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Rosacea is a chronic skin inflammatory disease with a global prevalence ranging

from 1% to 20%. It is characterized by facial erythema, telangiectasia, papules,

pustules, and ocular manifestations. Its pathogenesis involves a complex

interplay of genetic, environmental, immune, microbial, and neurovascular

factors. Recent studies have advanced our understanding of its molecular

basis, focusing on toll-like receptor (TLR) 2 pathways, LL37 expression,

mammalian target of rapamycin (mTOR) activation, interleukin (IL)-17 signaling,

transient receptor potential vanilloid (TRPV) functions, and the Janus kinase-

signal transducer and activator of transcription (JAK-STAT) pathways. LL37-

associated signaling pathways, particularly involving TLR2 and mTORC1, are

critical in the pathogenesis of rosacea. LL37 interacts with signaling molecules

such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), nuclear factor

kappa B (NF-kB), inflammasomes, C-X-C motif chemokine ligand 8 (CXCL8),

mas-related G-protein-coupled receptor X2 (MRGPRX2)-TRPV4, and vascular

endothelial growth factor (VEGF). This interaction activates macrophages,

neutrophils, mast cells, and vascular endothelial cells, leading to cytokine

release including tumor necrosis factor-alpha (TNF-a), IL-6, IL-1b, C motif

chemokine ligand (CCL) 5, CXCL9, and CXCL10. These processes contribute to

immune response modulation, inflammation, and angiogenesis in rosacea

pathophysiology. The IL-17 signaling pathway also plays a crucial role in

rosacea, affecting angiogenesis and the production of inflammatory cytokines.

In addition, recent insights into the JAK/STAT pathways have revealed their

integral role in inflammatory and angiogenic mechanisms associated with

rosacea. Rosacea treatment currently focuses on symptom management, with

emerging insights into these molecular pathways providing more targeted and

effective therapies. Biological agents targeting specific cytokines, IL-17 inhibitors,

JAK inhibitors, and VEGF antagonists are promising for future rosacea therapy,

aiming for enhanced efficacy and fewer side effects. This review provides a

comprehensive overview of the current knowledge regarding signaling pathways

in rosacea and potential targeted therapeutic strategies.
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1 Introduction

Rosacea is a common chronic skin inflammatory disease affecting

1% to 20% of the global population (1). It is characterized by various

signs and symptoms, including erythema, telangiectasia, papules,

pustules, and flushing with burning and stinging sensations on the

central face (2). Rosacea is categorized into four subtypes:

erythematotelangiectatic rosacea (ETR), characterized by persistent

erythema and telangiectasia on the central face; papulopustular

rosacea (PPR), presenting with persistent facial erythema, papules,

and pustules; phymatids rosacea (PhR), marked by thickened skin and

an irregular surface texture; and ocular rosacea (3). A key hallmark of

rosacea is its hypersensitivity to various stimuli like temperature

changes, ultraviolet light (UV), emotional changes, and certain foods

such as spicy food (4). Rosacea often impacts the facial area,

significantly affecting patients’ self-esteem and mental health, and is

associated with systemic diseases like hypertension, inflammatory

bowel disease, autoimmune disorders, and migraines (5).

Current research indicates that the pathogenesis of rosacea is

mainly due to the cross-talk of genetic and environmental factors

(4, 6). This includes immune dysfunction, chronic inflammation,

microbial imbalances, and vascular neurologic dysfunction (7).

Recent molecular studies have identified critical signaling

pathways in rosacea, highlighting the roles of toll-like receptor

(TLR)2, LL37 production (8), the interleukin (IL)-17 signaling

pathway (9), and the LL37- mammalian target of rapamycin

(mTOR) and Janus kinase-signal transducer and activator of

transcription (JAK-STAT) pathways (10, 11). These discoveries

are crucial for developing targeted treatments. Currently, the

treatments of rosacea are primarily symptombased, with effective

solutions still under research (12). This review provides a detailed

understanding of the signaling pathways involved in rosacea, as well

as the emerging targeted therapeutic strategies.
2 LL37-related signaling pathways

