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SARS-CoV-2–related genes for
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therapeutic strategies in lung
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Background: Early research indicates that cancer patients are more vulnerable to

adverse outcomes and mortality when infected with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, the specific attributes of

SARS-CoV-2 in lung Adenocarcinoma (LUAD) have not been extensively and

methodically examined.

Methods: We acquired 322 SARS-CoV-2 infection-related genes (CRGs) from

the Human Protein Atlas database. Using an integrative machine learning

approach with 10 algorithms, we developed a SARS-CoV-2 score (Cov-2S)

signature across The Cancer Genome Atlas and datasets GSE72094,

GSE68465, and GSE31210. Comprehensive multi-omics analysis, including

assessments of genetic mutations and copy number variations, was conducted

to deepen our understanding of the prognosis signature. We also analyzed the

response of different Cov-2S subgroups to immunotherapy and identified

targeted drugs for these subgroups, advancing personalized medicine

strategies. The expression of Cov-2S genes was confirmed through qRT-PCR,

with GGH emerging as a critical gene for further functional studies to elucidate its

role in LUAD.

Results: Out of 34 differentially expressed CRGs identified, 16 correlated with

overall survival. We utilized 10 machine learning algorithms, creating 101

combinations, and selected the RFS as the optimal algorithm for constructing a

Cov-2S based on the average C-index across four cohorts. This was achieved

after integrating several essential clinicopathological features and 58 established
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signatures. We observed significant differences in biological functions and

immune cell statuses within the tumor microenvironments of high and low

Cov-2S groups. Notably, patients with a lower Cov-2S showed enhanced

sensitivity to immunotherapy. We also identified five potential drugs targeting

Cov-2S. In vitro experiments revealed a significant upregulation of GGH in LUAD,

and its knockdown markedly inhibited tumor cell proliferation, migration,

and invasion.

Conclusion: Our research has pioneered the development of a consensus Cov-

2S signature by employing an innovative approach with 10 machine learning

algorithms for LUAD. Cov-2S reliably forecasts the prognosis, mirrors the tumor’s

local immune condition, and supports clinical decision-making in

tumor therapies.
KEYWORDS

lung adenocarcinoma, SARS-CoV-2, prognostic signature, machine learning,
immunotherapy
Introduction

Lung cancer (LC) ranks as the foremost cause of cancer-related

mortality globally, accounting for about 2.3 million new cases and 1.8

million deaths annually (1, 2). The outlook for patients with

metastatic cancer is very grim, as only 5% of them are expected to

survive for 5 years. The survival rate for patients with tumors

confined to the lungs varies between 33% and 60% (3). Based on

the histological categorization of LC, around 85% of LCs are non-

small-cell lung cancer (NSCLC), with the majority being lung

adenocarcinoma (LUAD) (4). The clinical outcome is closely linked

to the early identification and diagnosis, and the failure to do so often

results in missing the best chance for clinical intervention. Surgical

removal is advised for individuals diagnosed with stage I or II illness.

In the treatment of NSCLC for patients in advanced stages, targeted

therapy and immunotherapy are alternative systemic therapeutic

approaches, in addition to traditional radiotherapy and

chemotherapy. The selection of these strategies is based on the

gene mutation scenarios and the expression of programmed cell

death protein-ligand 1 (PD-L1) (5). The molecular and phenotypic

diversity of LUAD is significant, with around 60% of cases having a

driver mutation that is oncogenic. This mutation is often linked to

specific clinicopathological characteristics and can help predict the

response to treatment (6, 7). Despite advancements in genotype-

based diagnosis and therapy modalities, the survival rate continues to

be poor (8). Therefore, it is crucial to investigate new dependable

biomarkers for the early detection and prediction of prognosis, as well

as to offer prognostic markers and therapeutic objectives for LUAD.

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2), a highly contagious positive-sense, single-stranded RNA virus, is

believed to have originated from a zoonotic source and quickly

transmitted among humans via respiratory droplets and physical
02
contact (9). Since its emergence in late 2019, the swift worldwide

proliferation of SARS-CoV-2 infection has been termed the

Coronavirus Disease 2019 (COVID-19) pandemic. According to

epidemiological data, individuals diagnosed with cancer, especially

those undergoing anticancer therapy, have a significantly increased

susceptibility to SARS-CoV-2 infection. This heightened vulnerability

leads to a higher occurrence of severe complications and unfavorable

prognosis due to their compromised immune system (10, 11).

Furthermore, numerous symptoms may persist in numerous

COVID-19 patients even after the acute infection has been

eliminated. The impact of the COVID-19 pandemic on cancer is

closely linked to the functioning of the immune system. There is a

strong connection between viruses and cancers, as evidenced by

multiple studies. Viruses are responsible for causing over 15% of

malignancies (12). Cell transformation and carcinogenesis triggered

by viral infections, such as those caused by human papillomavirus

(HPV), hepatitis B and C viruses (HBV, HCV), Epstein-Barr virus

(EBV), and human T-lymphoma virus, are well-documented (13–

16). In a manner akin to SARS-CoV-2, SARS-CoV-1 disrupts

numerous signaling pathways linked to malignant cell

transformation (17). However, the carcinogenic potential of SARS-

CoV-2 is yet to be fully understood and warrants further

investigation. Policard et al. highlighted a range of genes influenced

by SARS-CoV-2 infection, including the E2F transcription factor and

RB1, indicating a possible role of SARS-CoV-2 in tumorigenesis. The

link between malignancies and SARS-CoV-2 infection remains

incompletely explored. Given that viruses can influence tumor

progression via specific target genes, the role of SARS-CoV-2 target

genes in cancer deserves thorough examination (18).

In this research, we provided a comprehensive overview of the

SARS-CoV-2 infection–related genes (CRGs) identified in LUAD.

