
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Kenneth C. P Cheung,
Hong Kong Baptist University, Hong Kong
SAR, China

REVIEWED BY

William Cw Chen,
University of South Dakota, United States;
Tarun Pant,
Medical College of Wisconsin, United States

*CORRESPONDENCE

Xiujuan Liu

juan.081@163.com

Yan Li

liyan88130@163.com

RECEIVED 08 January 2024

ACCEPTED 03 April 2024
PUBLISHED 15 April 2024

CITATION

Yu Y, Wang L, Hou W, Xue Y, Liu X and Li Y
(2024) Identification and validation of aging-
related genes in heart failure based on
multiple machine learning algorithms.
Front. Immunol. 15:1367235.
doi: 10.3389/fimmu.2024.1367235

COPYRIGHT

© 2024 Yu, Wang, Hou, Xue, Liu and Li. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 15 April 2024

DOI 10.3389/fimmu.2024.1367235
Identification and validation of
aging-related genes in heart
failure based on multiple
machine learning algorithms
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Xiujuan Liu2* and Yan Li2*

1Shandong University of Traditional Chinese Medicine, Jinan, China, 2Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, China
Background: In the face of continued growth in the elderly population, the need

to understand and combat age-related cardiac decline becomes even more

urgent, requiring us to uncover new pathological and cardioprotective pathways.

Methods: We obtained the aging-related genes of heart failure through WGCNA

and CellAge database. We elucidated the biological functions and signaling

pathways involved in heart failure and aging through GO and KEGG

enrichment analysis. We used three machine learning algorithms: LASSO, RF

and SVM-RFE to further screen the aging-related genes of heart failure, and fitted

and verified them through a variety of machine learning algorithms. We searched

for drugs to treat age-related heart failure through the DSigDB database. Finally,

We use CIBERSORT to complete immune infiltration analysis of aging samples.

Results: We obtained 57 up-regulated and 195 down-regulated aging-related

genes in heart failure through WGCNA and CellAge databases. GO and KEGG

enrichment analysis showed that aging-related genes are mainly involved in

mechanisms such as Cellular senescence and Cell cycle. We further screened

aging-related genes through machine learning and obtained 14 key genes. We

verified the results on the test set and 2 external validation sets using 15 machine

learning algorithm models and 207 combinations, and the highest accuracy was

0.911. Through screening of the DSigDB database, we believe that rimonabant

and lovastatin have the potential to delay aging and protect the heart. The results

of immune infiltration analysis showed that there were significant differences

between Macrophages M2 and T cells CD8 in aging myocardium.

Conclusion:We identified aging signature genes and potential therapeutic drugs

for heart failure through bioinformatics and multiple machine learning

algorithms, providing new ideas for studying the mechanism and treatment of

age-related cardiac decline.
KEYWORDS

heart failure, aging, machine learning, bioinformatics, immune infiltration analysis
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1367235/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1367235/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1367235/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1367235/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1367235&domain=pdf&date_stamp=2024-04-15
mailto:juan.081@163.com
mailto:liyan88130@163.com
https://doi.org/10.3389/fimmu.2024.1367235
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1367235
https://www.frontiersin.org/journals/immunology


Yu et al. 10.3389/fimmu.2024.1367235
Introduction

With an aging global population and improved survival rates

for ischemic heart disease due to increasingly effective, evidence-

based treatments, heart failure prevalence is on the rise, now

affecting over 64 million individuals worldwide (1). This trend is

particularly pronounced among elderly patients. As such, the

escalating elderly demographic intensifies the urgency to both

comprehend and counteract age-related cardiac deterioration.

This necessitates the exploration of novel pathological and

cardioprotective mechanisms, aiming to reduce the extensive

impact on global public health (2).

Heart failure’s development is intricately linked to the complex

interplay of cardiovascular aging, risk factors, comorbidities, and

disease moderators (3). While dietary restrictions, increased physical

activity, and pharmacological interventions are pivotal in decelerating

cardiovascular function decline in aging populations, their impact on

mortality remains limited (4, 5). Recent research posits that the

persistent high prevalence of cardiovascular diseases and associated

mortality may stem from a lack of targeted interventions addressing

the aging process directly. These studies have identified eight key

molecular markers characteristic of cardiovascular aging: impaired

macroautophagy, proteostasis loss, genomic instability, epigenetic

changes, mitochondrial dysfunction, cellular senescence, disrupted

neurohormonal signaling, and inflammation (6).

With advancing age, significant structural and functional

transformations occur in the heart, blood vessels, and

microcirculation (7). These changes in cardiac structure and

function contribute to an increased vulnerability to heart failure

in the elderly. However, the precise mechanisms by which aging

precipitates heart failure are not yet fully understood. Unraveling

the specific genes and molecular processes involved in the onset and

progression of heart failure during aging is crucial. Such insights are

expected to pave the way for innovative strategies to combat age-

related decline, preserve circulatory function, and extend the

disease-free lifespan of individuals.