TLRs play a crucial role in recognizing pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) (13), triggering anti-pathogen responses,

including antimicrobial peptide secretion and proinflammatory

cytokine and chemokine production (14). TLR2, a primary pattern

recognition receptor, is significantly overexpressed in rosacea

patients’ keratinocytes, contributing to heightened skin sensitivity

to various stimuli (15). TLR2 is also expressed in sensory neurons,

and the TLR2 signaling pathway contributes to the mechanism of

neurological dysfunction in rosacea (16). Numerous studies have

confirmed that TLR2 responds to environmental stimuli such as

reactive oxygen species (ROS), microbial imbalance, Demodex mites,

UVB radiation, and temperature changes (17–19). Glucocorticoids

can increase TLR2 expression in epidermal keratinocytes, potentially

leading to glucocorticoid-induced rosacea-like dermatitis (20). And

these trigger factors can amplify TLR2 expression through enhanced

endoplasmic reticulum (ER) stress and activating transcription factor

4 (ATF4) upregulation (16). Upon TLR2 activation, Kallikrein 5

(KLK5) and total serine protease activity are released from
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keratinocytes, a process reduced by TLR2-deficient mice. TLR2’s

ability to release KLK5 is calcium-dependent, with TLR2 ligands

triggering a calcium influx that increases KLK5 release (15, 21). KLK5

is also mediated by Metalloproteinases (MMPs), which decompose

the extracellular matrix (22). MMP2 and MMP9 are associated with

the pathogenesis of rosacea, with elevated MMP-9 mRNA levels in

rosacea patients’ facial skin (17, 23, 24).

Cathelicidin, an antimicrobial peptide (AMP), acts as an

endogenous antibiotic (25). It is initially inactive and activated by

serine proteases into multiple active peptides. Specifically, KLK5, a

trypsin-like serine protease, is key in converting cathelicidin into LL37

by processing its precursor, hCAP18 (human cationic antimicrobial

protein of 18 kDa) (26). Research by Mylonas A. et al. have revealed

that KLK5 cleaves cathelicidin, producing peptides with increased

DNA binding and enhanced induction of type I interferons (IFNs) in

plasmacytoid dendritic cells (pDCs) (27). Cathelicidin expression is

regulated by vitamin D–dependent mechanisms involving the vitamin

D receptor, controlling human cathelicidin in various cell types, as well

as vitamin D-independent mechanisms that increase cathelicidin

expression in response to external stressors like infections, injuries,

or barrier disruption, often coinciding with ER stress (28–30). LL37 is

produced via the TLR2-KLK5 pathway in response to stimuli such as

temperature increase. Moreover, mTORC1, a serine/threonine protein

kinase, regulates cathelicidin expression in keratinocytes through a

positive feedback mechanism. LL37 binds to TLR2, activating

mTORC1 signaling and increasing LL37 expression in keratinocytes,

highlighting mTORC1’s vital role in LL37 amplification (10, 31, 32).

LL37 is central to rosacea pathogenesis, being overexpressed in rosacea

patients’ lesional skin (33–35). Intradermal injection of human LL37

in mice models induces inflammatory responses similar to rosacea,

making it a key model in rosacea research (36, 37). LL37 has multiple

functions, including immune response modulation, inflammation,

and angiogenesis (33, 38). It activates mast cells (MCs),

keratinocytes, neutrophils, and macrophages, leading to pro-

inflammatory cytokine production, leukocyte chemotaxis, MMP

expression, and angiogenesis (36, 39–42). LL37-associated signaling

pathways are shown in Figure 1.
2.1 LL37- MRGPRX2-TRPV4 pathway
in rosacea

LL-37, a potent chemoattractant, activates MCs in the

inflammatory cascades. Increased MC concentration and

degranulation, with a positive correlation between MC density

and rosacea duration (43). In MC-deficient mice, rosacea-like

symptoms are absent following LL37 dermal injection (44, 45).

