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The role of foam cells in spinal
cord injury: challenges and
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Spinal cord injury (SCI) results in a large amount of tissue cell debris in the lesion

site, which interacts with various cytokines, including inflammatory factors, and the

intrinsic glial environment of the central nervous system (CNS) to form an inhibitory

microenvironment that impedes nerve regeneration. The efficient clearance of

tissue debris is crucial for the resolution of the inhibitory microenvironment after

SCI. Macrophages are themain cells responsible for tissue debris removal after SCI.

However, the high lipid content in tissue debris and the dysregulation of lipid

metabolism within macrophages lead to their transformation into foamy

macrophages during the phagocytic process. This phenotypic shift is associated

with a further pro-inflammatory polarization that may aggravate neurological

deterioration and hamper nerve repair. In this review, we summarize the

phenotype and metabolism of macrophages under inflammatory conditions, as

well as the mechanisms and consequences of foam cell formation after SCI.

Moreover, we discuss two strategies for foam cell modulation and several potential

therapeutic targets that may enhance the treatment of SCI.
KEYWORDS

spinal cord injury, macrophage, foam cell, scavenger receptor, cholesterol reverse
transcription
1 Introduction

Spinal cord injury (SCI) induces primary damage to neurons and glia due to

mechanical trauma, followed by secondary injury characterized by a cascade of

inflammatory processes that cause further cell death of oligodendrocytes, astrocytes, and

especially neurons (1). A key feature of the inflammatory response in SCI is the infiltration

of monocyte-derived macrophages (MDMs) into the lesion site and the activation of

resident microglia in the central nervous system (CNS). Both cell types act as major

phagocytes that remove tissue debris after injury, which is crucial for creating a regenerative
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environment. It is well established that tissue debris from peripheral

injuries is cleared by MDMs within weeks after injury. However,

after SCI, the persistent demyelination produces myelin debris and

other lipid-rich histiocyte debris that induce the transformation of

macrophages into foamy macrophages, resembling those found in

atherosclerotic plaques. These foam cells persist in the lesion site

and mediate chronic inflammation, which hampers nerve repair (2,

3). T The molecular mechanisms of foam cell formation and

function are poorly understood, but their phagocytic and

migratory abilities have been reported to be impaired (2–6). Thus,

foam cells after SCI represent a potential target for novel SCI

research and intervention.

In this review, we provide a brief overview of the lipid

metabolism of macrophages in the inflammatory milieu, and how

it influences their function and phenotype. This will help to

elucidate the mechanisms and consequences of macrophage

phenotypic alterations after SCI. Furthermore, we summarise and

discuss the factors that induce foam cell formation after SCI and the

potential targets for modulating them, aiming to identify the

strategies for foam cell regulation after SCI.
2 Macrophage metabolic regulation
in inflammation

Different types of stimuli induce different macrophage

phenotypes and metabolic profiles, and immune activation can be

divided into four main components: inducers (signals that trigger

an inflammatory response), sensors (proteins that detect the

inducers), mediators (molecules that transmit signals to activate

an effector response), and effectors (downstream metabolic

programmes that facilitate the maturation of the desired effector

phenotype) (7, 8). Based on this general classification, the

macrophage response to stimulation can be described more

clearly. The phenotypes that emerge from macrophage activation

are commonly categorised as the M1 phenotype and the M2

phenotype. The M1 phenotype is mainly associated with acute

bacterial infections, and the typical inducers are pathogen-

associated molecular patterns (PAMPs), which are sensed by cell

surface pattern recognition receptors (PRRs), leading to the

production of the intermediate mediator, HIF-1a, which connects

glycolytic metabolism to the inflammatory and microbicidal

programmes of the macrophage (9). The M2 phenotype is driven

by IL-4 and IL-13 produced by innate and adaptive immune cells

(e.g., mast cells, basophils, and T cells) during processes such as

helminthic and parasitic infections (10, 11). After IL-4 and IL-13

bind to their respective receptors (IL-4Ra vs. IL-13Ra), the

subsequent activation of the M2 cells largely depends on STAT6,

which is transcriptionally activated to upregulate fatty acid b-
oxidation, OXPHOS and metabolic genes essential for

mitochondrial biogenesis (12). Additionally, STAT6 induces the

expression of transcriptional regulatory proteins and co-activator

proteins, such as PPARg, PPARd and PGC-1b, which cooperate

with STAT6 to sustain the switch of the cellular metabolic profile to

oxidative metabolism (12–15). Different metabolic profiles of the
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M1 and M2 phenotypes stem from this, with the M1 macrophage