Bioinformatics, an ever-evolving multidisciplinary domain, is

revolutionizing our understanding in the medical sciences. This

study leverages high-throughput technologies and machine learning

to unearth pivotal aging genes and molecular pathways implicated in

heart failure. Machine learning is currently applied to the further

screening of key genes, providing more precise results compared to

traditional PPI network screening (8). This is because machine

learning methods can identify more complex nonlinear

relationships. LASSO, a regression-based method, can perform

feature selection by shrinking the coefficients of less important

features to zero, making it highly suitable for high-dimensional

data. However, LASSO’s feature selection can be unstable (9). By

recursively removing features with the smallest weights, SVM-RFE

can effectively perform feature selection and handle linearly

inseparable data. Yet, the choice of kernel function and parameter

tuning significantly affects SVM’s performance (10). The RF

algorithm, an ensemble learning method comprising multiple

decision trees, handles nonlinear data effectively and reduces the

risk of overfitting by establishing multiple decision trees. However, RF

models are usually hard to interpret (11). Therefore, we tend to
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combine the results of these three algorithms to enhance the

model’s accuracy.

Utilizing Weighted Gene Co-expression Network Analysis

(WGCNA), we identified crucial module genes from the largest

available heart failure dataset, integrating these findings with the

CellAge database to highlight aging-related genes. Subsequent feature

enrichment analysis led to the selection of three advanced machine

learning algorithms: Least Absolute Shrinkage and SelectionOperator

(LASSO), Random Forest (RF), and Support Vector Machine

Recursive Feature Elimination (SVM-RFE), for pinpointing key

genes associated with heart failure and aging. To ascertain the

robustness of our findings, we employed a comprehensive

validation approach, testing the results across a primary test set

and two external datasets using 15 distinct machine learning models

and 207 unique combinations. We conducted a comprehensive drug

prediction analysis utilizing the Drug Signatures Database (DSigDB).

This approach was instrumental in identifying potential

pharmaceutical candidates for the management and treatment of

heart failure and associated aging processes. In the final phase of our

study, we used CIBERSORT to assess the content of immune cells

and stromal cells in aged myocardium to delineate the cellular

heterogeneity landscape of expression profiles in aged myocardium.

The methodology and progression of this study are encapsulated in

Figure 1, which outlines the research flowchart.
Materials and methods

Data acquisition and preprocessing

This study’s data were sourced from the publicly accessible Gene

Expression Omnibus (GEO) database, with the datasets having

previously obtained participant consent and ethical approval (12).
FIGURE 1

The study flowchart.
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Consequently, our research did not require additional approval from

an institutional review board. We selected GSE57338 as our primary

dataset for ischemic heart failure analysis due to its extensive sample

size, comprising left ventricular myocardial samples from 95 ischemic

heart failure patients and 136 individuals without heart failure (13).

GSE57338 documents data for over 20,000 mRNAs from the left

ventricular myocardium across 231 samples. In terms of age

composition, 86 samples are from individuals aged 60 and above.

Regarding gender composition, 154 samples come from males. For

external validation, we utilized datasets GSE5406 (including

myocardial samples from 108 ischemic heart failure patients and 16

non-heart failure individuals) and GSE16499 (comprising samples

from 15 ischemic heart failure patients and 15 non-heart failure

individuals) (14, 15).

Data preprocessing was conducted using R software (version

4.2.0). In this process, we eliminated probes linked to multiple

molecules. Where multiple probes corresponded to a single

molecule, only the probe with the highest signal value was

retained. To ensure data consistency and accuracy, we also

corrected for batch effects in the data and converted probe IDs to

gene symbols based on the platform’s annotation file.
Weighted gene co-expression
network analysis

We used theWGCNApackage to explore genemodules associated

with heart failure (The samples consisted of 136 normal samples and

95 ischemic heart failure samples from GSE57338.) (16). WGCNA can

identify clusters of highly correlated genes, summarizing these clusters

using either the module eigengene or an intramodular hub gene, and

relate the modules to each other and to external sample traits. Within

these modules, WGCNA is capable of identifying key driver genes or

central genes that play critical roles in disease processes, as these genes

exhibit the highest connectivity within the module and are positioned

most centrally within the network. Using 0.5 as the filtering standard

and removing unqualified genes and samples through the

goodSamplesGenes function, a scale-free co-expression network was

established. Subsequently, adjacency was calculated with a default soft

threshold of b = 30 and scale-free R2 = 0.9, and the adjacency was

converted into a topological overlap matrix (TOM) to determine gene

ratios and dissimilarity. Genes with the same expression profile are

divided into gene modules using average linkage hierarchical

clustering, we prefer larger modules, so we set the minimum module

size to 300. Finally, the dissimilarity of module characteristic genes is

calculated, the cutting line of the module dendrogram is selected to

combine several modules for further research, and the visualization of

the characteristic gene network is completed.
Screening candidate aging-related genes
in HF

The CellAge database (https://genomics.senescence.info/cells/)

serves as a comprehensive repository of human genes associated
Frontiers in Immunology 03
with cellular senescence (17). This database meticulously catalogs

genes with established positive, negative, or undetermined impacts

on this process. We involved correlating genes upregulated in heart

failure (HF) with those in CellAge known to accelerate cell

senescence. Concurrently, we analyzed the overlap of genes

downregulated in HF with those identified in CellAge as

senescence inhibitors. This dual-faceted approach facilitated the

identification of key aging-related genes specifically involved in the

pathophysiology of heart failure.
Functional enrichment analysis

To elucidate the biological processes and functions of aging

genes implicated in heart failure, our study utilized the

clusterProfiler package (18). This tool enabled us to conduct a

comprehensive Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis (19, 20).