Multiple machine learning algorithms were used to develop the
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SARS-CoV-2 score (Cov-2S), which is a prognostic model designed

to predict the OS of patients with LUAD. Furthermore, the Cov-2S

has the capability to assess the landscape of the tumor’s immune

micro-environment and its responsiveness to both immunotherapy

and chemotherapy. The results of our study reveal the important

regulatory functions of CRGs in the progression of LUAD and offer

potential targets for precise treatment of LUAD.
Materials and methods

Data resources

Transcriptome profiling data and patient survival details for

LUAD were sourced from The Cancer Genome Atlas (TCGA)

database to create training sets. This dataset, TCGA-LUAD,

comprised 503 cases and included clinical information, genetic

mutations, and copy number variation (CNV) data. For testing

purposes, expression profiles from the Gene Expression Omnibus

(GEO) for the following datasets were also acquired: GSE72094

(n=398), GSE68465 (n=442), and GSE31210 (n=226). All

expression data were standardized to Transcripts Per Million

(TPM) format to facilitate consistent dataset comparison. Following

that, the “sva” package was utilized to eliminate batch effects. A total

of 322 CRGs were obtained from the previous research and human

protein atlas (HPA) (https://www.proteinatlas.org/) database (19), as

shown in Supplementary Table 1.
Enrichment pathway exploration

Differential CRGs between adjacent normal and cancerous

tissues were identified using the “limma” R package, applying

criteria of an absolute fold change (FC) greater than 2 and a false

discovery rate (FDR) below 0.05. For the analysis of differentially

expressed genes (DEGs), Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) enrichment analyses

were conducted using the R packages “clusterProfiler” and

“org.Hs.eg.db”. Gene set variation analysis (GSVA) was

performed by integrating the “h.all.v7.5.1.symbols.gmt” gene sets

from MSigDB, available at https://www.gseamsigdb.org/gsea/

msigdb/index.jsp (20). This was followed by gene set enrichment

analysis (GSEA) to identify significantly enriched signaling

pathways and biological processes among the different groups (21).
Development and evaluation of a
prognostic Cov-2S by machine learning

To develop a robust and precise prognostic signature for lung

adenocarcinoma (LUAD), potential biomarkers underwent

evaluation using ten integrative machine learning algorithms,

namely, random survival forest (RSF), elastic network (Enet),

Lasso (least absolute shrinkage and selection operator), Ridge,
Frontiers in Immunology 03
stepwise Cox, CoxBoost, partial least squares regression for Cox

(plsRcox), supervised principal components (SuperPC), generalized

boosted regression modeling (GBM), and survival support vector

machine (survival-SVM). The process for signature generation

involved several steps:
1. Prognostic biomarkers were initially identified using

univariate Cox regression in the TCGA dataset.

2. Subsequently, 101 algorithm combinations were applied to

these biomarkers to create predictive models. These models

were developed using leave-one-out cross-validation

(LOOCV) within the TCGA dataset.

3. All models were then tested using three GEO datasets.

4. The Harrell’s concordance index (C-index) was computed

for each model across all TCGA and GEO datasets. The

model with the highest average C-index was deemed the

most effective.
Previous studies provide more in-depth information on

comparable machine learning algorithms (22). Following this,

LUAD patients were stratified into high and low Cov-2S groups

based on the median Cov-2S score. The predictive capability of Cov-

2S was assessed with a time-dependent ROC curve, generated via the

R-package “time-ROC” (23). Additionally, both univariate and

multivariate Cox analyses were conducted to identify risk factors

among clinical characteristics and Cov-2S for LUAD prognosis.

Univariate and multivariate Cox regression analyses were

conducted to investigate the potential of Cov-2S and clinical

parameters as independent prognostic indicators for LUAD

patients. The independent prognostic indicators were integrated

into a nomogram using the R package “rms” to predict 1-, 3-, and 5-

year survival rates. Calibration plots were generated to assess the

alignment between the survival rates predicted by the nomogram

and the observed survival rates.
Unsupervised clustering analysis

The creation of the “ConsensusClusterPlus” R package enabled

the execution of an unsupervised cluster analysis on Cov-2S mRNA

expression profiles (24). The ideal number of clusters was identified

by choosing the k value that minimized the sum of squares within

each cluster, and the classification’s stability was verified through

1000 repetitions. Moreover, the high-latitude data dimension was

decreased by employing principal component analysis (PCA) from

the R package “ggplot2” to examine if the gene Cov-2S could

categorize patients into clusters.
Somatic variants analysis and copy number
variation analysis

The R package “maftools” was used to present the waterfall

plots of the top 20 genes with the highest mutation frequencies in
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the mutation landscape. The calculation of the tumor mutation

burden (TMB) involves determining the overall count of non-

synonymous mutations present in every individual. The

interaction between gene mutations was determined by using

“maftools” to identify genes with significant mutations (P< 0.05)

between the different groups. Only genes that underwent mutations

exceeding 30 occurrences in at least one group were taken into

account in both analyses. The GISTIC (Genomic Identification of

Significant Targets in Cancer) 2.0 pipeline, accessible via

GenePattern at https://genepattern.broadinstitute.org/, was

employed to analyze copy number variation data. This analysis

identified significant regions of amplification and deletion, as well as

discrete copy number statuses of all genes across different Cov-2S

groups. Additionally, to assess the extent of genomic alterations,

metrics such as the fraction of genome altered (FGA), fraction of

genome gained (FGG), and fraction of genome lost (FGL) were

calculated for each sample (25). FGA was determined by calculating

the proportion of fragment base count representing genetic

variation within the genome, while FGG/FGL solely concentrated

on the acquisition or depletion of genetic variation within

the genome.
Tumor microenvironment

Various algorithms, such as TIP (tumor immunophenotype)

tracking (26), ESTIMATE (27), TIMER (28), MCP‐counter (29)

and the single sample gene set enrichment analysis (ssGSEA)