Subramanian H. et al. identified LL37’s induction of MCs through

the Mas-related G-protein-coupled receptor-X2 (MRGPRX2) (46).

b-arrestin 2 (barr2) regulates this via extracellular Signal-Regulated
Kinase 1 and 2 (ERK1/2) phosphorylation and nuclear factor kappa

B (NF-kB) activation in mice, suggesting potential therapeutic

targets in rosacea (47). Sulk M. et al. observed an upregulation of

the transient receptor potential vanilloid (TRPV) 4 channel, co-

localized with MCs in rosacea patients (48). LL37 directly increases

TRPV4 expression in human MCs via MRGPRX2. This elevation in
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TRPV4 likely facilitates greater cation influx, raising intracellular

Ca2+ levels and priming MCs for continuous degranulation or

transgranulation (49, 50). Activated MCs release various cytokines,

including IL-1, transforming growth factor (TGF-b), tumor

Necrosis Factor-alpha (TNF-a), and vascular endothelial growth

factor (VEGF) (51). Additionally, MMP9 mRNA, a key MCmarker,

is upregulated in rosacea-affected skin, primarily near blood vessels

(45). Neutrophils, which are recruited following mast cell (MC)

activation, are a significant source of LL-37. This creates a feedback

loop that perpetuates MC activation and chronic cutaneous

inflammation in rosacea (52). Therefore, MCs are crucial in

cathelicidin-induced skin inflammation through their role in

cytokine and bioactive mediator secretion upon stimulation (53).
2.2 LL37-IL1b/IL17 pathway in rosacea

The NF-kB and the mitogen-associated protein kinase (MAPK)

signaling pathway are crucial in LL37mediated inflammation (54, 55).

LL-37 activates MAPK, leading to phosphorylation of ERK1/2 and

p38 kinases (56), and induces NF-kB-mediated gene expression (57,

58). These pathways play a central role in the pathogenesis of rosacea,
Frontiers in Immunology 03
as evidenced by increased p38 and ERK levels in ocular rosacea tissue

(59), upregulated MAPK pathways in PPR lesional tissue (60), and

elevated NF-kB activity in rosacea patients’ eyelid samples (61).

Furthermore, TLR signaling pathways also converge on MAPK and

NFkB-dependent gene expression (62). Importantly, the TLR2/

Myeloid differentiation factor-88 adaptor protein (MyD88)/NF-kB
is implicated in rosacea pathogenesis, as suggested by elevated

MyD88 levels in rosacea skin biopsies (63). Moreover, dietary

supplementation with n-3 PUFAs has been shown to ameliorate

skin inflammation in an experimental rosacea model by inhibiting

this pathway (64). Deng Z. et al. noted that LL37 initiates NF-kB
activation, possibly through mTORC1 signaling (10). Additionally,

UV radiation-induced ROS in keratinocytes activates MAPK and

NF-kB pathways, influencing inflammatory signaling (65, 66). These

pathways control inflammatory cytokine gene expression in immune

cells (67, 68). Specifically, the expression of two NF-kB target genes,

namely IL-1a and IL-1b, was elevated in rosacea (60, 69).

LL-37 also enhances the ability to release IL-1b by activating the

inflammasome (70). NLRP3 (NOD-, LRR- and pyrin domain-

containing protein 3) deficiency reduces LL37-induced rosacea-

like inflammation (39). NLRP3, an intracellular sensor, is

overexpressed in PPR subjects (71). The formation of the NLRP3
FIGURE 1

Mechanism of LL37 in Rosacea Pathogenesis. LL37 interacts with several key molecules, including Toll-like receptor 2 (TLR2), mechanistic target of
rapamycin complex 1 (mTORC1), chemokine (C-X-C motif) ligand 8 (CXCL8), and Mas-related G-protein coupled receptor member X2 (MRGPRX2)
linked to transient receptor potential vanilloid 4 (TRPV4). These interactions lead to the activation of various cell types such as macrophages,
neutrophils, T cells, mast cells, and plasmacytoid dendritic cells (pDCs). Activation of these cells results in the production of cytokines, playing a
critical role in inflammation, immune modulation, and angiogenesis in rosacea. The cytokines produced, such as IL-1b and TNF-a, contribute to the
inflammatory responses characteristic of rosacea. The figure showcases the crucial LL37-mediated pathways and their roles in the pathogenesis of
rosacea, emphasizing the complex interplay between different cell types and signaling molecules.
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inflammasome subsequently leads to the caspase 1-dependent

release of the pro-inflammatory cytokines IL-1b and IL-18 (72).