Through this analysis, we were able to identify and visualize

key pathways and gene functions, providing deeper insights

into how aging genes contribute to the pathophysiology of

heart failure.
Machine learning

In our investigation, we employed three distinct machine

learning algorithms—LASSO, RF, and SVM-RFE—to rigorously

identify key aging genes in HF (21–23). The LASSO algorithm was

executed using the glmnet package, incorporating ten-fold cross-

validation to pinpoint significant genes. For the RF algorithm, we

utilized the randomForest package, selecting the top 20 genes as our

primary candidates. The SVM-RFE algorithm, conducted via the

e1071 package, was used to determine the optimal gene subset based

on accuracy. The culmination of these methodologies was the

identification of a consensus set of genes, representing the

intersection of results from all three algorithms, which we

designated as the critical aging genes in heart failure.
Validation of key aging genes

In order to verify the accuracy of key aging genes, we integrated

15 machine learning algorithms (included Neural Networks,

Logistic Regression, Linear Discriminant Analysis, Quadratic

Discriminant Analysis, K-Nearest Neighbors, Decision Trees,

Random Forest, XGBoost, Ridge Regression, LASSO Regression,

Elastic Net Regression, Support Vector Machines, Gradient

Boosting Machines, Stepwise Logistic Regression, and Naive

Bayes) and combined these 15 algorithms through caret

parameter adjustment, custom parameter combination, lasso

feature screening, and cross-validation, resulting in a total of 207

machines learning model. For our analysis, we randomly allocated

70% of the GSE57338 dataset as the training set and designated the

remaining 30% for testing. In addition, we incorporated two
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external validation sets, GSE5406 and GSE16499, to further

strengthen the robustness of our results.
Drug prediction

DSigDB, a comprehensive drug signature database, was

employed for gene set analysis in our study (24). We utilized the

identified key aging genes as a reference list, applying DSigDB’s

predictive capabilities to identify potential drug molecules.
Immune infiltration analysis

Aging is often accompanied by a decline in immune function.

Therefore, we used CIBERSORT to evaluate the content of immune

cells and stromal cells in aged HF myocardial samples to delineate

the cellular heterogeneity landscape of aging myocardial expression

profiles and complete immune cell infiltration analysis (25). The

samples were derived from patients older than 60 years old in

GSE57338. To assess whether the levels of immune cells in patients’

circulation are correlated with myocardial immune levels, we also

conducted an immune infiltration analysis on GSE77343(GSE77343

records whole blood samples from 197 heart failure patients). Bar

charts are used to visualize the proportion of each type of immune

cell in different samples. The differences in cell distribution between

the HF group and the normal group were compared by t test, and

the cutoff value was set at p<0.05.
Frontiers in Immunology 04
Results

Construction of co-expressed
gene modules

In our study, we conducted WGCNA on the GSE57338 dataset,

identifying both upregulated and downregulated modules

significantly associated with HF. The analysis revealed that a b
value of 10 brought the network closest to a scale-free topology.

Within this framework, we pinpointed 9 modules related to HF.

Notably, in the upregulated category, the pink module (correlation

coefficient = 0.68, P = 2e-32) and the green module (correlation

coefficient = 0.56, P = 1e-20) demonstrated the highest correlation

with HF, encompassing a combined total of 2,998 genes.

Conversely, among the downregulated modules, the turquoise

module exhibited the strongest association with HF (correlation

coefficient = 0.48, p = 2e-14), comprising 7,570 genes. These

findings are represented in Figures 2A and 2B.

From the CellAge database, we identified 370 genes implicated

in promoting aging and 475 genes associated with inhibiting aging.