algorithm (30), were utilized for TME analysis. TIP concentrated

on characterizing the immune microenvironment by referencing

the seven-step cancer-immunity cycle and deducing the

proportions of diverse tumor-infiltrating immune cells. The

ESTIMATE algorithm was employed to compute the ESTIMATE

score, immune score, and stromal score, thereby assessing the

tumor’s immune and stromal components. Additionally, the

abundance of various immune cell types infiltrating the tumor

was estimated using algorithms such as TIMER, MCP-counter, and

single-sample Gene Set Enrichment Analysis (ssGSEA).
Evaluation of immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE) web

tool, available at http://tide.dfci.harvard.edu, was employed to

predict immunotherapy responses across various hypoxia

subtypes of tumors (31). Additionally, the unsupervised subclass

mapping (submap) method was utilized to assess the expression

similarity between lung adenocarcinoma (LUAD) patients with

different hypoxia subtypes and those exhibiting varied outcomes

following immunotherapy. This approach posits that greater

similarity in expression profiles between patient pairs suggests

more closely aligned clinical outcomes (32). Furthermore, three

independent external datasets (GSE78220, NIHMS1611472, and

IMvigor210) were selected to investigate the correlation between the

Cov-2S score and the efficacy of immunotherapy treatments.
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Prediction of chemotherapy
drug sensitivity

Cancer cell lines (CCLs) drug sensitivity data were sourced from

the Cancer Therapeutics Response Portal (CTRP v2.0, available at

https://portals.broadinstitute.org/ctrp) and the PRISM Repurposing

dataset (PRISM, accessible at https://depmap.org/portal/prism) (2,

33). The CTRP scrutinized 481 compounds against 835 CCLs,

whereas the PRISM Repurpose initiative examined 1448

compounds across 482 CCLs. Prior to further analysis,

compounds with missing values (NAs) in over 20% of the

samples were excluded. The ISOpure algorithm was implemented

to minimize the influence of non-tumor components in the analysis

(34). Additionally, the “pRRophetic” package’s built-in ridge

regression model was employed to predict the area under the

curve (AUC) value for each compound in individual patients.

This estimation utilized a combination of the meta-set purified

expression profile and the drug sensitivity data (35).
Cell culture

Human lung adenocarcinoma cell lines A549 and H838, along

with the normal bronchial epithelial cell line BEAS-2B, were

acquired from Procell (Wuhan, China) and the American Type

Culture Collection (Manassas, VA, USA), respectively. In a

controlled environment at 37°C and 5% CO2, H838 cells were

maintained in RPMI-1640 medium supplemented with 10% fetal

bovine serum (FBS), while A549 and BEAS-2B cells were cultured

in Dulbecco’s Modified Eagle Medium (DMEM) also containing

10% FBS. Small interfering RNA (siRNA) constructs targeting GGH

were obtained from Shanghai Hanheng and introduced into A549

and H838 cells using Lipofectamine 3000 for effective GGH

knockdown. The siRNA sequences were as follows: siRNA-NC,

5’- CGGGCCATGAAACGCCCATGG-3’; siRNA1-GGH, 5’-GCT

GTTTAACATGGTGATTTG-3’; siRNA2-GGH, 5’-GGGACC

CACTGAGGTAGTTAA-3’. After 48 hours, the effectiveness of

knockdown was assessed through immunoblotting, and the cells

were then utilized for additional experiments.
Cell proliferation assay

The viability of cells was assessed using Cell Counting Kit-8

(CCK-8) and colony formation experiments. In the CCK-8 trial,

1000 cells were planted in 96-well dishes and incubated for 24, 48,

and 72 hours. Subsequently, 10 µl of CCK-8 reagent (Saiku,

Shanghai, China) was added to each well containing 100 µl of

culture medium, and the plates were incubated at 37°C. After 2

hours, the optical density (OD) at 450 nm was measured using a

micro-plate reader. In the colony formation assay, 500 cells

subjected to treatment were plated in each well of 12-well plates.

After an incubation period of 10 days, the plates were washed twice

with phosphate-buffered saline (PBS). The cells were then fixed with

4% paraformaldehyde for 30 minutes and stained using a crystal
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https://genepattern.broadinstitute.org/
http://tide.dfci.harvard.edu
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism
https://doi.org/10.3389/fimmu.2024.1366928
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1366928
violet staining solution for 10 minutes. Finally, they were stained

with a solution of crystal violet for 10 minutes.
Cell migration and invasion assay

For the wound healing experiment, 5x10^5 cells were seeded

into each well of a 6-well plate. The following day, a sterile 20 ml
pipette tip was used to create a scratch (wound) on the cell surface.

Post-wounding, non-adherent cells were washed off with

phosphate-buffered saline (PBS) and replaced with fresh serum-

free medium for a 24-hour period. The progression of wound

closure was monitored and assessed using a light microscope. For

cell migration assessment, Transwell chambers (24-well, BIOFIL,

China) were employed. The lower chamber was filled with 0.6 ml of

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

20% fetal bovine serum (FBS). Meanwhile, approximately 7x10^4

cells, resuspended in basic medium, were added to the upper

chamber and incubated overnight at 37°C in a 5% CO2

atmosphere. After 24 hours, the cells were fixed with 4%

paraformaldehyde and stained with 2.5% crystal violet for

subsequent analysis. ImageJ was used to randomly select and

count three microscopic views. Cell invasion assay also employed

Transwell chambers. 70 µl of diluted Matrigel was applied to the

upper chamber prior to coating. The migration was performed

without coating matrigel surface. The following procedures are

comparable to the migration process.
Cell viability assay

Cell viability was determined by CCK8 cytotoxicity assay.