using Warburg metabolism and the M2 macrophage using

OXPHOS, which has been extensively discussed by others in the

literature (16–19). The metabolism of M1 and M2 macrophages is

bi-directionally linked to their functional phenotypes. Glycolysis in

M1 macrophages enhances PPP flux, which provides intermediates

for the biosynthesis of ribose, fatty acids and non-essential amino

acids to sustain vital metabolic pathways. In contrast, the activation

programme in M2 macrophages requires high levels of both

duration and intensity, making the TCA cycle more prominent

than glycolysis. Fatty acid oxidation is especially important in these

cells to support the TCA cycle. One source of fatty acids is

triglycerides, which are internalised by M2 macrophages via

CD36 and then hydrolysed by lysosomal acid lipase (20). Besides

uptake from external sources, macrophages also have the ability for

lipid synthesis (21, 22). Microbial stimulation can augment

macrophage de novo lipogenesis (DNL). Microbial stimulation

also increases glucose utilisation, redirects intracellular glucose

metabolism, and supplies a reaction substrate for intracellular

lipid regeneration (DNL) in macrophages (23, 24). On the other

hand, it can also activate the signalling pathway triggered by the

transcription factor NF-kB, which directly binds to the response

element in the promoter of SREBP1a (an isoform expressed in

macrophages), thereby enhancing the expression of SREBP1a,

which in turn promotes the oxidation of fatty acids in the DNL,

providing nutrients for the TCA cycle (25). The inhibition of

lipolysis reduces M2 macrophage-mediated resistance to parasite

infection (26). These metabolic changes are not irreversible. Unlike

metabolic shifts in cancer (genetically driven aerobic glycolytic

transitions) or slow exercise-induced myofibre type conversions

in skeletal muscle, many immune cells can swiftly switch between

glycolysis and OXPHOS in response to external signals.

It is noteworthy that some vitro studies have proposed that the

key determinant of the two phenotypes is a difference in the

metabolic pathways used by the cells, i.e. the use of metabolic

substrates controls macrophage polarization. However, this

conclusion is disputed, with Chang HR et al. demonstrating that

cellular lipid metabolism does not correlate with macrophage

phenotype, and that the tissue environment is the main factor in

determining how subpopulations of macrophages respond to

changes in lipid synthesis and metabolic capacity (27).

Furthermore, although the M1 and M2 phenotypes of

macrophage activation facilitate the understanding of macrophage

responses to stimuli, the in vivo phenotype of macrophages is more

complex, especially in spinal cord injury (28).
3 Mechanisms and consequences of
foam cell formation after spinal
cord injury

As discussed above, macrophages display various functional

states that influence tissue repair, and understanding the basic

macrophage metabolism in inflammation will help to elucidate

the complex changes that occur in macrophages after SCI. It is well
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known that the surrounding microenvironment is a key

determinant of macrophage function (29). The spinal cord

microenvironment undergoes drastic changes shortly after SCI.

The early microenvironmental changes in SCI are characterised

by an inflammatory response that induces monocytes to migrate to

the injury site and differentiate into macrophages, which further

amplify the inflammation. Inflammation after SCI is complicated

and involves multiple cell types and a variety of inflammatory

cytokines, such as tumour necrosis factor a (TNFa), interleukin-1b
(IL-1b) and interleukin-6 (IL-6). Despite some beneficial effects of

inflammation after SCI, excessive infiltration of immune cells is the

main cause of neurodegeneration. After the acute inflammation

resolves, a large number of cells undergo apoptosis, generating large

amounts of cellular debris, particularly myelin debris. The

accumulation of myelin and cellular debris at the injury site,

combined with the pre-existing CNS glial environment, forms an

inhibitory environment in the centre of injury, which impairs nerve

repair processes, such as oligodendrocyte precursor cells (OPCs)