We then conducted an intersection analysis between these aging-

related genes and those influencing heart failure. This approach

revealed 57 genes that concurrently promote both aging and heart

failure. We also identified 195 genes that play a role in inhibiting

both aging and heart failure. The results of these intersection

analyses are represented through Venn diagrams in Figures 2C

and 2D. The genes associated with WGCNA modules and CellAge

can be found in Supplementary S1.
B

C D

A

FIGURE 2

Identification of aging-related genes. (A) Gene and trait clustering dendrograms of HF. Gene clustering trees (dendrograms) obtained by hierarchical
clustering of neighbor-based differences. (B) 9 gene co-expression modules of HF. The numbers in each cell means the correlation coefficient and
p-value. (C) 57 genes promote both aging and HF. (D) 195 genes inhibit both aging and HF.
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Functional enrichment analysis

We performed GO and KEGG enrichment analysis on 252

aging-related genes in heart failure. This was undertaken to

elucidate the shared biological mechanisms underpinning both

conditions. The GO enrichment analysis encompassed three

primary categories: Biological Process (BP), Cellular Component

(CC), and Molecular Function (MF). Notably, BP categories were

predominantly focused on aspects like histone modification,

regulation of the mitotic cell cycle, cell cycle phase transition, and

positive regulation of cell division. CC categories emphasized

elements such as focal adhesion, cell-substrate junctions,

pericentric heterochromatin, SWI/SNF superfamily-type

complexes, and ATPase complexes. In the MF category, significant

functions included histone binding, DNA-binding transcription

factor interaction, transcription coregulator and corepressor

activities, and NAD-dependent histone deacetylase activity.

The KEGG enrichment analysis revealed that these aging-

related genes in heart failure were significantly enriched in

pathways including Cellular Senescence, Proteoglycans in Cancer,

Cell Cycle, MicroRNAs in Cancer, C-type Lectin Receptor Signaling

Pathway, PI3K-Akt Signaling Pathway, and various cancer-related

signaling pathways. The top five results from the GO enrichment

analysis and the top ten from the KEGG enrichment analysis will be

presented, as depicted in Figure 3.
Identification of key genes via
machine learning

We used three machine learning algorithms, LASSO, RF and

SVM-RFE, to further screen key aging genes in heart failure. Among

the up-regulated genes, the LASSO algorithm identified 17

candidate genes. The RF algorithm ranks genes according to the

importance calculation of each gene, and we select the top 20 genes

as candidate genes. The SVM-RFE algorithm shows that the

accuracy is highest when 34 genes are included, so we selected the

first 34 genes of the SVM-RFE algorithm as candidate genes. After

intersecting the results of the three algorithms, we obtained 10 up-
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regulated key aging genes in heart failure, namely CDKN1B, SPIN1,

GNMT, HTRA1, ITPK1, MAVS, MME, RAF1, TLR3, and XAF1.

Similarly, among the down-regulated genes, the LASSO

algorithm identified 39 candidate genes. We still select the top 20

genes of the RF algorithm as candidate genes. The SVM-RFE

algorithm shows that the accuracy is highest when 14 genes are

included, so we selected the first 14 genes of the SVM-RFE

algorithm as candidate genes. After intersecting the results of the

three algorithms, we obtained four down-regulated key aging genes

in heart failure, namely BCL6, EIF4EBP1, MEIS2, and SMARCA2.

The visualization results are shown in Figure 4. The results from

each machine learning algorithm and the lists of the key genes can

be found in Supplementary S2.
Key genes verification

We identified 14 key aging genes associated with heart failure

using three distinct machine learning algorithms. To circumvent the

limitations imposed by the sample size in the ROC curve analysis of

combined genes, we pursued an alternative validation strategy.

Specifically, we validated these 14 genes using 15 different machine

learning algorithm models and 207 combinations, across both the

test set and two external validation sets. The validation results

indicated that, in most algorithms, the accuracy of these 14 genes

exceeded 0.8 in both the test set and external validation sets. Notably,

the Elastic Net Regularized Generalized Linear Model with Cross-

Validation (ENR-CV), with specific parameters set to 10-fold cross-

validation, a cutoff value of 0.25, and an alpha value of 0.6, achieved

the highest average accuracy (0.911). The top 50 average accuracy

rankings from this comprehensive analysis are depicted in Figure 5.
Drug prediction of key genes

In our pursuit to identify potential pharmacological agents for

tackling heart failure in aging patients, we utilized the DSigDB

database. Our selection criteria focused on drugs with an Adjusted

P-value of less than 0.01. This stringent threshold led to the
BA

FIGURE 3

Function enrichment analysis of 252 aging-related genes. (A) GO enrichment analysis results. (B) KEGG enrichment analysis results.
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identification of six promising drug candidates: Arsenenous acid,

Cyclophosphamide, Lovastatin, Rimonabant Hydrochloride,

Sorafenib, and Alvespimycin. Detailed information about these

drugs was provided in Table 1.
Immune infiltration analysis of
aging myocardium

We performed immune infiltration analysis on myocardial

samples from 56 elderly heart failure patients and 32 normal
Frontiers in Immunology 06
elderly patients in GSE57338 using the CIBERSORT algorithm.