Briefly, cells were seeded in 96-well plates at 5000 cells/well and

treated with at 37°C with Ispinesib (0, 30, 60, 120 or 240 nM,

MedChem Express, Monmouth Junction, NJ, USA, Cat No.HY-

50759), Paclitaxel (0, 10, 20, 40 or 80 nM, MedChem Express,

Monmouth Junction, NJ, USA, Cat No. HY-B0015) and

Epothilone-b (0, 40, 80, 160 or 320 nM, MedChem Express,

Monmouth Junction, NJ, USA, Cat No. HY-17029) for 24 h,

respectively. Cells were incubated with CCK8 (10 ml/well) for 2 h
at 37°C and then spectrophotometrically quantified at 450 nm.
Quantitative real-time PCR
and immunohistochemistry

The total RNA was extracted with RNA isolation Kit (AG,

Changsha, China) according to the product protocol. The extracted

RNA underwent reverse transcription using the Reverse

Transcription Kit (Promega, Madison, Wisconsin) to synthesize

complementary DNA (cDNA), setting the stage for quantitative

real-time PCR (qRT-PCR). The qRT-PCR analysis was performed

on the Roche 480II quantitative real-time gene amplification

instrument (Roche, Oregon, USA), utilizing SYBR Premix Ex Taq

II (Promega, Wisconsin, USA). For normalization and control
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purposes, GAPDH was employed as an endogenous reference.

Relative gene expression levels were calculated and analyzed using

the 2-DDCt method. The specific primers used in this study are

detailed in Supplementary Table 2. The LUAD tissue microarray

(HLugA020PG02) was acquired from Outdo Biotech, and its ethics

approval was obtained. The IHC procedure was performed

according to the previously mentioned protocol (36). The main

antibodies used were anti-GGH (Huaan, Hangzhou, HA721359,

1:100). In this study, the immunostaining intensity was scored using

the following scale: 0 for negative staining, 1 for light yellow

staining, 2 for brownish yellow, and 3 for tan. Additionally, the

extent of the immunostaining area was evaluated as: 1 for less than

one-third coverage, 2 for coverage between one-third and two-

thirds, and 3 for more than two-thirds coverage. The final score for

biomarker expression was determined by multiplying the

immunostaining intensity score by the immunostaining area score.
Statistical analysis

All statistical analyses in this study were conducted using R

software 4.1 and GrapdPad Prism 5. For categorical data, Chi-

square tests and Fisher’s exact tests were employed. The Wilcoxon

signed-rank test was utilized for comparing paired continuous

variables. Pearson correlation analysis was applied to assess

correlations between continuous variables. Statistical significance

levels were defined as follows: extremely significant (****) for p <

0.0001, highly significant (***) for p < 0.001, significant (**) for p <

0.01, marginally significant (*) for p < 0.05, and not significant (ns)

for p ≥ 0.05.
Results

Transcriptional and genetic alterations of
CRGs in LUAD patients

The CRGs expression patterns between adjacent and cancerous

tissues were compared in the TCGA LUAD and identified 34

differently expressed SARS-CoV-2 infection-related genes

(DECRGs) containing 28 upregulated and 6 downregulated genes

(Figure 1A). We conducted GO and KEGG enrichment analysis for

DECRGs to determine the functions and pathways that had the

greatest level of involvement. In terms of GO analysis, the DECRGs

were mainly enriched in “protein homodimerization activity”,

“endoplasmic reticulum” and “response to hypoxia” (Figure 1B).

In the KEGG pathway, the DECRGs showed significant enrichment

in the category of “protein processing in the endoplasmic

reticulum” (Figure 1B). In order to delve deeper into the

correlation between genomic changes and expressions of

DECRGs in LUAD, the TCGA-LUAD project compiled the

genomic modifications of these genes. Analysis of somatic

mutations revealed that DECRGs mutations were present in 187

out of 616 samples (30.36%). Among these, CENPF (6%), PKP2

(5%) and ADAMTS1 (4%) exhibited the highest gene mutation
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rates (Figure 1C). The predominant mutation types in these genes

are nonsense mutations (Figure 1D). The findings presented in

Figure 1E demonstrate a relatively low frequency of CNVs among

the DECRGs. Notably, genes such as TRIM59, PLOD2, PCSK6,

PABPC1, and NPTX1 exhibited amplifications in their

copy numbers. In contrast, genes like SMOC1, REEP6, CHPF,

and F2RL1 showed deletions in their copy numbers. Figure 1F

depicts the chromosomal locations of these DECRGs in LUAD

patients. Additionally, among these DECRGs, 16 genes were

identified as having significant correlations with the prognosis of

LUAD patients.
Construction of prognostic Cov-2S by
integrative machine learning algorithms

After identifying 16 potential prognostic genes, a machine

learning-based integrative approach was employed to create a

reliable and consistent prognostic model. In total, 101 different

types of prognostic models based on machine learning were

acquired, and their C-index for both the training and testing sets

were displayed in Figure 2A and Supplementary Table 3. The RFS

framework exhibits a highest average C-index of 0.716 was

suggested as the optimal model (Figure 2A, Supplementary

Table 4). The Cov-2S was determined for every individual in all

groups by analyzing the expression levels of 10 genes included in the

model (Figures 2B, C). LUAD cases were divided into high and low

Cov-2S groups based on the median value of Cov-2S. As

anticipated, patients with low Cov-2S in LUAD exhibited a higher

OS rate in the training, testing, and meta sets (Figures 2D-H). In

addition, the discriminative ability of Cov-2S group for the

prognosis of LUAD patients is not influenced by clinical feature

subtypes (Supplementary Figure 1).
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Evaluation of the Cov-2S signature

The discrimination of Cov-2S was assessed using Time-ROC

analysis, yielding AUC values ranging from 0.94 to 0.98 in TCGA,

0.68 to 0.78 in GSE31210, 0.61 to 0.72 in GSE98465, 0.65 to 0.68 in

GSE72094, and 0.72 to 0.9 in the meta-set (Figures 3A-E). Similar to

the Time-ROC curve results, the C-index range for all sets is 0.62-

0.93, with the TCGA set having the highest C-index (Figure 3F). The

Chi-square test results indicated that individuals with advanced T, N,

M stages and deceased status exhibited elevated Cov-2S levels

(Supplementary Figure 2). Additionally, the prognostic prediction

of Cov-2S was compared with other clinical and molecular variables.

