(Figure 2) (32, 65). TLR3 ligand binding activates ERK 1/2, MAPK,

and NFkappaB-pathways, promoting gene transcription (62).

Interestingly, the HIV transactivator of transcription (Tat) protein

alone can prime and activate the inflammasome complex (Figure 2)

(66). Various ligands such as, ATP, nigericin, aggregated proteins,

reactive oxygen species (ROS), and HIV viral proteins activate the

NLRP3 inflammasome (46, 49, 58, 61, 66–69). These signals allow

for the recruitment of additional proteins like NLRP3, ASC, and

caspase-1 that are necessary for oligomerization and subsequent

cleavage and maturation of cytokines (62). Caspase-1 also cleaves
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gasdermin D, leading to cell membrane pore formation, and a type

of pro-inflammatory cell death known as pyroptosis (Figure 2) (62).

The NLRP3 inflammasome is robustly expressed in microglia (42,

59). However, whether the same is true for neurons is less well known.

Interestingly, neurons undergoing pyroptosis have been documented

(70–72). This is important since pyroptosis is strongly associated with

NLRP3 inflammasome activation (73–77). The NLRP1 and AIM2

inflammasome complexes of cortical neurons have been the most

investigated (70–72). Recently, studies reported that dopaminergic

neurons express NLRP3 throughout the progression of Parkinson’s

disease (45, 47). However, activation of NLRP3 inmicroglia contributes

to demyelination through IL-1b and IL-18 secretion (44). HIV-positive
individuals have increased caspase-1, IL-1b, and IL-18 levels,

suggesting NLRP3 inflammasome activation systemically and in the

CNS (78–80). Given the association between neurologic disorders,

neuroinflammation, and the activation of the NLRP3 inflammasome in

microglia and neurons, the potential for crosstalk between these cells

is expected.
HIV induced inflammasome activation
and mTOR signaling in NeuroHIV

There is renewed interest in mTOR signaling in HIV infection as

new roles for this pathway have emerged. Early studies implicated a

role for mTORC signaling in promoting virus replication (81–83).

Most recently, mTORC-regulated mechanisms in HIV escape from

latency in T-cells (84), autophagy (85), apoptosis (86), and the

homing of intestinal CCR6+CD4+ T-cells (87) have been reported.

Interestingly, in efforts to identify new candidate genes involved in

latent HIV infection, a role for pro-inflammatory cytokines and

signaling pathways regulated by secreted phosphoprotein-1/

osteopontin (SPP1/OPN) were discovered (88). The mTOR

pathway is composed of two structurally distinct, multi-subunit

protein complexes, mTORC1 and mTORC2 that receive signals

about a cell’s metabolic status to fine tune growth and repair

processes through activation of relevant transcriptional programs

(89, 90). HIV-positive individuals have dysregulated autophagy,

indicating upregulated levels of mTOR activity (91). Increases in

mTOR activity are associated with reactive microglia, neuronal

damage, neurodegeneration, and memory deficits, all characteristics

of NeuroHIV (63, 92). Although scarcely investigated, evidence of a

regulatory relationships between mTOR and NLRP3 in immune cells

and neurons have been reported. Studies have shown that

downregulating mTOR activity reduces NLRP3 activation (93–96).

With reduced mTOR activity, autophagy removes detrimental pro-

inflammatory stimuli, including ROS. Indeed, ROS activates the

NLRP3 inflammasome and has been associated with NeuroHIV

(97, 98). Another study found that inhibition of mTORC1 leads to

decreased secreted IL-1b, indicating post-transcriptional effects on

NLRP3 activation (94). A similar regulatory relationship was

observed with in vitro and in vivo NLRP3 knock-out studies in

which mTOR activity decreased (93, 99). In macrophages an

interaction between NLRP3 and mTOR was found, indicating a
frontiersin.org
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direct protein-protein interaction and communication between both

pathways (93). Lastly, IL-1b can activate mTOR in T-cells and in

hippocampal neurons further illustrating NLRP3 cell-specific- and

cell-to-cell communication pathways and functional outcomes like
Frontiers in Immunology 04
neuroinflammation (100–102). The emerging relationships between