The bar graph clearly shows the different subpopulation content in

each sample. We evaluated cellular composition heterogeneity

between elderly heart failure samples and elderly healthy samples,

and the results showed that 2 types of immune cell infiltration were

significantly different. Macrophages M2 of normal samples were

lower than those of heart failure samples, and T cells CD8 were

higher than those of heart failure samples. The differences of these

two types of immune cells may provide potential regulatory points

for the treatment of heart failure in the elderly. In myocardial

samples from both young and elderly heart failure patients, three
B

C D

E F

G H

A

FIGURE 4

Machine learning in screening key aging genes for HF. (A) Screening of key aging genes using the Lasso Model in up-regulated genes. The Lasso
coefficient profiles were utilized to identify the optimal feature genes, with the optimal lambda determined by minimizing the partial likelihood
deviance. Each coefficient curve in the left picture represents an individual gene. The solid vertical lines in the right picture represent the partial
likelihood deviance, and the number of genes (n = 17) corresponding to the lowest point of the curve was deemed most suitable for the Lasso
model. (B) Screening of key aging genes using the RF Model in up-regulated genes. The relative importance of overlapping candidate genes was
calculated using the random forest approach. We present the results for the top 20 genes. (C) Screening of key aging genes using the SVM-RFE
Model in up-regulated genes. The SVM-RFE algorithm was employed to further identify the optimal feature genes, based on the highest accuracy
and lowest error obtained from the curves. The x-axis indicates the number of feature selections, while the y-axis represents the prediction
accuracy. (D) Venn diagram illustrating the identification of 10 candidate genes for up-regulated genes through the aforementioned three
algorithms. (E) Screening of key aging genes using the Lasso Model in down-regulated genes. (F) Screening of key aging genes using the RF Model
in down-regulated genes. (G) Screening of key aging genes using the SVM-RFE Model in down-regulated genes. (H) Venn diagram shows that 4 key
aging genes for down-regulated genes are identified via the above three algorithms.
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types of dysregulated immune cells were identified: Macrophages

M1, T cells CD4 memory resting, and T cells regulatory. However,

analysis of whole blood samples revealed that these three types of

immune cells were not dysregulated in circulation; instead, resting

NK cells were found to be dysregulated. The visualization results are
Frontiers in Immunology 07
shown in Figure 6. The statistical analysis results can be found in

detail in Supplementary S3.
Discussion

Heart failure is a disease caused by structural changes or functional

impairment of the heart, and aging plays an important role in its

progression (26). In fact, among the elderly, maintaining normal

circulatory function helps increase disease-free life expectancy and

maintain a higher quality of life (27). As the aging of the population

increases and the survival rate of ischemic cardiomyopathy increases,

heart failure in the elderly population has brought serious economic

and public health burdens (28). Although the commonmechanisms of

heart failure and aging are an active research topic, current research

focus is still on investigating the potential anti-aging mechanisms of

heart failure therapeutic drugs, and the aging-related mechanisms and

potential therapeutic drugs for heart failure remain unclear (29).

Therefore, the purpose of this study was to identify and verify aging-

related genes in heart failure, and to explore the mechanism and

potential therapeutic drugs of aging in heart failure, in order to reveal

new pathological mechanisms and cardioprotective pathways.

In this study, we first obtained 252 aging-related genes in heart

failure through WGCNA and CellAge databases, and explored the
FIGURE 5

The accuracy of top 50 machine- learning algorithm combinations.
TABLE 1 The details of drugs.

Drugs Combined
Score

Genes Molecular
Formula

Arsenenous acid 168.64 CDKN1B;BCL6;
HTRA1;
EIF4EBP1;RAF1;
XAF1;TLR3

AsHO2

Cyclophosphamide 294.17 CDKN1B;BCL6;
EIF4EBP1;XAF1

C7H15Cl2N2O2P

Lovastatin 586.32 CDKN1B;
RAF1;SMARCA2

C24H36O5

Rimonabant
hydrochloride

2335.08 CDKN1B;RAF1 C22H22Cl4N4O

Sorafenib 478.17 CDKN1B;
EIF4EBP1;RAF1

C21H16ClF3N4O3

Alvespimycin 1992.62 CDKN1B;RAF1 C32H48N4O8
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biological functions and signaling pathways involved in aging genes

through GO and KEGG enrichment analysis. The results show that

biological processes are mainly related to histone modifications and

cell cycle. Histone modifications are chemical modifications of

histone amino acid residues, which can regulate gene expression

without changing the DNA sequence, including methylation,

acetylation, ubiquitination, etc (30). Histone modifications are

dynamically regulated under cardiac stress, leading to heart

failure through compensatory or maladaptive transcriptome

reprogramming (31). Studies have shown that histone acetylation

regulators can affect processes such as cardiomyocyte hypertrophy,

apoptosis, fibrosis, oxidative stress, and inflammation, and exert

cardioprotective effects (32). Regulation of histone methylation and

acetylation modifiers serves as a bridge between signaling and
Frontiers in Immunology 08
downstream gene reprogramming, and regulation of their levels

helps define the epigenetic landscape required for correct

cardiomyocyte function (33). However, in aging individuals, due

to histone loss, abnormal modifications, and accumulation of

mutations, the strict regulation of histone modifications begins to

disintegrate, disrupting tissue homeostasis and regeneration (34).