IL-1b emerges as a critical mediator in the inflammation

development in PPR (60). IL-18, an integral constituent of the

IL-1 cytokine family, is heightened in rosacea patients (73). TNF-a
signaling also upregulates IL-1b expression (60).

IL-1b serves as a co-stimulator of the proliferation of T-cells

and is linked to Th17 lymphocyte differentiation (74). Th17 cells,

active in rosacea, release proinflammatory cytokines, prominently

IL-17. In rosacea, T-cell-dominated lymphocytes infiltrate affected

skin (75), with consistently elevated IL-17 serum levels (76). Thus,

IL-17 plays a crucial role in rosacea pathogenesis, particularly in

PPR (77, 78). IL-17 has diverse functions. It activates VEGF-

induced angiogenesis and expansion, as shown in both in vitro

and in vivo studies (79). Obradovic´ H. et al. found that

recombinant mouse IL-17 induces MMP9 expression in mouse

myoblast C2C12 cells after IL-17 treatment (80).Furthermore, IL-17

stimulates vitamin-D3-induced LL37 production in keratinocytes

(81, 82). Remarkably, LL37 induces genes related to Th1/Th17

polarization (83). IL-17 also prompts the production of pro-

inflammatory cytokines, including TNF-a, IL-1b, IL-8, and IL-6

(84). Rosacea skin samples show increased expression of these

cytokines (85). Apart from Th17 cells, Th1 cells are also involved

in the pathogenesis of rosacea. Th1 cells secrete IFN-g, a potent

macrophage activator that classically activates human macrophages

into a pro-inflammatory (M1) phenotype in vitro (86). This

enhances the interaction between CD4+ T cells and the innate

immune system in the disease.
2.3 LL37-CXCL8 interaction in rosacea

LL37 induces the release of C-X-C motif Chemokine ligand

(CXCL) 8 (formerly known as IL-8) from keratinocytes, a crucial

chemotactic factor for neutrophils in rosacea (57, 87). Transcriptome

analyses showed increased CXCL8 expression in rosacea (88, 89).

Neutrophil migration is prompted by Demodex folliculorum and its

associated bacillus oleronius in rosacea (90). These neutrophil

pathways and proteins are central to rosacea’s inflammation, with

pustule development indicative of neutrophil infiltration (88).

Neutrophils play a vital role in microbial defense, neutralizing

threats through enzyme release, ROS synthesis, and inflammatory

mediator production (91). This influx of neutrophils, in turn,

precipitates the secretion of IL-17, thereby establishing a chronic

inflammation cycle in rosacea.
2.4 LL37-VEGF axis in
rosacea pathogenesis

Angiogenesis, facilitated by VEGF, is central to rosacea’s

hallmark symptoms of flushing and erythema (92). VEGF serves

dual roles in angiogenesis and inflammation (93). In facial redness,

VEGF, VEGF-R1, and VEGF-R2 are upregulated in the granular

layer and stratum corneum of keratinocytes, as well as in dermal

leukocytes including lymphocytes, macrophages, and plasma cells
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(94, 95). The VEGF polymorphism (+405C/G) is linked to rosacea

severity (96). CD31+ cells infiltrates are primary sources of VEGF,

driving angiogenesis (97). VEGF production by activated T cells

stimulates angiogenesis and promotes Th1 cell differentiation,

creating a feedback loop (98, 99). Additionally, UVB exposure

activates VEGF signaling, with VEGF-A intensifying vascular

sensitivity to UVB (100).