NLRP3, mTOR, and HIV infection becomes more interesting when

considering the function of additional innate immune sensors like

SPP1/OPN.
FIGURE 2

Schematic of the effects of HIV infection on microglia and neurons. The NLRP3 inflammasome is a multi-protein complex implicated in many
neurodegenerative diseases including HAND. After HIV crosses the blood-brain barrier, it can bind to CD4+ cells, such as microglia, initiating the
fusion of the virus to the plasma membrane, ultimately allowing HIV to enter the cell. After infiltrating the cell, many different aspects can affect the
transcriptional activity of microglia via the NF-kb pathway. Microglia. Step 1 indicates the first step required for inflammasome assembly: the priming
step. Many stimuli can prime the NLRP3 inflammasome, including dsRNA for endosome-bound TLR3 (58, 59, 61, 62). Priming of the inflammasome
leads to the localization of NF-kb into the nucleus, indicated by Step 2. Along with host gene transcription, proteins like HIV TAT can be transcribed,
which can act to prime/activate the inflammasome. Step 3 indicates the availability of the NLRP3 subunits necessary for the inflammasome to be
oligomerized such as the NLRP3 protein, apoptosis-associated speck-like protein (ASC), and pro-caspase-1 (62). Step 4 indicates the activating step
in NLRP3 inflammasome activation. Various stimuli, such as extracellular TAT protein, can trigger the activating signal. After receiving an activating
signal, the NLRP3 inflammasome can begin its oligomerization and become functional. Pro-interleukin enzymes are recruited to be cleaved into
their mature forms. For the NLRP3 inflammasome, IL-1B and IL-18 are cleaved by Caspase-1 and released, as shown by Steps 5, 6. The release of
NLRP3-associated pro-inflammatory cytokines occurs via pores formed in the cell membrane. Caspase-1 will also cleave gasdermin D, leading to
pyroptosis (62). The release of cytokines and viral proteins can then exacerbate local inflammation, leading to the recruitment of more immune cells
and can affect other cell types, such as neurons. Neurons. Considering that HIV is unable to infect neurons directly, there are many examples of
HIV-induced neuronal damage. One major contributor is the HIV-1 gp120 (Env). This protein can bind to CXCR4 and CCR5 receptors, expressed on
neurons. HIV-1 Env has been shown to damage synaptic connections in cortical neurons when bound to CXCR4 via mTORC2 (63). When neurons
were co-treated with HIV-1 Env and OPN/SPP1. Neurons showed signs of activated mTORC1/mTORC2 pathways, suggesting a regulatory feedback
loop. Along with the required b1 and b3 integrin receptors, which OPN/SPP1 binds to, OPN/SPP1 acts as a neuroprotective modulator that promotes
neurite growth in cortical neurons (b1 integrin) and regulates post-synaptic dendritic spine density in hippocampal neurons (b3 integrin) through
mTORC1 (63, 64). Despite the protective effects of OPN/SPP1, over time, HIV-infected individuals present with neuronal degradation. Crosstalk. HIV-
infected microglia have increased levels of NLRP3 activity, leading to pyroptosis and the release of highly pro-inflammatory cytokines. Given the role
of IL-1b in inflammation, it is important to consider the various impacts it can have on the local microenvironment. Surrounding cells will respond to
the inflammatory signal, such as upregulating SPP1/OPN. Regardless of the intent to reduce neuroinflammation, we see that HIV-infected individuals
continue having low levels of chronic inflammation while on antiretroviral treatment. When looking at the acute effects, there is an increase in
microglial phagocytosis, pyroptosis, pro-inflammatory cytokines, and OPN/SPP1 secretion. Chronically, we begin to see prolonged
neuroinflammatory signaling, neurodegeneration, neuronal cell death, neuronal impairment, and functional disability, indicating the urgency to
understand better the mechanisms of disease progression, cellular interactions, and regulation of neuroinflammatory pathways in HIV infection.
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Innate signaling pathways collide:
SPP1/OPN and mTOR activation
in NeuroHIV