As displayed in Figures 3G-J, Cov-2S had distinctly superior accuracy

than almost all clinicopathological measures including M, T, T,

gender, M and TP53, KRAS, or EGFR mutations. In order to

investigate if Cov-2S functioned as a standalone prognostic

indicator, univariate and multivariate cox analyses were conducted

by including various clinicopathological traits and Cov-2S. The

results suggested the Cov-2S as a reliable prognostic indicator for

LUAD patients independently (Tables 1-4). Incorporating

independent predictors into the nomogram construction, we

observed that Cov-2S exerted the most significant influence on

survival prediction (Supplementary Figures 3A-D). Evaluation of

the prediction accuracy of the model using calibration curves

revealed close alignment between the predicted calibration

curves at the 1-, 3-, and 5-year calibration points and the standard

curve (Supplementary Figures 3E-H). Numerous predictive patterns

have been developed for LUAD. In order to assess the predictive

efficacy of Cov-2S in relation to other prognostic indicators, a random

selection of 58 constructed prognostic indicators for LUAD were

gathered and their C-index was computed. As shown in Figure 4, the

C-index of our Cov-2S exceeded that of the majority of these

prognostic signatures across all analyzed datasets.
B C
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FIGURE 1

The landscape of SARS-CoV-2 infection–related proteins (CRGs) in TCGA-LUAD set. (A) Volcano plot of the DECRGs. (B) GO categories [molecular
function (MF), biological process (BP) and cellular component (CC)] and KEGG pathway analysis for DECRGs. (C, D) The mutation summary and
details of DECRGs in the LUAD patients. (E) CNV mutation situation of the DEPCDRGs. (F) The location of CNV alterations of DECRGs
on chromosomes.
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Generation of Cov-2S
modification patterns

In order to gain a deeper understanding of the impacts of Cov-

2S on LUAD, a consensus clustering analysis was conducted to

categorize LUAD patients based on various alteration patterns. The

heatmap of the consensus matrices and cumulative distribution

function (CDF) curve (Supplementary Figure 4) identified that

there were two clusters (cluster A, cluster B and cluster C) which

were considered optimal. The PCA analysis confirmed a strong

distribution between different groups based on the expression

profiles of the Cov-2S (Figure 5A). Significantly, the analysis of

survival demonstrated a significant difference in survival rates

between the three clusters, where cluster A showed a more

positive outcome and cluster B had a poorer prognosis

(Figure 5B). Figure 5C illustrates the proportion of surviving and
Frontiers in Immunology 07
dying patients in three cluster and two Cov-2S groups. In cluster A,

GSVA revealed prominent activation of various metabolic

biological processes, while cluster B and cluster C were markedly

enriched in various cell proliferation pathways (Figures 5D-F).

Moreover, the ssGSEA method detected obvious disparities in the

immune scores of the three distinct clusters (Figure 5G).
Somatic mutation and CNV status between
the different groups

Our analyses suggested a specific somatic mutation distribution

among two Cov-2S groups. As shown in Figures 6A, B, TP53, TTN,

MUC16, CSMD3, RYR2, and LRP1B were commonly mutated in

both the high and low Cov-2S groups. Somatic mutation profiles

indicated that synonymous and non-synonymous mutations, as
B C
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FIGURE 2

A SARS-CoV-2 score (Cov-2S) was established and validated via the machine learning-based integrative procedure. (A) A total of 101 kinds of
machine learning algorithms were used to obtain the optimal model and calculated the C-index of each model for all sets. (B, C) The number of
trees for determining the Cov-2S with minimal error and the importance of the 10 CRGs based on the RSF algorithm. (D-H) Kaplan–Meier curves of
OS according to the Cov-2S in TCGA, GSE31210, GSE68465, GSE72094 and meta-set.
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well as overall mutation counts, did not display any noteworthy

variances between the high and low Cov-2S groups. However, 8

genes demonstrated significantly distinct mutation frequencies

between the two groups, along with a notable presence of co-

mutations (Figures 6C-G). Moreover, there was no statistically

different variation in TMB between the high and low Cov-2S
Frontiers in Immunology 08
groups (Figure 6H). Additionally, the study revealed the

correlation between TMB, Cov-2S, and prognosis, indicating that

patients with low TMB and high Cov-2S experience the most

unfavorable prognosis (Figure 6I). Following that, CNV analysis

revealed distinct chromosomal alteration patterns between the high

and low Cov-2S groups (Figure 6J). Regrettably, there were no
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FIGURE 3

Evaluation of the Cov-2S. (A-E) Time-dependent receiver operating characteristic curve of Cov-2S for predicting the prognosis of LUAD patients from
TCGA, GSE31210, GSE68465, GSE72094 and meta-set. (F) The C-index of the Cov-2S for the TCGA, GSE31210, GSE68465, GSE72094 sets. (G-J) The C-
index of the Cov-2S and other clinical factors in the TCGA, GSE31210, GSE68465, GSE72094 sets. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 1 Univariate and multivariate Cox analysis of the clinicopathological features and Cov-2S with OS for TCGA cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P
value

HR(95%CI) P value

Stage 1.977(1.586-2.463) < 0.001 1.487(1.049-2.109) 0.026

N 1.942(1.575-2.394) < 0.001 1.251(0.93-1.681) 0.139

T 1.816(1.386-2.38) < 0.001 1.423(1.034-1.958) 0.03

Age 1.038(0.822-1.31) 0.754 NA NA

Sex 1.041(0.847-1.28) 0.7 NA NA

M 1.727(1.18-2.527) 0.005 0.756(0.479-1.191) 0.227

Cov-2S 0.106(0.075-0.149) < 0.001 0.127(0.086-0.187) < 0.001
Significant value is given in bold.
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statistical difference in genomic loss, gain, and alteration between

the two Cov-2S groups (Figure 6K).
TME and molecular characteristics of the
Cov-2S

The immune condition of the TME impacts the outcome of

cancer cells and anticipates responsiveness to immune checkpoint

inhibitors (ICIs). Initially, we examined the correlation between

Cov-2S and the infiltration of immune cells. As depicted in the

illustration, the majority of individuals in the low Cov-2S group

exhibited an elevated quantity of immune infiltrating cells

(Figure 7A). Analyzing the correlation between the Cov-2S

signature and the functions of the anticancer immunity cycles

helps in understanding the status of anticancer immunity.

