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CD24 is a protein found on the surface of cells that plays a crucial role in the

proliferation, invasion, and spread of cancer cells. It adheres to cell membranes

through glycosylphosphatidylinositol (GPI) and is associated with the prognosis

and survival rate of cancer patients. CD24 interacts with the inhibitory receptor

Siglec-10 that is present on immune cells like natural killer cells and

macrophages, leading to the inhibition of natural killer cell cytotoxicity and

macrophage-mediated phagocytosis. This interaction helps tumor cells escape

immune detection and attack. Although the use of CD24 as a immune

checkpoint receptor target for cancer immunotherapy is still in its early stages,

clinical trials have shown promising results. Monoclonal antibodies targeting

CD24 have been found to be well-tolerated and safe. Other preclinical studies

are exploring the use of chimeric antigen receptor (CAR) T cells, antibody-drug

conjugates, and gene therapy to target CD24 and enhance the immune response

against tumors. In summary, this review focuses on the role of CD24 in the

immune system and provides evidence for CD24 as a promising immune

checkpoint for cancer immunotherapy.
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1 Introduction

The cluster of differentiation (CD) is a cell surface marker that functions as a receptor

or ligand in cell signal transduction. The CD24 protein, which is encoded by the CD24 gene

and serves as a cell surface marker in the immune system, facilitates the distinction between

various immune cell types (1, 2). It plays an important role in regulating the activation and

differentiation of immune cells such as B cells, T cells, natural killer cells, and dendrite cells

(3). Furthermore, CD24 has been implicated in the pathogenesis of autoimmune diseases,

including rheumatoid arthritis (4), as well as infectious diseases, such as tuberculosis (5).

Anti-tumor immunotherapy is becoming an effective strategy for treating tumors due

to the development and clinical application of immune checkpoint drugs. These drugs

target programmed cell death receptor 1 (PD-1) and its ligand PD-L1, as well as cytotoxic T

lymphocyte associated protein 4 (CTLA 4). Recent research has shown that CD24, which is
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overexpressed on tumor cells, interacts with the inhibitory receptor

Siglec-10 on macrophages (6). This interaction promotes immune

escape of tumor cells and creates a new immune checkpoint in the

form of a “don’t eat me” signal (7, 8). Therefore, CD24 has become a

potential therapeutic target for cancer treatments, including

antibody drugs, gene therapy, chimeric antigen receptor (CAR) T

cell therapy, and more (9, 10). In addition, anti-tumor therapy

targeting CD24 can also affect the tumor microenvironment and

promote the immune system’s attack on the tumor, so CD24 may

also be a target for immunotherapy (11). Therefore, this article will

review the function of CD24 in immune system and its research

progress in tumor immunotherapy.
2 Structure and expression of CD24

In 1990, the CD24 gene of humans was first cloned, homolog to

the mouse CD24a (12). The gene sequence for CD24 can be found

in at least five different locations on the human genome, specifically

on chromosomes 1, 6, 15, 20, and Y (13). CD24 mRNA is

transcribed from the chromosome 6q21 (14). The human CD24

cDNA has an open reading frame of 0.24 kb and a 3’ untranslated

region of 1.8 kb. Additionally, a dinucleotide deletion in the 3’

untranslated region of CD24 can affect the stability of its

mRNA (13).

CD24 is a protein in humans that is initially produced as a

precursor protein containing 80 residues. After cleavage of both the

C-terminal glycosylphosphatidylinositol (GPI) anchored sequences

and N-terminal signal sequences, mature peptides with 32 residues

are produced (15). CD24 contains four potential N-linked

glycosylation sites and one or more O-linked glycosylation sites,

which means that the molecular weight of CD24 can range from 20

to 70 kDa depending on the tissue or cell type (16). The degree of

glycosylation of CD24 is highly variable and cell type-dependent.

Highly glycosylated CD24 must be anchored to lipid rafts in the

plasma membrane by GPI anchoring proteins.

Although CD24 does not have any secondary structure, it is

expressed on the surface of various cell types, including

hematopoietic cells (such as T cells, B cells, myeloid cells,

dendritic cells, and macrophages) and non-hematopoietic cells

(such as keratinocytes, muscle fibers, neurons, renal tubular

epithelial cells) (17).

Additionally, CD24 is highly expressed in different types of

normal tissues, particularly the thyroid (18), pancreas (19), and

esophagus, where it plays an essential role in regulating the

development and activation of cells. However, the expression of

CD24 differs in various species. For example, CD24 is expressed in

mouse red blood cells but not in human red blood cells. Therefore,

targeting CD24 is safer and doesn’t produce the same blood-related

adverse reactions as CD47.

Studies have shown that the levels of CD24 mRNA and protein

vary according to the stage of cell development or maturation.

CD24 is highly expressed in developing cells, but is almost absent in

mature cell stages (15). CD24 is known as the B-cell differentiation

antigen and is a highly variable glycosylated protein. It is

continuously expressed in B cells, from the very early stages such
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as progenitor or precursor B cells, to mature B cells until B cells are

stimulated by antigens and converted into plasma cells, which

secrete antibodies (20). CD24 plays a role in the initiation of

apoptosis in B cells by activating mitogen-activated protein kinase

(MAPK) through lipid rafts. In contrast to B cells, most

promyelocytes are CD24 negative, while mature myelocytes are

CD24 positive, indicating a specific association with granulocyte

maturation (21).