LL37 contributes to angiogenesis in rosacea. It activates

endothelial cells (ECs) and VEGF via FPRL1, promoting

angiogenesis (101). mTORC1 signaling mediates LL37-induced

angiogenesis, with activation noted in ECs of rosacea lesions and

LL37-induced rosacea-like mouse models (102). Furthermore, LL37-

induced type I IFNs from pDCs, overexpressed during rosacea flare-

ups, lead to an increased Th22/Th17 cytokine response (27).

Enhanced IL-22 expression and EC sensitization to IL-22 facilitate

aberrant angiogenesis (27). Moreover, TLR2 pathway overexpression

in keratinocytes augments proinflammatory cytokine and chemokine

expression, including IL-8, IL-1b, TNF-a, and C motif chemokine

ligand (CCL) 5, CXCL9, CXCL10, and CXCL11 (8). These elevated

levels of cytokines and chemokines result in the induction of vascular

hyper-reactivity (103).

A recent study investigated the role of Hippo signaling pathway,

specifically yes-associated protein (YAP) and transcriptional

coactivator with PDZ-binding motif (TAZ), in rosacea. The study

found alterations in these signaling molecules in rosacea patients,

suggesting their involvement in the development of new

angiogenesis within the skin. Furthermore, the study showed that

inhibiting YAP/TAZ reduced VEGF immunoreactivity, a marker of

blood vessel formation. These findings suggest that YAP/TAZ may

play a role in the mechanisms by which rosacea causes abnormal

blood vessel growth (104).
3 JAK/STAT signaling pathway

The JAK/STAT pathways have a wide range of functions on

immune responses, cellular proliferation, differentiation, apoptosis,

and immunoregulation (105). JAK inhibitors are increasingly used

in treating inflammatory skin disorders (106). In LL37-treated

HaCaT cells, elevated JAK2 and STAT3 levels suggest a strong

connection between JAK/STAT signaling and rosacea ’s

inflammatory response. JAK2/STAT3 activation interacts with

TLR2 signaling (107), leading to increased production of pro-

inflammatory cytokines like TNF-a, IL-6, and IL-8 (108, 109).

Rosacea ’s inflammation and immune infiltration are

exacerbated by skin barrier disruption, partly due to STAT3-

mediated cytokine signaling in keratinocytes (110). STAT3 also

regulates degranulation in human and mouse MCs (111, 112).

ERK1/2-mediated mitochondrial STAT3 phosphorylation

contributes to MC degranulation (113). Blazanin N.et al. observed

that acute solar UV exposure activates pSTAT1-related signaling in

keratinocytes (114), indicating epidermal-derived STAT1’s role in

epithelial-immune communication in rosacea (115). The role of IL-

17 in increasing VEGF expression via JAK/STAT signaling has been

demonstrated in various contexts. IL-17 has been shown to induce

reactive astrocytes and upregulate VEGF through JAK/STAT
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signaling, as well as up-regulate VEGF in nucleus pulposus cells via

the same pathway. These findings suggest that similar mechanisms

might be relevant to the inflammatory response in rosacea

(116, 117).
4 Cutaneous neuroinflammation and
downstream signal pathways
in rosacea

Cutaneous neurogenic inflammation (CNI) is widely

recognized in rosacea, involving a series of signaling cascades. Ion

channels, particularly transient receptor potential (TRP) channels

in skin nerve fibers, activate upon stimuli, releasing vasoactive

neuropeptides that interact with keratinocytes, immune cells, and

blood vessels (118, 119). These neuropeptides exacerbate

inflammation and vascular dilation, translating nerve impulses

into signals for immune cells. Rosacea is a classic example of

CNI, which can be explained by the neurologic hypersensitivity in

patients with rosacea (120).

TRPV1, a critical cation channel primarily for Ca2+, is

involved in cutaneous neurogenic inflammation and pain (121).