The term neuroinflammation, as it is currently understood,

broadly signifies a mix of innate and adaptive responses of resident

brain- and circulating immune cells that, if left unregulated, can

have damaging short- and long-term consequences (103). In this

regard, chronic expression of proinflammatory molecules leads to

over activation of the immune system and accumulation of damage

and disability with time. Secreted phosphoprotein-1 (SPP1/OPN),

by virtue of its modular domain structure, is a multifunctional

phosphoprotein implicated in several neurodegenerative diseases

(104–110). The expression of SPP1/OPN is markedly elevated in the

CNS of humans and non-human primate models of HIV infection

(109, 110). However, more recent findings with humanized mice

and positron emission tomography neuroimaging demonstrate that

SPP1/OPN expression is required to downregulate the microglial

inflammatory response (111). How exactly SPP1/OPN modulates

the HIV-induced inflammatory response in the brain is not yet

understood. However, in cultured primary human macrophages,

HIV replication and NF-kb activity is increased in the presence of

SPP1/OPN (110). The degree of neuroinflammation correlated with

the extent of HIV replication only in humanized mice expressing

SPP1/OPN (111). Neurons cannot be infected with HIV due to their

lack of the CD4 receptor, however the presence of certain

chemokine coreceptors like CCR5 or CXCR4 makes them

vulnerable to excitotoxicity, degeneration and death after binding

interactions with HIV Gp120 (33, 112). However, treatment of

neurons with recombinant OPN protects hippocampal post-

synapses from synaptodendritic injury, and the structural

integrity of cortical axons and dendrites via mTORC1/mTORC2

activation (Figure 2) (63, 64). Therefore, in NeuroHIV, increased

expression of SPP1/OPN is largely neuroprotective.
The intersection of SPP1/OPN, mTOR
and inflammasome signaling in
neurodegenerative disorders

We first hypothesized that the overexpression of SPP1/OPN in

individuals with NeuroHIV was harmful, but as discussed above the

findings thus far point to a neuroprotective function. While there is

increasing evidence of linkages between neurodegeneration and

cellular repair processes involved in resolving neuronal injury and

neuroinflammation, significant gaps in our understanding of the

molecular mechanisms remain. SPP1/OPNwas identified as a highly-

expressed transcript that clustered with a collection of genes termed

“disease-associated microglia (DAM) (113–115). Recent studies by

Rentsendorj et al., and Qiu et al., beautifully demonstrate using the

ADtg and 5XFAD mouse models for AD, respectively roles for

specific populations of SPP1+/- expressing monocytes, resident

microglia and/or macrophages in the phagocytosis of amyloid and

speculate about a role for inflammasome signaling (116, 117). In

contrast, in a slow-progressing model of AD (AppNL-F knock-in
Frontiers in Immunology 05
reporter mice), SPP1+ macrophages and microglia associated with

brain blood vessels and those located in the hippocampus were

responsible for pathologic microglia-synapse destruction (118, 119).

In another example of neuroprotection, regulatory T-cells localized in

the brain several weeks after stroke express SPP1/OPN and, through a

microglial-b1-integrin-dependent manner, foster repair of white

matter axonal damage (120). In a model of glaucoma, a protective

role for SPP1/OPN was found (117). Interestingly, in an ischemia

model, intranasal delivery of a SPP1/OPN peptide suppressed

microglial activation and the release of pro-inflammatory cytokines

IL-1b and IL-6, an indication of reduced NLRP3 activity (121). To

further support this idea, Zhang et al. demonstrated that SPP1/OPN

negatively regulates the NLRP3 inflammasome in ischemic infarction

(122). Lastly, in a MS model, NLRP3 knockout, as well as one of its

components ASC, reduced mRNA SPP1/OPN expression in splenic

CD4+ T cells (123). Whether this same relationship exists in the CNS

is unknown, though it is possible that NLRP3 priming lead to NF-

kappaB transcription of SPP1/OPN. Given its neuroprotective

function, a negative feedback loop may be in place to prevent

chronic inflammation via continuous NLRP3 activation.

Importantly, as more details on the molecular mechanisms of

SPP1/OPN function continue to emerge, the information will help

provide a more complete understanding of the correlative findings of

clinical studies (124) and toward the design of possible efficacious

therapeutic interventions.