CD24 is a protein found on the surface of tumor cells that plays

a crucial role in regulating the growth of various types of cancer,

such as bladder cancer, liver cancer, B-cell lymphoma, prostate

cancer, ovarian cancer, small cell and non-small cell lung cancer,

breast cancer, and salivary gland cancer. Unlike CD47, which is also

a protein that signals “don’t eat me” to immune cells, CD24 has

limited distribution in healthy tissues but is highly expressed in

tumor tissues. CD24 binds to different proteins on the surface of

tumor cells, such as Siglec E, Siglec-10, L1 cell adhesion molecule,

and platelet selectin, but only CD24/Siglec-10 is associated with

phagocytic function (22). The expression of CD24 in tumor cells is

regulated by various factors, including T cell factor-4, secreted

frizzled related protein 1, non-coding RNAs, and hypoxia-

inducible factors.

At present, we possess a great deal of knowledge regarding

CD24 in B cells. However, we have comparatively less information

about its existence in different species and its expression in other

immune or non-immune cells. CD24 holds the structure of a typical

cell adhesion molecule, which anchors lipid rafts through glycosyl

inositol. It regulates signaling pathways both inside and outside cells

and plays a key role in the adhesion between cells and stroma (23).
3 Function of CD24 in immune system

3.1 CD24 function in the adaptive
immune system

CD24 was initially recognized as a marker for B cells. It is highly

expressed in B cell progenitors but not in terminally differentiated

plasma cells, as it is lost during the maturation of B cells (24). CD24

deficiency results in a decline in the number of immature B cells and

advanced pre-B cells in the bone marrow. Activated B cell’s CD24

acts as a co-stimulator to boost the clonal expansion of CD4 T cells.

CD24 triggers apoptosis in human B cells by transmitting signals

through a glycolipid-enriched membrane (GEM) domain/raft. This

signaling system includes linker for activation of T cells, Ras, Src

family PTKs, and trimer G protein (25). When CD24 cross-links, it

enhances the binding of CD24 to Lyn protein tyrosine kinase in

GEM, and the activity of Lyn kinase is increased. Furthermore, the

cross-linking of B cell receptor for Ag and CD24 has a synergistic

effect on apoptosis induction. CD24 is responsible for mediating B

cell apoptosis and empowering cancers with immune escape ability

by directly inhibiting T cell proliferation (26).

Similarly, CD24 is highly expressed on immature T cells, but its

expression decreases after T cell maturation. However, after T cell

activation, CD24 expression rapidly upregulates. The main

difference in the expression of CD24 between B cells and T cells
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is that CD24 expression upregulates on activated T cells. CD24

plays an essential role in the optimal activation and survival of

specific T cells in the peripheral lymphatic organs and central

nervous system (27).

In addition, the high expression of CD24 on tumor cells can

inhibit TCR and BCR-related kinases through the binding of Siglec-

10 on the surface of B cells and T cells. As a result, the activation of

TCR and BCR is blocked, ultimately promoting tumor immune

escape (28, 29).
3.2 CD24 function in the innate
immune system

The main function of CD24 expressed in all innate immune

cells (such as DCs and macrophages) is to present endogenous

antigens. On microglia, CD24 helps in the proliferation and

activation of pathogenic T cells (30). CD24 also plays a role in

facilitating tumor progression by supporting the escape of tumor

cells from macrophage-mediated phagocytosis through CD24/

Siglec-10 signaling pathway (26). This provides a nutritional

protective shield for the tumor cells. Additionally, the interaction

between CD24 and high expression of Siglec-10 in NK cells

mediates impaired NK cell function. However, it has been found

that NK cells can selectively eradicate cells with lower differentiation

levels, such as CD24+ ovarian cancer stem cells, by relying on the

activation of Natural Killer Group 2D receptors (31).

In addition, the CD24 on DCs interacts with human Siglec-10 to

negatively regulate the rapid homeostatic proliferation of T cells, the

immune responses and host inflammation triggered by damage

related molecules, and cause RNA viruses to evade host immunity

(32). CD24+ DCs in lymph nodes can also promote the

differentiation of virus antigen-specific T cells into effector T cells

(33). In addition, CD24 binds to danger-associated molecular

patterns and interacts with Siglec G on DCs to form a three-

molecule complex on DCs, which can regulate the function of DCs.

CD24 has an important regulatory role in the function of

antigen-presenting cells (APCs). The interaction between CD24

and Siglec-10 may be a significant pathway for CD24-mediated

tumor immune evasion.
4 Biological function of CD24
in tumors

4.1 CD24 and immune evasion

CD24 has been found to exhibit high expression or

amplification levels in various types of cancer stem cells and

cancers such as gliomas, pancreatic cancer, retinoblastoma,

cervical carcinoma, non-small-cell lung carcinoma, breast cancer,

hepatocellular carcinoma, prostate cancer, renal cell carcinoma,

urothelial carcinoma, pineal parenchymal tumors, and ovarian

cancer (34). However, it is an exception in multiple myeloma,

where the expression of CD24 is significantly down-regulated when
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compared to normal B-cell lines (35). This could be due to the fact

that CD24 is expressed in pre-B lymphocytes, which is maintained

in mature resting B cells, but downregulated during the maturation

of plasma cells, which are terminally differentiated B cells.

In 2019, it was found that CD24 acts as a new “don’t eat me”

signal for tumor cells to inhibit phagocytosis by macrophages in the

innate immune system (36).