TRPV1 expression increases in rosacea, especially in keratinocytes

(122), upon stimulation by factors like pH changes, high

temperatures, and UVB exposure (123, 124). Activated TRPV1

stimulates sensory neuron C fibers, releasing mediators that

contribute to neurogenic inflammation and pain through

elevated cytosolic Ca2+ levels. This leads to increased release of

neuropeptides such as pituitary adenylate cyclase-activating

polypeptide (PACAP), vasoactive intestinal peptide (VIP),

VEGF, adrenomedullin, calcitonin gene-related peptide (CGRP),

and substance P (SP), all implicated in rosacea pathogenesis (125–

127). These neuropeptides collaborate in processes like

inflammation, tissue damage, vasomotor disturbances, and

increased neurovascular reactivity (128, 129). Abnormal amino

acid metabolism, specifically glutamic and aspartic acids, can

enhance the formation of erythema and telangiectasia in

rosacea-like mouse skin through vasodilatory neuropeptides in

peripheral neurons and keratinocytes (130).

CGRP, a potent microvascular dilator, contributes to extensive

neurogenic vasodilation and mobilizes inflammatory cells (127). It

also modulates cutaneous immunity by affecting NF-kB expression

in immune cells (131). SP influences the emergence of edema in

rosacea through its interaction with neurokinin 1 receptors and

contributes to MCs degranulation, EC proliferation, and localized

vasodilation (118, 132). Intradermal PACAP38 administration

increases pain perception and skin blood flow, exacerbating

rosacea features like facial flushing and edema (125).

Mechanistically, PACAP acts as a potent vasodilator and

influences vascular responses in human skin (133). It upregulates

MC proteases (MMP-1 and MMP-9) and proinflammatory

cytokines, including TNF and CXCL2, and may affect the

pathway converting hCAP18 into LL37 (134). VIP enhances Th17

cell differentiation, shifting the T-helper cell response towards Th17
Frontiers in Immunology 05
(135). In brief, VIP, PACAP, and CGRP act as vasodilators and

mediate the production of inflammatory factors through interaction

with skin immune cells.

Furthermore, there is notable upregulation of TRPV expression

in rosacea, affecting not only neuronal but also non-neuronal cells.

Sulk M.et al. observed increased dermal immunolabeling of TRPV2

and TRPV3 and gene expression of TRPV1 in ETR. PPR shows

enhanced immunoreactivity for TRPV2 and TRPV4 and increased

TRPV2 gene expression (48). Zhou X. et al. identified that TPRV4

also interacts with transient receptor potential melastatin 8

(TRPM8) channels on immune cells or keratinocytes, which is

strongly associated with itching in rosacea both in experimental and

clinical settings (136).
5 Molecular targeted therapy
in rosacea

Rosacea treatment primarily focuses on symptom management,

including anti-inflammatory, immunomodulatory, microflora-

regulating, and capillary dilation strategies. Common treatments

include topical agents (azelaic acid, metronidazole, brimonidine,

ivermectin, tacrolimus, pimecrolimus) and oral antibiotics

(tetracycline, retinoids) (12, 137). However, increasing concerns

over antibiotic resistance and impacts on skin flora indicate a

pressing need for more effective and safer therapeutic alternatives

(138). Emerging insights into the signaling pathways involved in

rosacea mentioned above have led to the exploration of targeted

therapies, aiming for improved efficacy and fewer side effects.

Table 1 presents current therapeutic targets and corresponding

treatments for rosacea. However, the efficacy of these treatments

remains challenging to assess and compare due to insufficient

clinical studies.
TABLE 1 Summary of key signaling pathways and targeted treatments
in rosacea.

Pathway Targeted
molecule

Example References

LL37-related
signaling pathways

TLR2, KLK5,
LL-37, MMPs

Retinoids,
Azelaic acid,
Doxycycline,
Carvedilol,
Ivermectin

(139–143)

mTORC1
Rapamycin,
Celastrol

(10, 32)

Th1/Th17-IL17 Secukinumab,
Aspirin,
Thalidomid

(69, 145, 146)

VEGF Topical
dobesilate,
Tranexamic acid

(97, 147)

JAK/
STAT pathways

JAK2, STAT3 Tofacitinib (11, 148)
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5.1 Targeting TLR2-KLK5- LL37 and
mTOR-related pathways