differentiation and synapse regeneration (30, 31). By removing

myelin debris, lipid peroxidation of myelin-derived lipids in the

injury centre is prevented and the inhibitory microenvironment is

partially deregulated. Previous studies have demonstrated that the

function of macrophages after SCI is significantly influenced by

myelin debris, depending on the type and timing of stimulation, but

this issue remains highly contentious (2, 32, 33).. Membrane lipids

are classified into three major groups: cholesterol, phospholipids

(e.g., plasminogen, lecithin, sphingomyelin), and glycolipids (e.g.,

galactose ceramide). Unlike most biological membranes

(25%:65%:10%), myelin has a distinctive lipid composition, with a

high proportion of cholesterol and glycolipids in a 40%:40%:20%

ratio (cholesterol, phospholipids, and glycolipids) (34), and a total

lipid dry weight of 70-75% (35, 36). This creates a unique lipid-rich

environment. Dysfunctional lipid metabolism in macrophages,

coupled with the lipid-rich environment, leads to the

accumulation of intracellular lipids in macrophages, resulting in

the formation of cell types resembling the specialised macrophages

called foam cells in atherosclerotic plaques (Figure 1), which are

also referred to as foam cells after spinal cord injury. Foam cell is a

term widely used in the study of diseases such as atherosclerosis and

tuberculosis. Foam cell formation is induced by various factors,

such as uncontrolled uptake of modified low-density lipoprotein

(LDL), increased cholesterol esterification, and impaired cholesterol

release mechanisms (37). Macrophages internalize modified

lipoproteins via surface scavenger receptors (SRs) like CD36 and

SR-A. These SRs are macrophage PRRs that recognize and bind

oxidized LDL, thereby promoting foam cell formation by

internalizing these lipoproteins. Coated-pit endocytosis,

phagocytosis and pinocytosis also mediate lipoprotein

internalization. After internalization, cleared lipoproteins are

transported to endosomes or lysosomes for degradation, where

cholesteryl esters (CE) are hydrolyzed by lysosomal acid lipase

(LAL) to unesterified free cholesterol (FC). Free cholesterol is

transported to the endoplasmic reticulum where it is re-esterified

by acyl-CoA: cholesterol acyltransferase 1 (ACAT1) and stored as

cytoplasmic lipid droplets. These lipid droplets look like bubbles

within macrophages, hence the name foam cells. The foam cell
Frontiers in Immunology 03
formation process above has been detailed in articles (38, 39). It is

noteworthy that while most studies have focused on macrophages

as the main or only source of foam cells, the role of smooth muscle

cell-derived foam cells in atherosclerosis has gained more attention

(40). This article focuses on macrophage-derived foam cells, but the

reader should be aware that foam cells are defined by their

morphology and not by their precursor cells.

These foam cells are typically observed in the injury area 1 week

after SCI in mice and persist for at least 4 weeks (2).. Early studies

suggested that the uptake of myelin residues biased macrophage

polarisation towards a beneficial anti-inflammatory phenotype (41),

but more recent studies have shown that foamy macrophages in SCI,

which lose their ability to phagocytose apoptotic cells and tissue

debris, activate NF-k B signalling, which promotes inflammation and

may contribute to further neurodegeneration (2, 3). The direction

and modes of intervention of foam cells will be discussed later.
4 Possible strategies for reducing
foam cell formation

Pathway analysis of genes involved in macrophage lipolysis

metabolism revealed that lipolysis metabolic processes were a

major function of macrophages seven days after spinal cord injury

(compared to three days after spinal cord injury), with hubs including

TNF, CD36, LPL, PPARg, and ABCA1, among which the LXR/RXR

pathways (CPs) were considered to be one of the most enriched

pathways (42). Except for TNF expression, which was decreased, all

gene-enriched pathways were increased, and the above receptors and

pathways involved in phagocytosis of tissue debris and lipid efflux

might be a key direction in dealing with foam cells (Figure 2). To

discuss the direction of foam cell intervention, we first need to clarify

the functional differences between MDMs and microglia after spinal

cord injury. Recent lineage tracing studies have indicated that almost

all tissue-resident macrophages in adult mice originated from

embryonic yolk sac progenitor cells and that their numbers were
FIGURE 1

Causes and negative effects of foam cell formation after spinal cord
injury. Spinal cord injury results in massive cell death and the
accumulation of cellular and myelin debris at the lesion site, creating
a lipid-rich environment. Macrophages can phagocytose these
debris and promote a regenerative milieu that stimulates axonal
myelination and repair. However, chronic exposure to the lipid-rich
environment and impaired cellular lipid metabolism lead to the
formation of foam cells, which produce pro-inflammatory cytokines
and exhibit reduced phagocytic activity. These factors adversely
affect neural recovery after spinal cord injury. The Figure was partly
generated using Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 unported license.
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maintained by local proliferation throughout the organism’s life cycle

(43–45). It is worth noting that there was confusion about the

distinction between MDMs and microglia in previous studies due

to the difficulty in distinguishing them from each other. The two

types of cells showed similarities in morphology as well as gene and

cell surface protein expression after activation, but the two types of

cells differed in the timing of activation, location, and efficiency of

processing of myelin debris after SCI. After SCI, as a result of primary

mechanical injury and secondary death due to apoptosis, the number

of microglia at and near the site of injury was significantly reduced

(46). However, surviving microglia responded rapidly to ATP

released by damaged cells. They also responded to danger and

pathogen-associated molecular patterns (D/PAMPs) by releasing

inflammatory molecules and were in turn affected by inflammatory
Frontiers in Immunology 04
molecules. Once activated, microglia could proliferate, migrate, and

perform various effector functions including phagocytosis and

proliferation of neuroinflammation by secreting additional

chemokines and cytokines, and had better myelin debris processing

efficiency compared to MDMs (46, 47). However, MDMs that

subsequently infiltrated into the injury area inhibited microglia

phagocytosis and gradually replaced microglia as the primary

phagocytes after injury (48). Although the reason why microglia

were less susceptible to foam cell formation remained to be explored,

their potential as a target for intervention in the regulation of lipid

metabolism after spinal cord injury had been well demonstrated.