CD24 expression is upregulated in tumor cells, while Siglec-10

is expressed in macrophages of the tumor microenvironment

(TME), which indicates a possible interaction between Siglec-10

and CD24. This interaction between CD24 and Siglec-10 is

associated to the inhibit ion of macrophage-mediated

phagocytosis, natural killer cytotoxicity, and evasion of the tumor

immune system.

The phagocytosis of macrophages against tumors is regulated

by a series of signals, including pro-phagocytosis signals (“ eat me “)

and anti-phagocytosis signals (“ don’t eat me “). Many phagocytosis

signals were expressed on the surface of tumor cells, including

tumor-associated antigen, signal lymphocyte activation molecule

family member 7, calreticulin and endoplasmic reticulum

chaperone protein. However, there are also some anti-

phagocytosis signals on the surface of tumor cells, including PD-

L1, b2-microglobulin, CD47 and CD24 (37). These “don’t eat me”

signals interact with receptors on the surface of macrophages,

including Siglec-10, signal regulatory protein a (SIRPa), PD-1
and leukocyte immunoglobulin-like receptor-1.

It has been discovered that the ability of macrophages to

phagocytic tumor cells is significantly improved by using

monoclonal antibodies to block the connection between CD24

and the receptor or by silencing the CD24 gene. This improved

phagocytic ability is positively correlated with the expression of

Siglec10 (38). In conclusion, CD24 is believed to act as an anti-

phagocytosis signaling protein that allows tumor cells to escape the

immune system.

The interaction of CD24 and Siglec-10 triggers a cascade of

immunosuppressive signals. After cytoplasmic tyrosine signaling is

phosphorylated by Src family tyrosine kinases, Siglec-10 recruits

and activates proteins containing the SH2 domain, specifically SHP-

1, SHP-2 or suppressor of cytokine signaling 3 (SOCS3). As an

important member of the tyrosine phosphatase family, SHP-1 can

specifically bind to the phosphorylated tyrosine in the cellular

immunoreceptor tyrosine-based inhibitory motif (ITIM) and

catalyze its dephosphorylation (39). The absence of Siglec-10 or

SHP-1 enhances the activation of NF-kB. Overexpression of CD24

promotes activation of NF-kB, while silencing of CD24 attenuates

its activation in tumor cells. Overexpression of CD24 leads to

activation of cell signaling proteins such as Akt, ERK, NF-kB and

MMP-9 (40). In addition, intracellular signal transduction

involving cytokines, growth factors, cell adhesion molecules and

extracellular matrix can be negatively regulated.
4.2 CD24 and metastasis

CD24 is essential for the development of tumors. In some types

of cancer, high levels of CD24 are associated with shorter survival
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times for patients. Studies have shown that reducing CD24 levels

can trigger apoptosis and inhibit the proliferation of tumors, while

increasing CD24 expression can promote tumor growth and

metastasis (41). In tumors where CD24 is overexpressed, tumor

cells become more invasive and the level of N-cadherin protein

increases while the expression of E-cadherin decreases. Research

shows that CD24 induces epithelial-mesenchymal transformation

(EMT) in ovarian cancer and amplifies intracellular signals

associated with cell growth via the PI3K/Akt and MAPK

pathways (42). And overexpression of CD24 enhanced invasion

and migration of glioma cells (43). Changes in CD24 expression on

the surface of tumor cells are associated with a variety of

carcinogenic signaling pathways, including HER2, Src/STAT3,

WNT/b-catenin, MAPK, AKT/mTOR, EGFR, and mirNA-related

pathways (44). And the expression of CD24 promotes tumor

growth and metastasis in a dose-dependent manner (45).

Metastasis of tumor cells is a complex process that involves the

ability of the tumor to bind to platelets in the bloodstream.

Additionally, the ability of tumors to bind to endothelial cells

may also contribute to metastasis. Once the tumor cells enter the

bloodstream, they must attach themselves to the endothelial cells

lining the walls of blood vessels. CD24, a ligand for P-selectin and

an adhesion receptor in activated platelets and endothelial cells, is

believed to play a key role in tumor metastasis (46). The ectopic

expression of CD24 in tumor cells leads to increased proliferation

rates and activation of a4b1 and a3b1 integrins, which facilitate

binding to P-selectin, collagen, and laminin, thus promoting

cell migration (47, 48). However, during metastasis, the

interaction between CD24+ embryonal tumor cells and the

somatic microenvironment, such as fibroblasts, endothelial cells,

or immune cells, can lead to downregulation of CD24

expression (49).

Src is a type of non-receptor tyrosine kinase that plays a key role

in regulating signal transduction of various membrane receptors. Its

interaction with CD24 can lead to the promotion of tumor invasion

and metastasis. Knocking down CD24 can result in the increase of

the non-activated form of Src (Y527 phosphorylation) and a

reduction in the activated form of Src (Y416 phosphorylation) (50).

CD24 can activate Src kinase, which in turn initiates other

pathways that are related to tumor progression such as the tumor

suppressor issue factor pathway inhibitor 2, a tumor suppressor

protein. Additionally, it also activates integrins such as a3b1 and

a4b1 integrins, and STAT3 cytoplasmic transcription factors.

Activated integrins can enhance tumor cell adhesion to

extracellular components such as laminin, collagen I and IV, and

fibronectin, thereby promoting tumor metastasis (51).