Targeting the TLR2-KLK5-LL37 pathway is currently a key

strategy for the clinical treatment of rosacea. Retinoids, azelaic acid,

and doxycycline modulate this pathway, reducing KLK5 and

cathelicidin expression (139–141). Azelaic acid inhibits serine

protease activity, and doxycycline limits KLK5 activity by

inhibiting MMP9 (139, 142). Recent studies indicate that

Carvedilol and Ivermectin modulate this pathway, contributing to

their efficacy in rosacea treatment (143). A vitro study

demonstrated that e-Aminocaproic Acid (ACA) and Superoxide

Dismutase 3 (SOD3) are effective in modulating the TLR2-related

pathway (65, 144). Topical Rapamycin, an inhibitor of mTOR, has

shown clinical effectiveness in treating rosacea. In a controlled

study, 18 female rosacea patients were randomized to receive

either a placebo or 0.4% FDA-approved rapamycin ointment. The

results demonstrated that the group treated with rapamycin

experienced significant clinical improvement compared to the

placebo group, indicating the potential of mTORC1 inhibition as

a therapeutic strategy in rosacea (10). Furthermore, Celastrol and

Epigallocatechin-3-gallate (EGCG) also target mTOR-related

pathways, exhibiting anti-inflammatory effects (31, 32).
5.2 Targeting Th1/Th17-IL17 in rosacea

The development of biological agents targeting specific

cytokines offers a promising approach to treating rosacea.

Approved antibodies, including those against IL-1b and IL-17,

show potential as novel treatments. Specifically, secukinumab

targeting IL-17, a monoclonal antibody primarily used in

psoriasis, is under investigation for its effectiveness in treating

rosacea. A trial involving 24 patients with papulopustular rosacea

assessed the efficacy of secukinumab. The patients received 300 mg

of secukinumab weekly for 5 weeks, then monthly for 2 months, the

treatment led to significant improvement in papules and overall

severity in 17 of the participants, along with enhanced quality of life

(145). In addition, Aspirin and Thalidomide have shown potential

in moderating Th1/Th17 immune responses, further supporting the

strategy of targeting specific cytokine pathways in rosacea (69, 146).
5.3 Targeting VEGF in rosacea

VEGF inhibition has emerged as an effective strategy in rosacea

treatment. Topical dobesilate, known for inhibiting angiogenic factors,

has been shown effective in treating erythematotelangiectatic rosacea

(147). Tranexamic acid, too, has shown efficacy in reducing

microvessel density, VEGF expression, and associated inflammatory

markers in rosacea patients (97). Additionally, the role of erythroid

differentiation regulator 1 (Erdr1) in significantly inhibiting VEGF-

mediated angiogenesis has been documented (73).
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5.4 JAK/STAT pathway in rosacea

The JAK/STAT pathway plays a crucial role in the

pathogenesis of rosacea. Oral tofacitinib, a JAK inhibitor, has

demonstrated efficacy in mitigating facial erythema in rosacea. A

clinical study with 21 rosacea patients revealed that 71.4%

experienced a significant reduction in facial erythema following

oral tofacitinib treatment (11). Furthermore, tofacitinib’s

effectiveness in a case of steroid-induced rosacea underscores its

potential, particularly in cases resistant to conventional therapies

(148). Additionally, Artesunate has been identified as a promising

agent in reducing inflammation through its action on the JAK2/

STAT3 pathway (108).
6 Conclusion

This review highlights the complex signaling pathways involved

in rosacea and the advancement of targeted therapies. The targeted

modulation of the TLR2-KLK5-LL37 and mTOR pathways has

shown significant efficacy in clinical settings. VEGF inhibitors have

proven beneficial in treating erythematotelangiectatic rosacea.

Biological agents, specifically monoclonal antibodies like

secukinumab targeting IL-17, have been effective in treatment.

The role of the JAK/STAT pathway in rosacea’s pathology is

significant, with tofacitinib notably successful in reducing facial

erythema. Despite these developments, research in targeted

therapies for rosacea remains incomplete. Recognizing the

complexity of rosacea, which involves multiple signaling

pathways, is crucial for future advancements in treatment.
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