Given the reversibility of epigenetic regulation, epigenetic modifiers

hold exciting promise in both delaying aging and treating heart

failure (35). Loss of cardiac contractile substrate and limited

myocyte regenerative capacity are major contributors to poor

outcomes in heart failure (36). The heart is an organ with poor

regenerative capacity, and it is difficult for cardiomyocytes to re-

enter the cell cycle for regeneration and repair. Studies have shown

that a combination of cell cycle regulators can induce stable
B C

D

E

A

FIGURE 6

Analysis of Immune Cell Infiltration. (A) Visualization from bar graphs of the proportions of 22 types of immune cells in elderly healthy samples, elderly
heart failure samples, and young heart failure samples from GSE57338. (B) Expression of 2 dysregulated immune cells in elderly heart failure samples and
elderly healthy samples (*indicates p<0.05, the same below). (C) Expression of 3 dysregulated immune cells in elderly heart failure samples and young
heart failure samples. (D) Visualization of bar graphs showing the proportions of 22 types of immune cells at the circulating level in elderly heart failure
samples and young heart failure samples from GSE77343. (E) The proportion of 1 dysregulated immune cell in elderly heart failure samples and young
heart failure samples. This indicates differences between myocardial immune cell levels and circulating immune cell levels.
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cytokinesis in adult postmitotic cells and significantly improve

cardiac function after acute or subacute myocardial infarction

(37). Additionally, forcing cardiomyocytes to proliferate while

minimizing the oncogenic potential of cell cycle factors using

novel transient and cardiomyocyte-specific viral constructs may

reduce arrhythmias or systemic tumorigenesis while sustainably

improving cardiac function (38). Aging requires cell cycle arrest in

response to damaging stimuli, and therefore, cell cycle modulators

may have better efficacy in treating heart failure in the aging

population (39).

KEGG enrichment results show that the aging genes in heart

failure mainly involve cellular senescence, proteoglycans in cancer,

cell cycle, microRNAs in cancer, c-type lectin receptor signaling

pathway, PI3K-Akt signaling pathway, and signal pathways related

to cancer diseases. Cellular aging, characterized by an irreversible

arrest in the cell cycle induced by stress, markedly impairs various

cellular functions, including homing, proliferation, migration, and

differentiation (40). Beyond the hallmarks of DNA damage,

endoplasmic reticulum stress, and mitochondrial dysfunction,

senescent cardiomyocytes also exhibit an age-related secretory

phenotype. This phenotype involves the release of pro-

inflammatory cytokines, chemokines, and matrix-degrading

enzymes, which detrimentally influence the myocardial

microenvironment and neighboring healthy cardiomyocytes,

exacerbating cardiac remodeling and failure (41). Therefore,

mitigating the decline in cardiac function in aging organisms

necessitates not only the activation of maintenance and repair

mechanisms but also prioritizing the induction of apoptosis in

senescent cells, a strategy that holds promise as a therapeutic

approach (42, 43). Senescent cells frequently exhibit activation of

the PI3K-Akt signaling pathway, a phenomenon not observed in

younger cells (44). Interestingly, reducing AKT and ERK activation

has proven effective in extending lifespan in Drosophila (45).

However, this poses a paradox, as the amelioration of myocardial

fibrosis and protection of cardiac cells often entail activating the

PI3K-Akt pathway (46–48). Thus, the challenge lies in striking a

balance between mitigating heart failure and aging when

modulating the PI3K-Akt signaling pathway, a key area for future

research. Heart failure-associated aging genes have been found to be

significantly enriched in pathways commonly implicated in cancer.

This correlation may stem from the intricate relationship between

cellular aging, the cell cycle, and cancer. While aging naturally

serves as a deterrent against tumorigenesis, senescent cells, both

malignant and non-malignant, under certain conditions, can

paradoxically adopt tumor-promoting characteristics (49, 50).

Consequently, therapies that promote aging processes present as a

viable strategy in cancer treatment (51). Nonetheless, the

multifaceted role of aging in diverse physiological and

pathological contexts necessitates a careful consideration of the

cardiac implications of pro-aging therapies in cancer patients.

Furthermore, the role of cell division in cancer progression is

critical; inaccuracies during this process can lead to chromosomal

content variations and aneuploidy, thereby contributing to

oncogenesis (52). Research indicates a reduction in cell

proliferation within the aging transcriptome, contrasted by a shift
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towards heightened cell division in the cancer transcriptome (53).

This observation suggests that a strategic, sequential application of

pro-aging therapy followed by anti-aging treatment may offer a

balanced approach, mitigating organ-specific burdens in cancer

patients (54).

In order to explore the key aging genes in heart failure, we used

three machine learning algorithms to obtain 10 key up-regulated

genes and 4 key down-regulated genes. Subsequently, we fit the 14

key genes on 15 machine learning algorithm models and 207

combinations and validated them in two independent external

data sets. The results showed that the best average accuracy was

0.911, which shows that these 14 key genes can be used as aging

signature genes for heart failure. This discovery paves the way for

further exploration of crucial aging-related mechanisms in heart

failure and the development of targeted therapeutics. Notably, the

reproducibility of our findings was corroborated by their

consistency across two separate and independent external datasets.