The Wnt family is a group of glucose-secreting lipoproteins that

regulate multiple signal transduction processes through the

transcriptional coactivator b-catenin. When the b protein is

activated, it can cause changes in the expression of Jun, Myc and

cyclin D genes, which are involved in cell growth and cycle. Ahmad

et al. (52) have confirmed that CD24 interacts with the Wnt pathway

through the activation of b-catenin. Immunoprecipitation results

show that CD24 can directly interact with b-catenin. In addition,

studies have also shown that Notch and Wnt/b-catenin signaling

pathways also play important roles in tumor cells that overexpress
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CD24 (53). Therefore, CD24 may promote the growth and

proliferation of tumor cells by activating the Wnt signaling pathway.

CD24 also interacts with the epidermal growth factor receptor

(EGFR) family proteins. These proteins are often overexpressed on

the surface of different types of tumors, such as colon and breast

cancer. Researches have shown that CD24 can effectively inhibit the

internalization and degradation of EGFR, maintaining the

expression of EGFR and its restriction to lipid rafts (54). CD24

also plays a role in tumor cell infiltration and metastasis through

mechanisms related to E-selectin (55). CD24 is the target of the

transcription factor hypoxia-inducible Factor-1a (HIF-1a), which
is upregulated under hypoxic conditions, including during tumor

growth and metastasis (56).

Moreover, CD24 is a protein that is involved in various cellular

functions such as adhesion between cells and substrates,

recognition, proliferation, movement, extension, and signal

transduction. Additionally, CD24 is associated with the

pathological grading and prognosis of tumors, which has

significant implications for developing effective treatment plans

for tumors. Targeting tumor stem cells can be a possible strategy

for treating tumors.
5 Targeting CD24 for
cancer immunotherapy

5.1 Monoclonal antibodies

A recent phase III clinical trial study has shown that the

CD24Fc treatment is safe and well-tolerated for hospitalized

COVID-19 patients. This treatment significantly accelerates

clinical improvement, inhibits disease progression, and reduces

hospitalization time for COVID-19 patients who require oxygen

support. These findings suggest that the inflammatory responses to

tissue damage may offer a viable treatment option for hospitalized

COVID-19 patients (57). CD24Fc treatment weakens systemic

inflammation, triggers NK and T cells to restore homeostasis, and

reduces the co-expression of cytokines and network connectivity

related to the severity and pathogenesis of COVID-19 (58). This

indicates that the CD24 monoclonal antibody can inhibit the

inflammatory response and restore immune homeostasis.

Patients who receive allogeneic hematopoietic stem cell

transplantation from unrelated donors matched with human

leukocyte antigen often experience acute graft-versus-host disease

(GVHD). In a phase 2 multicenter study, researchers combined

CD24Fc with tacrolimus and methotrexate to treat adult

hematological malignancies. The survival rate for grade 3 to 4

acute graft-versus-host disease at day 180 of CD24Fc treatment was

96.2%, compared with 73.6% in the control group, and no dose-

limiting toxicity was observed in CD24Fc treated subjects. These

results indicate that CD24Fc can effectively prevent the occurrence

of acute GVHD in adult hematological malignancies with good

tolerance and safety (59).

Monoclonal antibodies are a type of treatment used to target

unique or overexpressed antigens on cancer cells. Several

monoclonal antibodies targeting CD24 have been investigated in
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preclinical experiments in a variety of tumor models (60). CD24 is a

powerful anti-phagocytic “don’t eat me” signal that protects tumor

cells from Siglec-10 secreting macrophages. CD24 mAb, which

blocks CD24/Siglec-10 signaling, is considered as a novel innate

immune checkpoint inhibitor. One such antibody, ALB9, has been

shown to reduce lung metastasis and improve survival rates in

patients with highly metastatic breast (61) and bladder cancers (62).

SWA11 monoclonal antibody (IgG2a anti-CD24 mAb) has high

affinity and specificity for tumor cells expressing CD24. CD24 is

internalized after binding with SWA11 and accompanied by

changes in STAT3-dependent gene expression and Src

phosphorylation, thereby affecting tumor cell proliferation,

adhesion, invasion, and gene expression. Moreover, in addition to

the direct effect on CD24-positive tumor cells, SWA11 can also

trigger important immune response mechanisms such as ADCC or

complement activation, and strongly affects the cytokine

environment within tumors and increases macrophage infiltration

into tumor tissue, which may help improve overall treatment

effectiveness (63).

SWA11 has demonstrated the ability to decrease the

proliferation of human pancreatic, ovarian, and lung cancer cells

(63). It has also been found to slow down tumor growth in human

colorectal cancer xenograft models formed by injecting HT29 cells

to nude mice (64). Furthermore, SWA11 pretreatment has shown to

enhance the effectiveness of gemcitabine, particularly by disrupting

angiogenesis and promoting macrophage infiltration. SWA11 has

been also proven to enhance the anti-tumor efficacy of various

chemotherapy drugs, including 5-fluorouracil, oxaliplatin,

doxorubicin, paclitaxel and irinotecan (64). Additionally, SWA11

antibody has been found to significantly improve the effectiveness

of cisplatin in embryonal carcinoma cells (49).

Clone SN3 is another anti-CD24 monoclonal antibody that

enhances macrophage phagocytosis of CD24+ tumor cells by

blocking the CD24/Siglec-10 signaling pathway (“don’t eat me”

signal). It has been showed that Clone SN3 promote phagocytosis of

patient-derived CD24+ cell lines from ovarian and breast cancer,

and it improve survival in vivo through macrophage-mediated

tumor growth inhibition (36). In mantle‐cell lymphoma (MCL),

clone SN3 can significantly promote the phagocytosis of tumor-

associated phagocytes on tumor cells, and the phagocytosis rate is

similar to that of anti-CD47 monoclonal antibody (65). In addition,

SN3 also increases phagocytosis of MCL cell lines by M2-like

macrophages. After the administration of clone SN3, phagocytosis

is secondary to the loss of CD24 signaling and plays a pro-

phagocytosis role in a CD24-dependent manner, rather than Fc-

mediated opsonism.