Patients in the low Cov-2S group exhibited marked upregulation

of various processes, including priming, activation, recruitment of

CD4 T cells, and infiltration of immune cells into the tumor

(Figure 7B). The findings indicated that patients with a low Cov-

2S displayed a comparatively elevated expression of the majority of

immune checkpoint genes (Figure 7C). Moreover, the Cov-2S

exhibited a positive correlation with pathways associated with

immunotherapy response and various metabolic pathways, such

as the IFN-g signature, DNA repair, nicotinamide adenine

metabolism, and biotin metabolism (Figure 7D). GSVA was

conducted to explore the underlying cancer mechanism of the

Cov-2S.The findings indicated that individuals with elevated Cov-

2S levels exhibited an abundance of pathways associated with

cancer, including the EMT, proliferation, metabolites, and DNA
Frontiers in Immunology 09
repair (Figure 7E). Interestingly, these pathway results were

confirmed in the GSEA analysis (Figures 7F-I).
Sensitivity prediction of different groups to
immunotherapy and chemotherapy

The treatment of LUAD has demonstrated a promising

potential for the application of immunotherapy. Through TIDE

and submap analysis, we assessed the immunotherapy response of

two Cov-2S groups. The results showed that individuals with low

Cov-2S have a decreased TIDE score, suggesting that these patients

are more prone to receiving advantages from immunotherapy

(Figure 8A). Furthermore, the Submap analysis module revealed

that patients with low Cov-2S exhibit similarities to melanoma

patients who responded favorably to anti-PD-1 treatment

(Figure 8B). Given the potential of Cov-2S to accurately forecast

the efficacy of immunotherapy for LUAD, we aim to investigate its

ability to predict the response to ICIs in groups of patients

undergoing immunotherapy. In the IMvigor210 dataset, survival

analysis revealed that a high Cov-2S score was associated with a

poorer prognosis compared to a low Cov-2S score (Figure 8C).

Additionally, the complete response/partial response (CR/PR)

group exhibited a lower levels of Cov-2S than the stable disease/

progressive disease (SD/PD) group, as demonstrated in Figure 8D.

In the GSE78220 and NIHMS1611472 cohorts, we also discovered

that decreased Cov-2S is associated to positive response to ICIs

treatment (Figures 8E, F). Overall, these findings suggest that Cov-

2S may be linked to immunotherapy response. To identify

potential drugs with the desired properties, we conducted drug
TABLE 3 Univariate and multivariate Cox analysis of the clinicopathological features and Cov-2S with OS for GSE31210 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

smoking 1.417(0.882-2.277) 0.15 NA NA

gender 1.344(0.839-2.152) 0.219 NA NA

age 1.263(0.777-2.052) 0.346 NA NA

stage 2.774(1.732-4.441) < 0.001 2.015(1.233-3.293) 0.005

Cov-2S 0.286(0.153-0.532) < 0.001 0.356(0.186-0.682) 0.002
Significant value is given in bold.
TABLE 2 Univariate and multivariate Cox analysis of the clinicopathological features and Cov-2S with OS for GSE68465 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

N 2.029(1.689-2.438) < 0.001 1.947(1.603-2.366) < 0.001

T 2.062(1.587-2.68) < 0.001 1.797(1.36-2.374) < 0.001

Gender 1.262(1.051-1.516) 0.013 1.267(1.044-1.539) 0.017

chemotherapy 1.412(1.15-1.734) < 0.001 1.246(1.004-1.545) 0.046

Cov-2S 0.728(0.607-0.875) < 0.001 0.784(0.648-0.948) 0.012
Significant value is given in bold.
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response prediction separately using drug response data derived

from CTRP and PRISM. CTRP and PRISM datasets encompass

gene expression profiles and drug sensitivity profiles of numerous

CCLs, offering a foundation for constructing drug response

prediction models. A subset of 160 compounds was common to

both datasets, resulting in a cumulative count of 1770 unique

compounds across the combined datasets after eliminating

redundancies (Figures 9A, B). During the cross-validation of the

two pharmacogenomics databases, we identified four drugs or

compounds (paclitaxel, SB-743921, cabazitaxel, epothilone-b, and

ispinesib) that show promising therapeutic potential for patients

with high Cov-2S. These drugs have lower estimated AUC values

and exhibit a negative correlation with Cov-2S, as depicted in

Figures 9C, D.
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Predictive efficacy of Cov-2S from a
pan-cancer perspective

To assess the generalizability of Cov-2S application in different

solid tumors, we constructed Cov-2S in the TCGA pan-cancer set

and evaluated the distribution and predictive efficacy of Cov-2S.