Our study identified 10 key up-regulated genes predominantly

involved in cell cycle regulation, programmed cell death, and

immune response. Among these, CDKN1B and SPN1 emerge as

vital regulators of cell cycle progression. CDKN1B acts as a

principal driver of cell division and plays a crucial role in

restraining abnormal cell proliferation (55). SPN1, associated with

meiotic spindles, has been observed to induce metaphase arrest and

chromosomal instability upon overexpression (56).In the realm of

programmed cell death, genes like ITPK1, MAVS, RAF1, and XAF1

play diverse roles. ITPK1 intervenes in TNF-a-induced apoptosis

by disrupting the activation of the TNFRSF1A-associated death

domain and is implicated in the oligomerization and localization of

activated pMLKL to the cell membrane, thereby modulating

necroptosis (57, 58). MAVS, while offering apoptosis resistance,

also mediates the recruitment of NLRP3 to mitochondria, triggering

the activation of the NLRP3 inflammasome and consequent

pyroptosis (59, 60). RAF1 acts as a critical link within the MAPK/

ERK cascade, determining cell fate across a spectrum of processes

such as growth, proliferation, migration, differentiation, and

survival (61). It also safeguards cells from apoptosis through NF-

kappa B activation and its mitochondrial translocation to bind with

BCL2 (62). XAF1, in synergy with TNF-a, induces apoptosis and is

involved in trophoblast cell apoptosis (63).Furthermore, TLR3 plays

a pivotal role in both innate and adaptive immunity. It operates via

the TRIF/TICAM1 adapter, leading to NF-kappa B activation, IRF3

nuclear translocation, cytokine secretion, and inflammatory

responses (64).

The 4 key genes identified as down-regulated in our study play

diverse roles in various biological processes. BCL6 functions as a

transcriptional repressor, primarily in germinal center B cells,

where it inhibits genes associated with differentiation,

inflammation, apoptosis, and cell cycle regulation (65). MEIS2,

known for promoting the proliferation of cardiac myoblasts,

exhibits decreased expression in aging individuals, potentially

exacerbating the decline in cardiac function (66). SMARCA2 is

implicated in transcriptional activation and selective gene

repression via chromatin remodeling. Research indicates that the

SWI/SNF ATP-dependent chromatin remodeling complex is vital
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1367235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2024.1367235
for maintaining metabolic homeostasis in adult cardiomyocytes

(67). Lastly, EIF4EBP1, which is phosphorylated in response to

signals such as insulin, plays a role in the regulation of mRNA

translation upon dissociation from eIF4E. This gene is also

implicated in processes like autophagy and acts as a crucial

effector in the mTOR signaling pathway (68, 69).

After obtaining the key aging genes of heart failure, we tried to

search for potential drug molecules that can combat the

development of heart failure in aging patients through the

DSigDB database. The results show that Arsenenous acid,

cyclophosphamide, lovastatin, Rimonabant hydrochloride,

Sorafenib, and alvespimycin can interfere with some key aging

genes. These drugs are mainly divided into anti-tumor drugs and

lipid-lowering drugs. Arsenenous acid, cyclophosphamide,

Sorafenib, and alvespimycin are predicted to be anti-tumor drugs,

which may be related to key genes involved in cell cycle and

programmed cell death. However, these anti-tumor drugs are

generally cardiotoxic and pro-aging, which is a shortcoming of

the DSigDB database (70, 71). Rimonabant, a cannabinoid receptor-

1 (CB1) antagonist, shows promise in cardiovascular disease

prevention (72). Research indicates that Rimonabant not only

mitigates doxorubicin-induced cardiotoxicity but also effectively

reduces inflammation and oxidative stress in the aging heart (73,

74). Furthermore, it combats aging-related insulin resistance and

metabolic dysfunction, reverses obesity phenotypes in aged mice,

and partially restores skeletal muscle function (75, 76). These

findings suggest Rimonabant’s potential in delaying aging,

enhancing metabolic health, and safeguarding cardiac function.

Lovastatin, known as an HMG-CoA reductase inhibitor, is widely

used clinically for cholesterol reduction and vascular atherosclerosis

management. However, emerging studies reveal that beyond its

cholesterol-lowering capabilities, lovastatin possesses anti-aging

and anti-cancer properties (77, 78). Additionally, the

dedifferentiating effects of statins may alleviate myocardial fibrosis

in patients predisposed to heart failure (79). Consequently, the

multifaceted mechanisms and therapeutic applications of statins

like lovastatin in the realms of heart failure and aging warrant

further exploration. These two medications may also have effects on

immune cells. One study highlighted the anti-inflammatory action

of Rimonabant on macrophages, which could imply a broader

immunomodulatory effect, potentially influencing various

macrophage states (80). Lovastatin has been proven to affect

macrophages and T cells. It can influence the metabolism and

function of macrophages (81). Additionally, lovastatin’s extensive

anti-tumor activity may reduce the presence of immunosuppressive

cells in the tumor microenvironment (82). The impact of these

drugs on immune cells and aging merits further investigation.