IMM47 is a humanized monoclonal antibody targeting CD24,

which can inhibits CD24/Siglec-10 interactions through

macrophage antigen presentation and increases the release of NK

cytokines. IMM47 can to directly stimulate the immune response of

T cells by destroying the inhibitory CD24/Siglec-10 interaction, and

also directly activate NK cells through ADCP and ADCC. IMM47

has been shown to effectively reduce the growth of breast cancer
Frontiers in Immunology 05
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it has a synergistic effect. These findings suggest that IMM47 has

great potential as a cancer immunotherapy, whether used alone or

in combination with other treatments (66).

Sun F et al. (67) produced a new monoclonal antibody called

G7mAb that targets CD24 using hybridoma technology. After

humanized modification, hG7-BM3 has almost the same 3-D

structure as the parental chimeric antibody, and it exhibits similar

binding activity, affinity and specificity for CD24. The in vitro

experiments show that hG7-BM3 has reduced immunogenicity and

high stability, which makes it safe and stable in the human body.

Moreover, it enhances the lysis of CD24+HCC cells mediated by

NK cells and peripheral blood mononuclear cells (67).

To further improve the anti-tumor effect, CD24 antibody G7S

was attached to the GoX- loaded nanospheres to form novel

lysosome‐targeting chimeras (Nanosphere - AntiCD24). Tumor

cells that overexpress CD24 can selectively take in this nanosphere

and transport CD24 protein from the cell membrane to lysosomes for

degradation. As a result, degradation of CD24 reduces

immunosuppression of macrophages regulated by the CD24/Siglec-

10 signaling pathway. In addition, GOx loaded in “Nanosphere Anti

CD24” can target the release and sustained consumption of

endogenous glucose in tumor cells for starvation therapy. This

strategy can potentially overcome immune suppression during the

effector phase in the tumor microenvironment and has shown

promising synergistic therapeutic effects for HCC (68).

rG7S-MICA is a new type of bispecific monoclonal antibody

fusion protein. It consists of a single chain antibody fragment (scFv)

that targets the tumor-associated antigen CD24 and human MHC

class I-related chain A (MICA). The scFv used in rG7S-MICA is

derived from G7mAb and can specifically recognize tumor cells

with high expression of CD24. MICA, on the other hand, is the

primary immunoligand of the natural killer cell receptor NK group

2 member D (NKG2D) receptor found on NK cells. Therefore,

rG7S-MICA induces NK cell-mediated cytotoxicity by recruiting

NK cells to CD24+ tumor cells, which significantly improves the

affinity and antibody-dependent cell-mediated cytotoxicity (ADCC)

effect (69).

Bi-specific antibody cG7-MICA, formed by the fusion of

chimeric anti-CD24 antibody with NKG2D ligand MICA, can

also enhance the ADCC effect by activating NK cells and also

bind to CD24. By recruiting NK cells to the tumor site, cG7-MICA

increases the expression of CD107a on the surface of NK cells in

vitro and activates them to release interferon g (IFN-g) and tumor

necrosis factor a (TNF-a). As a result, the anti-tumor effect of

sorafenib is enhanced (70).

In summary, antibody drugs targeting CD24 have shown great

clinical application prospects. However, it should not be ignored

that due to the expression of CD24 on the surface of B cells and the

possible off-target effect, it may cause a certain degree of damage to

B cells in vivo (71). Therefore, the potential toxic side effects of

antibodies targeting CD24 on tumor patients cannot be ruled out

at present.
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5.2 Antibody–drug conjugates

Antibody drug conjugate (ADC) is a targeted drug delivery

system that connect antibodies to active cytotoxic drugs. The use of

antibodies to deliver cytotoxic drugs to tumor cells can improve

therapeutic index and reduce systemic toxicity associated with the

proportion of cytotoxic drugs. Compared to other cancer therapies,

ADC is characterized by its high efficiency in inhibiting off-target

toxicity by limiting the exposure of cytotoxicity to normal cells (72).

The binding of anti CD24 monoclonal antibody to

deglycosylated ricin A-chain not only delayed tumor growth in a

small cell lung cancer xenograft model, but also resulted in durable

complete remission and increased survival in a Burkitt’s lymphoma

mouse model (73).

Nitric oxide (NO) donors play an important role in tumor

physiology and carcinogenesis. Low levels of NO can promote

tumor growth, but high levels of NO can promote the inhibitory

activity or cytotoxicity of carcinogenic cells. HL-2 includes an

attachable maleimide terminal and a cleaved, targeted disulfide

bond. The disulfide bond is stable in the blood and can rapidly

release two molecules of NO. The NO conjugated antibody HN-01

was prepared by binding the NO donor HL-2 with G7mAb using a

thioether bond. Sun F et al. (74) conjugated NO-donating HL-2

with G7mAb through a thioether bond to generate an antibody

nitric oxide conjugate (ANC) similar to an ADC immunoconjugate,

named HN-01. HN-01 has high efficiency internalization and

significantly increases NO release in hepatic carcinoma cells. HN-

01 induces tumor cell apoptosis and inhibits tumor growth in tumor

bearing nude mice through antibody dependent co toxicity. HN-01

can also increase the NO level of tumor cells. In addition, HN-01

can facilitate the release of Cyt c into the cytoplasm, induce

mitochondrial respiratory inhibition, and ultimately lead to cell

death. Compared with the use of HL-2 or G7mAb alone, HN-01

significantly improves antiproliferative effect on CD24+ HCC in a

dose-dependent manner. Furthermore, the cytotoxicity is partially

attributed to the proapoptotic activity of NO donors. HN-01 can

also significantly and durable inhibit the growth of xenograft

tumors and significantly prolong survival time (74).