Since MDMs were the main phagocytes that formed foam cells, the

potential interventions discussed subsequently would mainly target

MDMs cells.
FIGURE 2

Macrophage Ox-LDL uptake and cholesterol efflux pathways. Macrophages internalize modified LDL (mainly Ox-LDL) via MSR1, CD36, and LOX-1
receptors. Ox-LDL is degraded in lysosomes to release lipids such as free cholesterol and fatty acids. Excess cellular cholesterol activates several
transcription factors, including PPARg, LXRs, and RXRs. Activated PPARg and LXRs upregulate the expression of their target genes by heterodimerizing
with RXRs and binding to the PPARE and LXRE response elements, respectively. The PPARg transcriptome further enhances the expression of LXRs
and CD36, while the LXR transcriptome induces the expression of the cholesterol efflux transporters ABCA1 and ABCG1. ABCA1 is a full-length
membrane transporter, while ABCG1 functions as a dimer. Both proteins have two nucleotide-binding and two transmembrane domains and use
ATP hydrolysis to transport substrates. ABCA1 mediates the efflux of cholesterol (chol) and phosphatidylcholine (PC) to ApoA-I or ApoE, forming
preb-HDL, and ABCG1 mediates the efflux of cholesterol, sphingomyelin (SM), and phosphatidylcholine to preb-HDL or HDL (only the cholesterol
transporter portion is highlighted in the figure). Cholesterol in preb-HDL and HDL is esterified by lecithin-cholesterol acyltransferase (LCAT) to form
mature HDL. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0
unported license (https://creativecommons.org/licenses/by/3.0/).
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4.1 Decreased lipid phagocytosis
by macrophages

As mentioned earlier, a major cause of foam cell formation after

SCI is the high lipid content of the tissue debris and cells

phagocytosed by macrophages. One study found that about half of

the neutral lipids in foamy macrophages originated from non-myelin

sources by culturing macrophages with spinal cord homogenates,

suggesting that the conclusions of in vitro experiments on myelin-

induced foamy cells might be controversial and heterogeneous (49).

Therefore, modulating macrophage phagocytosis to reduce myelin

and other lipids could be a way to reduce foam cell formation. Among

the various subtypes of the scavenger receptor (SR) family, SR-A type

I and II, CD-36 and LOX-1 have been found to be involved in foam

cell formation through uptake of modified LDL (Figure 2) (50). In

vitro studies have shown that SR-A and CD36 on macrophages

account for up to 75% to 90% of oxidized low-density lipoprotein

(Ox-LDL) or acetylated low-density lipoprotein (Ac-LDL) uptake,

and both have been extensively studied in spinal cord injury (51).

LOX-1 has been less studied in relation to spinal cord injury, but its

role in foam cell formation has been systematically investigated in

vitro and in diseases such as atherosclerosis. Therefore, a detailed

discussion of the phagocytosis and regulation of foam cells mediated

by these three scavenger receptor subtypes in spinal cord injury will

follow. It is worth noting that myelin sheaths and associated tissue

debris after spinal cord injury have an inhibitory role in neural repair,

and the formation of foam cells after phagocytosis of tissue debris by

macrophages can also have a negative role in neural repair, implying

that simply decreasing or increasing macrophage phagocytosis may

not be a perfect and reasonable intervention. Nevertheless, several

studies manipulating macrophage phagocytosis have obtained

positive results. This may be attributed to various factors, such as

the phagocytic capacity of different cell types within the CNS.

Macrophages, as “specialized” phagocytes, mediate the phagocytosis

of most tissue debris after spinal cord injury. However, some “non-

specialized” phagocytes (e.g., fibroblasts, astrocytes, neurons, and

oligodendrocytes) also contribute to this process. In addition,

macrophage phagocytosis-associated receptors may have multiple

functions that require further exploration.

4.1.1 CD36
CD36 is a type 2 cell surface scavenger receptor widely expressed

on many immune and non-immune cells. It acts as both a signalling

receptor in response to DAMPs and PAMPs and a long-chain free

fatty acid transporter. Recent studies have indicated that CD36 can

integrate cell signalling pathways and metabolic pathways through its

dual functions, thereby influencing immune cell differentiation and

activation, and ultimately cell fate. CD36 recognises and binds with

high affinity to Ox-LDL and to specific oxidised phospholipids

fractions on the surface of some apoptotic cells (52–54). Binding

and uptake of ox-LDL by human macrophages lacking CD36 is

reduced by 40% (42). Knockout of CD36 in spinal cord injured mice

resulted in reduced lipid droplet content in macrophages, reduced

foamy macrophage formation, reduced area of injury, and better

functional recovery compared to wild-type mice (42, 55). CD36
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deletion can also lead to a reduction in vascular ERSR, which