Our results showed a significant distribution of Cov-2S in most

solid tumors, with the highest evaluated Cov-2S being in rectum

adenocarcinoma and testicular germ cell tumors (Figure 10A). In

addition, Cov-2S can be a significant risk factor for glioma, ovarian

cancer, cervical squamous epithelial cell cancer, pancreatic cancer,

colon cancer, bladder cancer, uterine carcinosarcoma, sarcoma,

thyroid carcinoma and uveal melanoma (Figure 10A). Finally, we

evaluated the differential expression of Cov-2S in tumor tissues in
FIGURE 4

Comparison of Cov-2S and other gene expression-based prognostic signatures in LUAD based on the TCGA, GSE31210, GSE68465, GSE72094 and
meta-set. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, **** P < 0.0001.
TABLE 4 Univariate and multivariate Cox analysis of the clinicopathological features and Cov-2S with OS for GSE72094 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P
value

HR(95%CI) P value

STK11 1.028(0.72-1.469) 0.879 NA NA

KRAS 0.767(0.588-0.999) 0.049 0.907(0.69-1.192) 0.484

Age 1.258(0.836-1.894) 0.27 NA NA

Gender 0.733(0.564-0.952) 0.02 0.725(0.553-0.95) 0.02

Stage 1.969(1.477-2.625) < 0.001 1.921(1.43-2.58) < 0.001

Smoking 1.248(0.694-2.245) 0.459 NA NA

TP53 0.861(0.645-1.151) 0.313 NA NA

EGFR 2.58(1.274-5.226) 0.008 2.147(1.047-4.4) 0.037

Cov-2S 0.575(0.438-0.755) < 0.001 0.64(0.483-0.847) 0.002
Significant value is given in bold.
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different organs. Cov-2S exhibits significant elevation in organs

such as the esophagus, stomach, colon, gallbladder, and uterus in

female cancer patients; while Cov-2S exhibits significant elevation

in organs such as the lungs, esophagus, stomach, colon, gallbladder,

and testes in male cancer patients (Figure 10B).
GGH in LUAD progression

In order to examine the function of Cov-2S in cellular processes,

we performed a comparative analysis of relative expression. The

expression levels of CENPF, F2RL1, GGH, HOOK1 and PK92 were

significantly elevated in LUAD cell lines by qRT-PCR experiment,

while FBLN5, PCSK6 were significantly depressed in in LUAD cell

lines (Figure 11A). IHC experiments further validated the high

expression of GGH protein in LUAD tissues (Figures 11B, C). Given

that GGH exhibits the most prominent upregulation in LUAD cells,

and there is a lack of prior research on its involvement in LUAD, we

have opted to investigate GGH in subsequent experiments. Successful
Frontiers in Immunology 11
GGH knockdown were detected by qRT-PCR (Figure 12A). The CCK-

8 test showed a markedly diminished in cellular growth capacity after

transfection with GGH siRNA (Figure 12B). Transfection with GGH

siRNA resulted in a significant reduction in the number of colonies

formed, as demonstrated by the clonogenic assay (Figure 12C). The

results suggest that GGH can inhibit the growth of cells in LUAD. The

wound healing assay results, as shown in Figure 12D, demonstrated a

reduced wound healing capability in LUAD cells following the

silencing of GGH. The outcomes of transwell migration and invasion

assays, depicted in Figure 12E, further indicated a decline in the

migration and invasion abilities of the cells upon GGH silencing.

Moreover, downregulation of GGH enhances the susceptibility of

LUAD cells to ispinesib and epothilone-b (Supplementary Figure 5).
Discussion

Cancer remains a leading cause of mortality worldwide (37).

The prevalence and death rate of LC have been steadily rising
B C

D E

F G

A

FIGURE 5

The construction of clusters based on Cov-2S. (A) PCA plot of three clusters. (B) Kaplan-Meier survival analysis between three clusters. (C) Alluvial
diagram of clusters distributions in groups with different Cov-2S and survival outcomes. (D-F) GSVA analysis indicating significant enrichment of
pathways in the three clusters. (G) The proportion of 24 kinds of immune cells in three clusters. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1366928
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1366928
annually (38). LUAD is the primary form of lung cancer, and its

occurrence continues to be significant (3). The traditional TNM

staging system, although fundamental in cancer diagnosis and

management, exhibits considerable limitations in precisely

assessing patient prognosis and informing treatment choices. This

underscores the necessity for the discovery and implementation of

new predictive tools to improve accuracy in prognosis and tailor

treatment strategies more effectively (4). The COVID-19 outbreak is

evolving into a significant worldwide issue concerning public

health. New research indicates that CRGs may have crucial

functions in viral infection, and they are also involved in the

progression of numerous types of cancer. In LC cells, the study
Frontiers in Immunology 12
conducted by Kim et al. revealed that the suppression of MUC1-C

signaling leads to a decrease in the levels of proteins associated with

cell growth and an increase in the levels of proteins associated with

cell death following SARS-CoV-2 infection (39). Additionally, a

different study indicates that individuals with increased levels of

ACE2, TMPRSS2, TLR1, TLR2, and TLR6 in LC are at a higher risk

of contracting SARS CoV-2. This can result in a more severe SARS-

CoV-2 infection and further contribute to the progression of cancer

by activating NF-kB through TLR2 (40). The researches offer

valuable starting points for further investigating the connection

between COVID-19 and LUAD. This also motivated us to conduct

additional bioinformatics analyses and study LUAD samples in
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FIGURE 6

Integrated comparisons of somatic mutation and CNVs between high and low Cov-2S groups in the TCGA set. (A, B) Waterfall plots showing the
mutation information of the top 20 genes with the highest mutation frequency in the Cov-2S groups. (C-E) Association between all mutation
counts, synonymous mutation counts, nonsynonymous mutation counts, and Cov-2S and their distribution in the Cov-2S groups. (F) Differentially
mutated genes between high and low Cov-2S groups are displayed as a forest plot. (G) Interaction effect of genes mutating differentially in patients
in the Cov-2S groups. (H) Distribution of TMB in the Cov-2S groups. (I) Kaplan–Meier curves for patients stratified by both TMB and Cov-2S.
(J) Gene fragments profiles with amplification (red) and deletion (green) among the Cov-2S groups. (K) Comparison of the fraction of the genome
altered, lost, and gained between the Cov-2S groups. ns, not significant. * P < 0.05.
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FIGURE 7