G7mAb-DOX is a combination of DOX and G7mAb, formed

using the cross-linking agent GMBS. G7mAb has a lower

immunogenicity response than the CD24 antigen, and it has a

strong affinity for this antigen. This makes it beneficial for reducing

the risk of chemotherapy. G7mAb-DOX is specifically captured and

endocytosed by CD24+ tumor cells in vitro, with an average of 2

drug molecules per antibody. And G7mAb-DOX can inhibit tumor

growth and prolong the survival of HCC with higher efficacy and

less systemic toxicity compared to other treatments (75).

SWA11-ZZ-PE38 immunoconjugate produced by SWA11

armed with PE38 can selectively and effectively target CD24

antigen, and kill colorectal cancer cells by inhibiting EF2 and

stopping protein synthesis in vivo. SWA11-ZZ-PE38 can also

significantly reduce the IC50 value, thereby significantly reducing

the use of monoclonal antibodies (by 106 times) and their potential

side effects (76).

In addition, SWA11-DOX is a highly cytotoxic drug that rapidly

internalizes into small-cell lung cancer cells by binding to its specific
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cell surface antigen CD24. SWA11-DOX is capable of inhibiting

thymidine incorporation by 50%, with a selectivity 100 times higher

than free doxorubicin (77). This indicates that targeted binding to

the cell surface antigen CD24, rapid internalization, and effective

release of doxorubicin from monoclonal antibodies are necessary

conditions for the selective and potent function of SWA11-DOX.
5.3 CAR T cell therapy

CAR is a type of synthetic receptor that plays a crucial role in

recognizing and eliminating tumor cells expressing specific target

antigens. It works by reactivating lymphocytes, most commonly T

lymphocytes. The binding of CAR to target antigens expressed on

the cell surface is not dependent on MHC receptors, resulting in

strong T cell activation and a powerful anti-tumor response. One of

the most successful examples of CAR-T cell therapy involves

targeting CD19 in the treatment of B-cell malignancies, which

was approved by the US Food and Drug Administration in

2017 (78).

CAR T cell immunotherapy has proven effective in treating

hematological malignancies. To target CD24 in solid tumors, more

preclinical studies are using engineered immune cells for treatment.

Anti-CD24 CAR T cell therapy has been successful in reducing

tumor growth and metastasis of human pancreatic adenocarcinoma

xenografts in mice (79). This treatment has also been effective in

CD24 subclone-bearing tumors, suggesting that targeting

pancreatic cancer stem cells with this method could be a feasible

therapeutic strategy for pancreatic cancer. Bispecific BCMA-CD24

CAR-T cells have shown almost complete tumor clearance ability

against multiple myeloma cells in vitro and in vivo (80). However,

the antibody used by CD24 CAR-T cells was mouse scFv SWA11,

which may cause allergic reactions.

Yang P et al. (81) utilized a humanized CD24 scFv (hG7-BM3)

to develop CAR T cells that target CD24 (called 24BBz). In vitro

testing showed that 24BBz exhibited antigen-specific activation and

dose-dependent cytotoxicity on CD24+ BRCA tumor cells.

However, 24BBz has almost no cytotoxicity on CD24 negative

BRCA cells. In addition, 24BBz showed significant anti-tumor

effects in T cell infiltration in CD24 positive TNBC xenografts

and tumor tissues, with some T cells experiencing depletion. No

major organ pathological damage was observed during the

treatment process. This study indicates that CD24 specific CAR-T

cells have strong anti-tumor activity and have potential application

value in the treatment of TNBC.

Studies have shown that CD24 CAR-T can block the CD24-

siglece-10 pathway. Activated CD24 CAR-T cells can release TNF-a
and IFN-g, which can promote the polarization of macrophages

into an M1-like macrophage phenotype. Reversal of CD24+

myeloma cells can polarize C-X-C chemokine receptor type 4

(CXCR4) positive macrophages into an M2-like phenotype,

resulting in the promotion of an immune response of

phagocytosis and clearance of macrophages. In addition, the

expression of macrophages and neutrophils increased in tumor

cells, while the expression of B cells, natural killer (NK)/T cells and

dendritic cells decreased. However, after CD24-CAR T treatment,
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macrophages decreased to 80% of the normal level, neutrophils

further increased, B cells increased, and natural killer (NK)/T cells

and dendritic cells further decreased (82).

CAR-T therapy has been successful in treating some B-cell

leukemia or lymphoma. However, when it comes to treating solid

tumors, there are limitations such as high toxic side effects, limited

penetration of solid tumors, off-target effects and other problem

(83). These limitations are likely to affect the use of CAR-T

therapies that target CD24+ solid tumors. CD24 is not only

present in tumor cells, but also in monocytes, granulocytes, B/T

lymphocytes and other normal cells at varying levels. Therefore, it is

important to explore ways to design CAR-T cells with high affinity

for CD24 on the surface of tumor cells, while also reducing the risk

of toxic side effects on normal cells such as B cells by optimizing

its structure.
5.4 CAR NK cell therapy

NK cells, in addition to T cells, have been shown to exhibit

effective and specific cytotoxicity against CD24+ patient-derived

ovarian cancer cells and ovarian cancer cell lines (84). Söhngen C.