improves functional recovery after spinal cord injury (55). A recent

study showed that CD36 is expressed in fibroblasts, a major cellular

component of glial scar formation in the spinal cord. Jun is a key

factor in the formation of pathologic cutaneous scarring, and CD36 is

a downstream effector (56). Increased expression of Jun in fibroblasts

after SCI and induced expression of CD36 activated fibroblasts to

form in the mouse scarring, implying that CD36 is one of the

regulators of the glial scarring response after SCI (57). CD36

knockout improves the area of injury at 1 and 3 days post-injury in

terms of vascular supply, it is noteworthy that the angiogenic

response after spinal cord injury in wild-type mice does not begin

until 3 dpi (58), so this early vascular improvement may be due to

increased vascular retention or it may be related to an increase in

vascular perfusion within the injured area as a result of the

deregulation of the negative regulatory effect of CD36 on

endothelial cell nitric oxide synthase and cyclic guanosine

monophosphate (cGMP) production (59, 60). Notably, the role of

CD36 for endothelial cells and angiogenesis and vascular repair

remains unclear, with studies showing that blockade of the CD36

signalling pathway increases proliferation of endothelial cells from

the CNS (61), with an improved angiogenic response consistent with

the known antiangiogenic function of CD36, and studies showing

that endothelial cell CD36 deficiency prevents normal angiogenesis

and vascular repair (62). CD36 antagonists have been extensively

explored. For example, salvianolic acid B, curcumin, and

sulfosuccinimidyl oleate have been found to act as CD36

antagonists (63). In addition to these well-defined molecules, herbal

extracts such as shibaosaponin A, epimedium glycosides,

andrographolide, resveratrol, and quercetin have also been shown

to modulate CD36 (57, 64, 65).

In summary, blocking the CD36 signalling pathway may reduce

spinal cord injury lesion size, attenuate inflammation, decrease

vascular ERSR, enhance acute heterotopic vascular proliferation

and microvascular perfusion, improve scarring, and diminish

foamy macrophage formation. These effects suggest that CD36

may be a promising target for SCI intervention.
4.1.2 CD204-MSR1 (scavenger receptor A - SR-A)
Macrophage scavenger receptor 1 (MSR1) belongs to the

scavenger receptor (SR) family and has three isoforms (1, 2, and

3) that are generated by alternative splicing of the MSR1 gene.

These isoforms have distinct functions, but they share a common

structure as macrophage-specific trimeric integral membrane

glycoproteins. To avoid confounding effects, the study of MSR1 as

a whole will be addressed in subsequent studies, but researchers

should consider the functional differences among the isoforms

when investigating MSR1. MSR1 is a receptor that is mainly

expressed on immune cells and vascular endothelial cells, and it

recognises and phagocytoses modified LDL. When LDL undergoes

modifications, such as oxidation or glycosylation, within the

vascular wall, it is recognised by MSR1 and taken up by

macrophages, resulting in foam cell formation due to the

accumulation of intracellular cholesterol. This is considered a key

step in the pathogenesis of atherosclerosis, as it triggers the
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secretion of chemokines and pro-inflammatory cytokines (66, 67).

Similar to other SRs, MSR1 binds, internalises and degrades various

ligands, including heat shock proteins, surface molecules of bacteria

and viruses (68, 69). These ligands are foreign substances that are

recognised by the innate immune system, thus MSR1 acts as an

innate pattern recognition receptor that mediates cellular processes

such as host defence, phagocytosis and apoptosis. Besides its role in

the immune response, MSR1 also participates in cellular functions

such as lipid metabolism and cell adhesion, thereby influencing the

functional regulation of several organs and diseases. For instance,

MSR1 has been implicated in Alzheimer’s disease, tumours,

myocardial infarction, coronary artery disease, etc., with either

beneficial or detrimental effects. MSR1 is a receptor of broad

biological significance, as it plays an important role in the

development and progression of various diseases (70–74).

Reichert et al. reported that MSR1 facilitates the phagocytosis of

peripheral nerve myelin fragments in vitro (75). In spinal cord

injury mice, the knockout of the MSR1 gene did not affect the

macrophage infiltration in the injury area compared to wild-type

mice, but MSR1 WT mice had a large number of myelin debris

patches in macrophages. This suggests that the formation of foamy

macrophages is restricted in mice lacking MSR1, and that MSR1

promotes foamy macrophage formation and exacerbates the

detrimental effects of spinal cord injury. Since the phagocytosis of

myelin debris by macrophages is closely related to lipid metabolism,

further experiments are required to verify whether MSR1 influences

the metabolism and efflux of myelin lipids (76).
4.1.3 LOX-1
Lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1)

is also known as the Ox-LDL receptor. Ox-LDL interacts with the

transmembrane glycoprotein LOX-1 and affects various cell types,

such as endothelial cells, platelets, macrophages, fibroblasts and

smooth muscle cells (77). Under normal conditions, LOX-1

expressed in macrophages accounts for 5-10% of Ox-LDL uptake.