Although the use of machine learning combined with the DSigDB

database for drug prediction does not ascertain the causal

relationship between drugs and diseases, this comprehensive

screening method substantially reduces the range of potential

drugs. Therefore, this integrated machine learning approach has

exciting application prospects and is worthy of further investigation.

Immune infiltration analysis showed that there were significant

differences in the infiltration of two types of immune cells in aging
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myocardium. Macrophages M2 are a subpopulation of

macrophages with anti-inflammatory effects. After receiving

signals from IL-4 inflammatory factors, Macrophages M2 activate

the secretion of anti-inflammatory cytokines such as IL-10 to

inhibit M1 macrophages and promote wound healing and tissue

repair (83).This could also be the reason why M1 macrophages are

lower in elderly heart failure samples compared to those from

younger heart failure patients. Impaired immune function

associated with aging activates the innate immune system,

systemic low-level chronic inflammation and the decline in the

ability of macrophages to phagocytose pathogens can also lead to an

increase in Macrophages M2 (84, 85). Higher levels of Macrophages

M2 also reduce inflammatory damage to cardiomyocytes and delay

fibrosis (86). This may be the reason why Macrophages M2 in

elderly heart failure samples is higher than that in normal elderly

samples. Studies have shown that depletion of CD8 + T

lymphocytes reduces apoptosis in ischemic myocardium, hinders

inflammatory responses, limits myocardial damage, and improves

cardiac function (87). Lower T cell CD8 in elderly heart failure

samples may be beneficial in maintaining cardiac function.

Compared to younger patients with heart failure, myocardial

samples from elderly patients exhibit lower expression of CD4

memory resting T cells and higher expression of regulatory T

cells. This could be attributed to immunosenescence associated

with aging, suggesting that these changes might not be exclusive to

patients with heart failure (88, 89). In circulation levels, the resting

NK cells of young heart failure patients are lower than those of

elderly heart failure patients. This indicates that NK cells in younger

patients are more active, while the activity of NK cells in older

patients is relatively lower. This difference is primarily associated

with age-related changes in the immune system. Therefore, this

disparity may not be exclusive to heart failure patients (90).

The novelty of our research is as follows. First, we identified

common genes in heart failure and aging through WGCNA and

CellAge databases. Secondly, we identified key aging genes in heart

failure through 3 machine learning algorithms. Notably, we fit 14

key genes on 15 machine learning algorithm models and 207

combinations and validated them in two independent external

data sets. The results show that these 14 key genes can be used as

aging signature genes in heart failure, which will help to further

search for key aging-related mechanisms in the process of heart

failure and develop specific drugs. Rimonabant and lovastatin,

which we found through the DSigDB database, have the potential

to delay aging and protect the heart. Finally, we evaluated the

content of immune cells and stromal cells in myocardial samples

from elderly patients with heart failure to provide potential

regulatory points for the treatment of elderly heart failure.

Despite the contributions of this study, certain limitations must

be acknowledged. Primarily, the correlation between the observed

increases in mRNA levels and corresponding changes in protein

expression remains uncertain. This is particularly relevant as the

execution of numerous biological functions hinges on post-

translational modifications. Secondly, despite employing 15 types

of machine learning algorithm models and 207 combinations to

validate the accuracy of key genes, it is still challenging to
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demonstrate a causal relationship between critical aging genes and

age-related heart failure. If orthogonal methods were used, the cost

of validating the causal link between 14 genes and the disease

through animal experiments would be prohibitively high. Perhaps

in the future, with a sufficient number of SNPs, we could employ

Mendelian randomization to verify the causal relationship between

them. Thirdly, while we have isolated genes that exhibit aging

characteristics in heart failure, it is plausible that certain

upregulated genes within heart failure serve as natural antagonists

against cellular aging. Nevertheless, our research did not consider

these genes. The paradoxical roles of these genes in heart failure and

aging merit further investigation. Furthermore, there is a possibility

that the CellAge and DSigDB databases might have overlooked

some critical genes during their screening processes. In future

research endeavors, should resources allow, we plan to

incorporate experimental designs that assess protein levels and

drug efficacy to substantiate and refine our conclusions

more robustly.
Conclusion

We performed bioinformatics analysis on the GEO dataset to

explore the underlying molecular mechanisms and key genes of

heart failure and aging. Through three machine learning

algorithms: LASSO, RF and SVM-RFE, we identified 14 key aging

genes in heart failure. After fitting 15 machine learning algorithm

models and 207 combinations, and validating them in two

independent external data sets, we determined that these 14 key

genes can serve as aging signature genes for heart failure. Our

exploration via the DSigDB database revealed rimonabant and

lovastatin as promising agents capable of decelerating aging

processes and offering cardiac protection. We also delineate the

landscape of cellular heterogeneity in expression profiles of aging

myocardium. Collectively, these insights pave the way for enhanced

understanding of aging-related mechanisms in heart failure and

could inform the development of targeted therapeutic interventions.
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