Over the last several years, understanding of the direct role of

glycolytic metabolism on effector immune cell functions has greatly

increased (125–128). As such, there are opportunities for pathogens

to alter and/or harness signaling dynamics that feed directly into the

mTOR pathway (129–132). Tissue macrophages and microglia

assume a variety of activation states in response to local cues, and

downstream stimulation of mTOR signaling is implicated in their

M2- (anti-inflammatory) or M1-polarization (proinflammatory),

respectively (133). Interestingly, inhibition of inflammasome

activation is protective against disease progression in a mouse

model of multiple sclerosis. In this regard, rapamycin, an

immunosuppressive agent, was shown to block antigen

presentation by dendritic cells and inflammatory signaling by

microglia (133, 134).

The homeostatic balance of the immune system is maintained

through direct and indirect interactions and with soluble factors

acting locally and over long distances (refs). HIV infection disrupts

and hijacks the important cell-to-cell communication network. The

virus infects T-cells and MMs robustly and astrocytes in a limited

fashion (35), and cells located nearby initiate a signaling cascade

that amplifies locally, and recruits additional immune cells from a

distance. This idea of cellular crosstalk was investigated by Wang

and Gabuzda, who saw that direct contact between neurons and

microglia was not necessary for neuronal damage (135). The same

study also found that activated astrocytes promoted HIV replication

in microglia. In this regard, as discussed above, mTOR signaling in

cultured cortical neurons preserves structural integrity, however

increased mTOR activity can also be detrimental to cells of the brain

(133, 134, 136). Cortical neurons, as well as infected microglia may,

in turn, be upregulate and secrete OPN/SPP1 to reduce the

inflammatory response by inactivating the NLRP3 inflammasome
frontiersin.org
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in microglia, and promoting neuronal survival through mTOR

activity. Decreased mTOR activity in astrocytes is primarily

beneficial, but negatively affects their ability to differentiate (133,

134, 136). In oligodendrocytes, decreased mTOR activity impairs

their differentiation and myelination functions (133, 134, 136). The

release of damage signals and proinflammatory molecules from

impaired glial cells, activates immune cells and neurons thus

amplifying a neuroinflammatory response. An example being the

rapid release of IL-1b and IL-18 from microglial pyroptosis

(Figure 2). We emphasize the importance of considering that

homeostasis in chronic low-level HIV infection is tightly

regulated via crosstalk between different cells through secreted

pro- and anti-inflammatory cytokines/chemokines. The delicate

balance, or lack thereof, of a cellular local environment, can act to

exacerbate or ameliorate neuroinflammation. Indeed, HIV utilizes

these delicate communication pathways to promote an optimal

environment for replication.

Given that microglia have receptors for OPN, it’s possible that

signaling by cortical OPN/SPP1 via mTOR acts on microglia to

reduce the inflammatory response and increase transcriptional

programs involved in preserving neuronal function. Given their

opposing, yet collaborative, roles in inflammation, it is important to

investigate the relationship between SPP1/OPN, mTOR, and

NLRP3 in HIV-induced neuroinflammation and NeuroHIV. In

this regard, more research is needed to get a better understanding

of the molecular and cellular mechanisms that take place in chronic

HIV infection. Doing so would allow us to understand better how

HIV manipulates the host’s protective measures, allowing for better

treatments aimed to improve the host response to latent HIV

infection, guiding us toward a solution to eliminate HIV-

associated neuroinflammation and cognitive deficits.
Discussion

There is a greater appreciation that during development and

adulthood, dynamic homeostatic regulation of the brain’s neural

network is intertwined with and dependent on crosstalk and

connectivity with glial. Disruption of the integrity of the brain, as

seen in viral infection, leads to activation of what are meant to be

protective responses, resulting in a neuroinflammatory response

involving resident brain cells and immune sentinels that conduct

tissue-level surveillance. As reviewed herein, innate immune

s ignal ing , inc luding mTOR, SPP1/OPN, and NLRP3
Frontiers in Immunology 06
inflammasome activation, is initiated to monitor and/or alter cell

metabolic state, stimulate repair, migration, and other immune

effector processes. Given that several myeloid and glial cells and

cofactors can contribute and stimulate autocrine and paracrine

feedback and feed-forward looping, how are the outputs integrated

to restore homeostatic levels of regulation and surveillance? Deeper

insight into the physiological, cellular, and molecular mechanisms

will help to advance the development of effective interventions to

help those suffering from neurological and neuropsychiatric

comorbidities related to chronic over-activated innate immune

responses in the central nervous system.
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