However, in pro-inflammatory states, LOX-1 expression is

increased and contributes to approximately 40% of Ox-LDL

turnover in macrophages (78, 79). Abnormal conditions, such as

activation of pro-inflammatory pathways, hyperglycemia and

hypertension, enhance LOX-1 expression and Ox-LDL uptake,

leading to lipid accumulation and foam cell formation (80, 81).

Several studies have shown that inhibition or down-regulation of

macrophage LOX-1 expression reduces foam cell formation and

lipid accumulation (82–84), suggesting its potential role in

regulating foam cell formation and inflammatory factor

expression in SCI. LOX-1 receptor expression is elevated at 14

days after spinal cord injury (85), but the expression pattern of

LOX-1 at different time points after spinal cord injury is not well

defined, and there is a lack of studies on the therapeutic effects of

LOX-1 receptor intervention on SCI. This may be because the two

receptors, CD36 and CD204, have received more attention, while

the role of LOX-1 receptor has been overlooked. In conclusion, the

observation and study of the expression and regulation of LOX-1

receptors may be important for understanding the formation of

foam cells in the injury centre after spinal cord injury.
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4.2 Enhancement of reverse cholesterol
transport mechanisms in macrophages

Foam cells are formed when macrophages ingest excessive

amounts of lipids after spinal cord injury. The prolonged

persistence of foam cells after spinal cord injury indicates that the

lipids accumulated in foam cells are not properly cleared (2). The

persistence of foam cells impairs the subsequent phagocytic activity

of macrophages and mediates chronic inflammation and poor

neurological recovery. Therefore, besides regulating macrophage

phagocytosis, enhancing cholesterol efflux from macrophages in the

spinal cord injury site may be a strategy to address foam cell

formation and accumulation. Generally, there are four cholesterol

efflux pathways from cells: simple diffusion, scavenger receptor B1

(SR-BI, which belongs to the same family as CD36 but has different

functions) mediated facilitated diffusion, and ATP-binding cassette

transporters A1 (ABCA1) and G1 (ABCG1) in cooperation with

extracellular lipid-poor apolipoproteins or more mature high-

density lipoprotein (HDL) mediate cholesterol efflux (86). The

role of SR-B1 in macrophage cholesterol efflux remains

unresolved and is beyond the scope of this review. Here, we focus

on ABCA1 and ABCG1, as well as apolipoprotein A-I (ApoA-I) and

apolipoprotein E (ApoE), which are key mediators of cellular

cholesterol efflux (Figure 2). We also discuss their relevance to

spinal cord injury, where some studies have investigated their roles.

It is noteworthy that two key issues should be considered when

investigating cellular cholesterol efflux: the first is the existence of

species variability in the cholesterol efflux pathway, which implies

that the same receptor mediating cholesterol efflux may have

different roles in different species; and the second is that the

blood-brain barrier separates the CNS from the periphery, which

allows for a different mechanism of cholesterol metabolism and

cycling in the CNS compared to that of the peripheral tissues, such

as the different structure and apolipoprotein content of HDL

particles. The differences between the two should be taken into

account when choosing and performing interventions.

4.2.1 ABCA1 and ABCG
ABCA1 is an intact membrane transporter protein, ABCG1 is a

half-transporter and needs to function as a dimer biologically. At

the cellular level, macrophage-like cell lines from mouse or human

origin consistently express ABCA1 and ABCG1 proteins, which are

both important for maintaining cellular cholesterol homeostasis

(87). The basal levels of ABCA1 and ABCG1 proteins are low in

macrophages, but they are induced by cholesterol loading and

modulated by HDL-mediated cholesterol efflux (88–90). Reverse

cholesterol transport (RCT) is one of the major pathways for the

removal of excess cholesterol from tissues (91). In this process,

ABCA1 mediates the initial transport of cellular cholesterol to

ApoA-I to form nascent HDL particles, and ABCG1 facilitates the

subsequent sustained transport of cholesterol to HDL for further

maturation (92). When mouse peritoneal macrophages are fully

loaded with cholesterol and treated with diluted human serum,

ABCA1 mediates approximately half of the cholesterol output and

ABCG1 mediates 20% of the cholesterol output (93). Considering
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the critical role of ABCA1 and ABCG1 in mediating intracellular