(85) has evaluated the potential of CAR therapy against CD24 in

NK cells as an immunotherapy option for CD24+ urological

malignancies such as renal cell, urothelial, GCT, and prostate

cancer. The treatment of urological tumor cells with CD24-CAR

NK cells results in decreased cell viability and induction of

apoptosis, particularly in CD24+ tumor cells.

Another approach is to use dendritic cells loaded with

antibody-coated cancer cells that target different surface

antigens (including CD24) to cross-present tumor antigens to

CD8+ T cells, which can promotes T-cell-mediated cytotoxicity in

ovarian cancer and melanoma cell lines (86). In a One Single Site

Clinical Study, 36 patients with primary hepatocellular carcinoma

who underwent surgical resection received adjuvant therapy with

autologous transfusions of cytokine and dendritic cell induced

CD24 peptide loaded natural CD3+ CD56+ type II killer T

lymphocytes (87).

The clinical trial results indicate that the treatment protocol was

well-tolerated, with a low incidence of adverse events. Specifically,

the most frequently reported adverse event was a temporary fever

(<grade 3), which was observed in 19% of patients. Furthermore,

the study found that patients who received 2 and 4 treatments had

4-year survival rates of 47% and 53%, respectively.
5.5 Gene therapy

One of the limitations of administering monoclonal antibodies

derived from rodents is the potential for eliciting an immune

response in humans. Conversely, human monoclonal antibodies

are fraught with difficulties in terms of production and cost. As a

result, gene therapy targeting CD24 is currently an area of active

research. Gene therapy represents a biological therapeutic modality

that utilizes a vector to introduce foreign nucleic acids into target
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expression and facilitates the correction or compensation of genetic

defects and anomalies that underlie disease states (88).

Gene ablation of CD24 and Siglec-10 has been found to be an

effective method for targeting tumor cells and enhancing

macrophage phagocytosis. RNA interference technology (RNAi)

is the most common clinical treatment for malignant tumors. Sagiv

et al. (64) successfully inhibited the growth and metastasis of

pancreatic and colorectal cancer cell lines by using small

interfering RNA knockdown of CD24 expression. Additionally,

down-regulation of CD24 delayed tumorigenicity in nude mice

with human cancer cell lines.

Similarly, CD24 knockdown therapy with shRNA has been

shown to be effective in ovarian cancer (89) and lung cancer after

bone metastasis (90). Transfecting CD24 shRNA vector (CD24-

SHRNA) to knock down CD24 expression can induce apoptosis

and inhibit cell viability in SKOV3 cells (91). In vivo, administration

of CD24 shRNA can exert a tumor suppressive effect by inducing

tumor cell apoptosis, inhibiting tumor cell proliferation, and

reducing microvascular density (91). When siRNA molecules

targeting CD24 are added to the growth medium of epithelial

cancer cell lines (such as prostate cancer and breast cancer), it

results in a the low expression of CD24, leading to reduced cell

growth, and changes in the actin cytoskeleton, resulting in exercise

injury (92).

Therefore, knocking down CD24 expression may become an

effective method for the future treatment of CD24+ tumors.

Additionally, it may be possible to enhance the ability of

macrophages to attack tumor cells by simultaneously silencing the

gene expression of both CD47 and CD24 (93).

RNAi therapies have become more specific and selective over

the years, but the potential for off-target effects and their

effectiveness in treating tumor patients still need to be considered

by researchers. These factors may restrict the future development

and application of RNAi drugs that target CD24.
6 Conclusion

CD24 is a protein that is not yet fully understood, but it has

become a promising target for diagnosing, treating, and predicting

the prognosis of many types of tumors. Many tumors have been

found to have high levels of CD24, and activating the CD24/Siglec-

10 pathway has been shown to inhibit the function of cytotoxic T

cells and phagocytosis mediated by macrophages, which promotes

tumor immune evasion. CD24 is also involved in tumor cell

migration and metastasis and has been identified as a prognostic

marker for various types of cancers (35, 94, 95). Therefore, CD24

has attracted a lot of attention as a potential target for drug therapy

against tumor cells or tumor stem cells. Several oncology clinical

trials worldwide are currently testing the clinical efficacy of anti-

CD24-based tumor therapy, and many more are registered on

ClinicalTrials.gov (10).

CD24 protein has significant importance in the research of

immune system and cancer. It helps us to understand how the
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immune system works and how cancer develops. Research on CD24

may also lead to new ideas and methods for treating related diseases.

Despite its rapid progress as a tumor therapeutic target, its clinical

application still faces several challenges. For instance, it is necessary

to further validate its efficacy and safety, identify the right patient

population and optimize the treatment plan. Identifying the optimal

patient population for CD24 as a therapeutic target to achieve

individualized treatment is a crucial direction for future research.

Additionally, further researches are required to demonstrate the

various functions and potential molecular mechanisms of CD24 in

the pathogenesis of tumor.
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24. Carrion C, Guérin E, Gachard N, le Guyader A, Giraut S, Feuillard J. Adult bone
marrow three-dimensional phenotypic landscape of B-cell differentiation. Cytometry B
Clin Cytom. (2019) 96:30–8. doi: 10.1002/cyto.b.21747.

25. Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, Fujimoto J. CD24
induces apoptosis in human B cells via the glycolipid-enriched membrane domains/
rafts-mediated signaling system. J Immunol. (2001) 166:5567–77. doi: 10.4049/
jimmunol.166.9.5567.

26. Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, et al.
Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma:
preclinical studies and clinical relevance. Clin Transl Oncol. (2022) 24:407–31.
doi: 10.1007/s12094-021-02707-5.
frontiersin.org

https://doi.org/10.1016/j.yexcr.2020.111968
https://doi.org/10.1021/acsnano.1c10921
https://doi.org/10.1021/acsnano.1c10921
https://doi.org/10.1080/16078454.2023.2264517
https://doi.org/10.1080/07853890.2023.2246370
https://doi.org/10.1016/j.tube.2017.11.010
https://doi.org/10.1186/s13046-021-01987-7
https://doi.org/10.3389/fimmu.2020.01324
https://doi.org/10.1016/j.intimp.2023.110557
https://doi.org/10.1016/j.intimp.2023.110557
https://doi.org/10.3390/ijms242015072
https://doi.org/10.1186/s12964-023-01315-w
https://doi.org/10.1002/cjp2.266
https://doi.org/10.4049/jimmunol.145.6.1952
https://doi.org/10.4049/jimmunol.145.6.1952
https://doi.org/10.1006/geno.1994.1356
https://doi.org/10.1159/000134075
https://doi.org/10.1016/j.gene.2016.05.038
https://doi.org/10.1080/21691401.2019.1642205
https://doi.org/10.1007/s00262-023-03606-0
https://doi.org/10.1210/en.2008-0639
https://doi.org/10.1016/j.cels.2016.09.002
https://doi.org/10.3389/fimmu.2018.02421
https://doi.org/10.1002/ajh.10176
https://doi.org/10.1002/advs.202305364
https://doi.org/10.1074/jbc.M111.245183
https://doi.org/10.1002/cyto.b.21747
https://doi.org/10.4049/jimmunol.166.9.5567
https://doi.org/10.4049/jimmunol.166.9.5567
https://doi.org/10.1007/s12094-021-02707-5
https://doi.org/10.3389/fimmu.2024.1367959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1367959
27. Zhang X, Yu C, Liu JQ, Bai XF. Dendritic cell expression of CD24 contributes to
optimal priming of T lymphocytes in lymph nodes. Front Immunol. (2023) 14:1116749.
doi: 10.3389/fimmu.2023.1116749.

28. Huang SY, Liu YH, Chen YJ, Yeh YY, Huang HM. CD69 partially inhibits
apoptosis and erythroid differentiation via CD24, and their knockdown increase
imatinib sensitivity in BCR-ABL-positive cells. J Cell Physiol. (2018) 233:7467–79.
doi: 10.1002/jcp.26599.

29. Dinh XT, Stanley D, Smith LD, Moreau M, Berzins SP, Gemiarto A, et al.
Modulation of TCR signalling components occurs prior to positive selection and
lineage commitment in iNKT cells. Sci Rep. (2021) 11:23650. doi: 10.1038/s41598-021-
02885-w.

30. Bai XF, Li O, Zhou Q, Zhang H, Joshi PS, Zheng X, et al. CD24 controls
expansion and persistence of autoreactive T cells in the central nervous system during
experimental autoimmune encephalomyelitis. J Exp Med. (2004) 200:447–58.
doi: 10.1084/jem.20040131.

31. Zhang P, Lu X, Tao K, Shi L, Li W, Wang G, et al. Siglec-10 is associated with
survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res.
(2015) 194:107–13. doi: 10.1016/j.jss.2014.09.035.

32. Li O, Chang X, Zhang H, Kocak E, Ding C, Zheng P, et al. Massive and
destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. J
Exp Med. (2006) 203:1713–20. doi: 10.1084/jem.20052293.

33. Ainsua-Enrich E, Hatipoglu I, Kadel S, Turner S, Paul J, Singh S, et al. IRF4-
dependent dendritic cells regulate CD8(+) T-cell differentiation and memory responses
in influenza infection.Mucosal Immunol. (2019) 12:1025–37. doi: 10.1038/s41385-019-
0173-1.

34. Altevogt P, Sammar M, Hüser L, Kristiansen G. Novel insights into the function
of CD24: A driving force in cancer. Int J Cancer. (2021) 148:546–59. doi: 10.1002/
ijc.33249.

35. Gross Even-Zohar N, Pick M, Hofstetter L, Shaulov A, Nachmias B, Lebel E, et al.
CD24 is a prognostic marker for multiple myeloma progression and survival. J Clin
Med. (2022) 11:2913. doi: 10.3390/jcm11102913.

36. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al.
CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy.
Nature. (2019) 572:392–6. doi: 10.1038/s41586-019-1456-0.

37. Kelley SM, Ravichandran KS. Putting the brakes on phagocytosis: "don't-eat-me"
signaling in physiology and disease. EMBO Rep. (2021) 22:e52564. doi: 10.15252/
embr.202152564.

38. Zhao M, Li J, Chen F, Han Y, Chen D, Hu H. Engineering nanoparticles boost
TNBC therapy by CD24 blockade and mitochondrial dynamics regulation. J Control
Release. (2023) 355:211–27. doi: 10.1016/j.jconrel.2023.01.075.
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