cholesterol export, combined up-regulation of the expression of

these two transporter proteins may be more effective in inhibiting

foam cell formation. LXR, a member of the nuclear receptor

superfamily, plays a key role in the stimulation of ABCA1

transcription. LXR binds to RXR to form a specialized

heterodimer. The LXR/RXR complex then binds to the promoter

region of the ABCA1 gene, inducing its expression and playing a

similar role to ABCA1 during ABCG1 transcription, a good way to

regulate the expression of both proteins. It is noteworthy that the

expression of ABCA1 in macrophages at the lesion site was

significantly reduced after 7 days of spinal cord injury, suggesting

a decrease in the capacity of macrophage RCT (2), and that this

down-regulation is associated with the formation of foam cells,

whereas the expression of the ABCG1 protein after spinal cord

injury is still unknown. Similarly, several studies have observed and

regulated the expression of ABCA1 protein after spinal cord injury:

biosignature analysis showed that ABCA1 is a key gene closely

associated with immune cell infiltration and may contribute to the

pathogenesis of ischemic or hypoxic SCI by regulating vascular

injury, inflammation, and immune infiltration (94). Atorvastatin

indirectly upregulates ABCA1 through activation of PPAR-g and

promotes functional recovery (95). Allicin activates peroxisome

proliferator-activated factor receptor (PPAR-g), an inducer of

ABCA1, stimulating macrophage lipid efflux and reducing foam

cell formation (96). Whereas little research has been done on

ABCG1 protein after spinal cord injury compared to ABCA1

protein, which may be related to the species-specific variability of

its cholesterol efflux action, the important role of ABCG1 protein in

RCT implies that it is likely to be one of the key targets for foam cell

intervention after spinal cord injury.

4.2.2 Apolipoprotein A-I
As discussed above, ApoA-I is a protein component of HDL

that mediates reverse cholesterol transport. Although it is present in

cerebrospinal fluid (CSF), its mRNA is not detected in the CNS,

suggesting that ApoA-I is not synthesised in the brain and that it

can enter the CNS with HDL via SR-BI (belonging to the CD36

family) mediated uptake (97). In contrast to ApoJ, ApoD, ApoA-II

and ApoA-IV, which are present in the CNS in low abundance,

ApoA-I (0.3.7 ± 0.0.8 mg/dl) and ApoE (0.3 ± 0.2.1 mg/dl) are the

most abundant apolipoproteins in the CSF (98–100). ApoA-I has

been shown to have a role in CNS inflammation and myelin

regeneration (101–104). After spinal cord injury, ApoA-I

expression is upregulated in injured spinal cord tissues (105). PPI

network analysis showed it to be one of the 10 most altered core

proteins 1 week after SCI (106), and changes in ApoA-I in the

cerebrospinal fluid correlate with the severity of SCI injury,

implying that ApoA-I may be a potential target for intervention

after spinal cord injury (107). Monocytes and macrophages have the

ability to synthesise and secrete endogenous ApoA-I (108). Two

lipid-poor ApoA-I molecules bind ABCA1 dimers, allowing the

transport of lipids in macrophages as high-density lipoproteins

(HDL) (109). Recombinant exogenous human ApoA-I in mouse

macrophages increased cholesterol efflux from macrophages and
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reduced the development of atherosclerosis, suggesting that

macrophage-specific ApoA-I expression plays an important role

in the prevention of atherosclerotic disease (110–112). Similarly,

ApoA-I may be important for processing intracellular lipids in

macrophages after spinal cord injury. Currently, there is still no

systematic summary of ApoA-I expression levels after spinal cord

injury, and there are few relevant interventions. An ApoA-I peptide

mimetic made from D-amino acids, D-4F, improved HDL-

mediated cholesterol efflux from macrophages and reduced foam

cell formation in spinal cord injury (113). Notably, given the

synergistic role that ABCA1 and ABCG1 proteins play with

ApoA-I and, as subsequently described, ApoE during lipid efflux,

their simultaneous intervention may have a better effect on foam

cell formation and accumulation.

4.2.3 Apolipoprotein E
ApoE is a well-characterised lipoprotein that is expressed in

several organs of the body, with the highest levels of expression in

the liver, followed by the CNS, and it can also be synthesised by

other tissues including monocytes (such as macrophages). The

main cell type expressing ApoE in the CNS is astrocytes, while

microglia also express it to some extent (114, 115). ApoE is involved

in various activities including lipid transport, synaptic growth and

neuroplasticity, and has been shown to play an important role in a

variety of neurological diseases (116–120). Previous studies have

shown that APOE4 is associated with poorer neurological recovery

and longer rehabilitation time in patients with traumatic cervical

spinal cord injury (121), s suggesting a potential role for ApoE in

spinal cord injury. ApoE expression was significantly increased

during the subacute phase of traumatic spinal cord injury in mice

(122, 123). Single-cell RNA sequencing showed that ApoE was the

most up-regulated gene expressed in macrophages and microglia

during the subacute and chronic phases, and also ApoE was a hub

gene for macrophages and microglia during the subacute and

chronic phases of SCI (124). These results suggest that ApoE

plays an important role in macrophages and microglia in the

subacute and chronic phases of SCI. Deficiency of ApoE

exacerbates the inflammatory response and mediates poor

functional recovery after spinal cord injury (122, 124, 125), which

is related to the leakage of macromolecules, such as inflammatory

cells and immune proteins, from the blood-spinal cord barrier due

to the increased permeability caused by the ApoE deficiency, and

the direct effect of ApoE on the immune response. ApoE is the main

cholesterol carrier involved in lipid efflux from CNS cells (126).

Under normal conditions, the ABCA1 transporter protein interacts

with lipid-poor/free ApoA-I, which acquires cellular PL and FC to

form nascent HDL and initiate the RCT (127). imilarly, in the CNS,

ABCA1 interacts with lipid-poor/free ApoE to form HDL that is

structurally distinct from ApoA-I-HDL (128), and it is recognised

that HDL formed by different ApoE isoforms (ϵ2, ϵ3 and ϵ4) have
different roles in the CNS, which has been particularly evident in

studies related to Alzheimer’s disease (129). Transmission electron

microscopy observations revealed an increase in the number of lipid

droplets and dense lysosomal material in macrophages and

microglia in ApoE-/- mice (124), suggesting that ApoE may be a
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therapeutic target to promote the restoration of lipid metabolism

and to reduce foam cell formation after spinal cord injury. Notably,

the molecular size and structure of ApoE dictate that it is difficult to

cross the blood-brain barrier, and thus exogenous ApoE mimetic

peptides have been developed for use as alternative therapies, which

retain the anti-inflammatory and neuroprotective effects of natural

ApoE proteins but can still cross the blood-brain barrier (120, 130).

The neuroprotective effects of exogenous apoE mimetic peptides

have now also been demonstrated in several models of neurological

disease including spinal cord injury (116, 120, 124, 131–133). In

conclusion, endogenous ApoE has important neuroprotective

effects after spinal cord injury and exogenous apoE mimetic

peptides may be a new promising neuroprotective agent with the

potential to inhibit foam cell formation after spinal cord injury.
5 Discussion

After spinal cord injury, the clearance of tissue debris is

important for the inflammatory process and the nerve repair

process. However, the clearance of tissue debris is hindered by the

formation of foam cells. Therefore, the effective regulation of the

phagocytosis and metabolic profiles of MDMs for the smooth

clearance and metabolism of tissue debris is a key issue for

promoting nerve repair after spinal cord injury. We propose two

intervention strategies targeting foam cells: (I) reducing the

phagocytosis of lipids by macrophages: the phagocytosis of lipid-

rich tissue debris (including but not limited to myelin debris) leads to

lipid accumulation in macrophages, and this can be improved by

regulating or knocking down the relevant lipid uptake receptors (e.g.,

CD36, CD204, LOX-1); (II) regulating the RCT of macrophages: this

process mainly involves ApoA-I, ApoE, and ABCA1 and ABCG1.

Accelerating the lipid efflux from macrophages can reduce the

excessive accumulation of intracellular lipids and thus prevent the

transformation of macrophages into foam cells. It should be noted

that the intervention strategies for foam cells are not limited to the

ones proposed here; for example, since CE can only be transported to

the extracellular compartment after being hydrolysed to FC, the

hydrolysis of CE in macrophages limits the cholesterol efflux to some

extent, and thus the intervention of related enzymes may also have a

positive effect; moreover, since FC available for efflux is mainly

transported to the autophagosome via CE in the autophagosome

translocation to lysosomes to be supplied by hydrolysis by acid lipase

rather than by hydrolysis by neutral cholesterol esterase, the

induction of macrophage autophagy or the modulation of

lysosomal function may also be effective intervention strategies.

Traditionally, foam cell formation has been mainly linked to

cholesterol uptake via natural and modified LDL, and the high

cholesterol levels in the microenvironment due to the unique lipid

composition of myelin sheaths after spinal cord injury have led to the

article’s focus on cholesterol efflux. However, other lipids, such as

nonesterified fatty acids and triacylglycerol (TAG)-rich lipoproteins

(very low-density lipoproteins and chymotrypsin), can also interact

with macrophages. Moreover, the intracellular composition of lipid

droplets in foam cells after spinal cord injury and the proportion of

lipid components phagocytosed and accumulated by macrophages
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are unclear, as there is a lack of analysis and studies on these aspects.

Therefore, besides the foam cell treatment methods summarized in

this article based on cholesterol efflux, we encourage researchers to

explore more diverse approaches to foam cells after spinal cord

injury. In conclusion, although many studies have obtained positive

results, further studies are required to understand the differential

effects of foam cell intervention and its potential as a pharmacological

target for SCI repair.
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