Immune-related characteristics of the Cov-2S. (A) Heatmap displaying the correlation between the Cov-2S and immune infiltrating cells in the meta-set. (B)
Boxplot showing the differences of anti-cancer immunity score between Cov-2S groups. (C) Comparison of immune checkpoint-related genes levels
between Cov-2S groups in the meta-set. (D) The correlations between the Cov-2S and immune-related pathways, metabolic pathways based on GSVA of
GO and KEGG terms were displayed in butterfly plot. (E) The difference in the hallmark gene sets between different Cov-2S groups. (F-I) The GSEA results for
the 12 overlapping upregulated hallmark pathways in terms of the high Cov-2S groups. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, **** P < 0.0001.
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FIGURE 8

Differential putative immunotherapy response for patients from high and low Cov-2S groups. (A) Violin plot showing different TIDE scores from
patients with different Cov-2S. (B) Submap analysis of the meta-set and melanoma patients with detailed immunotherapeutic information. (C)
Kaplan-Meier curve for patients in high and low Cov-2S groups in the IMvigor210 set. (D-F) Box plot showing different Cov-2S from patients with
immunotherapy responses in the IMvigor210, GSE78820, NHMS1611472 sets.
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order to gain a deeper understanding of the biological traits and

clinical importance of CRGs in LUAD, as well as their potential

relevance for LAUD treatments.

In this study, we aim to analyze the complete CRGs as

comprehensively as possible. Therefore, we identified 34 DECRGs

after collecting 322 CRGs from the HPA database, and subsequently

found extensive genomic alterations in these DECRGs through

multi-omics data analysis. Univariate cox analysis was conducted

using these genes to identify potential prognostic CRGs for LUAD.

Subsequently, we incorporated prognostic DECRGs into building a

prognostic model for forecasting patient outcomes and performing

a patient classification analysis. Based on the prognostic DECRGs

expression profile of the TCGA training set, a total of 101

combinations were generated using 10 different machine learning

algorithms. Additional assessment in three GEO testing sets
Frontiers in Immunology 14
demonstrated that the Cov-2S, which was the most suitable

model, consisted of the combination of RFS. The Cov-2S

demonstrated satisfactory performance in predicting OS in both

TCGA and GEO datasets. The Cov-2S demonstrated superior

clinical application potential compared to other clinical variables,

as indicated by higher values of ROC AUC and C-index in various

datasets. Interestingly, compared to the vast majority of previously

reported prediction models, the predictive performance of Cov-2S

remains superior. Additionally, additional examination indicated

that Cov-2S acts as a separate determinant of the OS of patients with

LUAD. Then, the median Cov-2S was utilized to classify both

groups of participants into high and low Cov-2S groups. In both

the TCGA training and GEO testing sets, it was observed that

individuals with low Cov-2S had a longer survival time, suggesting

that Cov-2S could serve as an unfavorable prognostic indicator.
B

C

D

A

FIGURE 9

Identification of candidate drugs for high Cov-2S patients. (A) Data for drug prediction were sourced from the CTRP and PRISM databases. The Venn
diagram illustrates the compounds contained within each database. (B) The process involved in exploring the drug databases of CTRP and PRISM is
depicted in the flowchart. This exploration primarily encompassed the utilization of the Wilcoxon rank sum and Spearman correlation statistical
algorithms. (C) Spearman’s correlation analysis and the analysis of differential drug response were conducted for two compounds derived from
CTRP data. (D) Spearman’s correlation analysis and the analysis of differential drug response were conducted for three compounds derived from
PRISM data. ***P < 0.001.
BA

FIGURE 10

Predictive accuracy of the Cov-2S in the TCGA-pancancer set. (A) Distribution and predictive value of Cov-2S in solid tumors in the TCGA-
pancancer set. (B) Differences in the distribution of Cov-2S in tumor tissues in different organs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1366928
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1366928
“Hot” and “cold” tumors are an informal concept that

represents the immunogenicity of tumors, with the former

showing a high infiltration rate (41). On the contrary, “cold”

tumors are distinguished by the absence or limited occurrence of

lymphocytes in the TME, leading to a lack of response to ICIs

therapy (42). Hence, recent research has focused on the potential

and reality of transforming cold tumors into hot tumors, revealing

the fluctuating alterations in the TME, with the aim of improving

the effectiveness of ICIs treatment (43). Significantly, individuals

with low Cov-2S exhibited elevated stromal and immune scores,

along with reduced tumor purity in comparison to those with high

Cov-2S. The interaction between immune cells and tumors was

highly intricate, with distinct immune cells performing diverse

functions. According to recent research, it has been demonstrated

that Th2 cells possess the ability to promote tumors in LC and even

in primary NSCLC tumors in humans (44). Current evidence

indicates that B cells infiltrating tumors are involved in nearly

every phase of LC (45). Cytotoxic cells, known as CD8+ T cells,

stimulate antitumor responses by generating IFN-gamma (46). In

line with the aforementioned discoveries, we observed that the low

Cov-2S group exhibited increased levels of B cells and CD8+ T cells,

as well as decreased levels of Th2 cells. These findings provide some

insight into the improved OS of LUAD patients in the low Cov-2S

group. Furthermore, the levels of immune checkpoints expression
Frontiers in Immunology 15
and the activities of the anti-tumor immunity cycles were notably

increased in the low Cov-2S group. Several hallmarks associated

with cancer, such as cell growth, genetic mending, and oxygen

deprivation, exhibited greater activity in the high Cov-2S group.

Further, this study found that the Cov-2S correlated with many

immune-related and metabolic pathways. The collected evidence

suggests that Cov-2S potentially plays a role in the progression of

LUAD through the regulation of tumor immunity and metabolism.

Additionally, patients with low Cov-2S exhibit signs of immune

activity within the TME.

Earlier research suggested the comparison of tumors to “hot”

and “cold” to explain their responsiveness to immunotherapy (41,

47). Tumors in this category, which have high TME scores, may be

better suited for immunotherapy due to their increased presence of

activated immunocytes and cells associated with inflammation.

Hence, we hypothesized that individuals belonging to the low

Cov-2S category might exhibit heightened responsiveness to

immunotherapy, leading to extended periods of survival. In order

to confirm our hypothesis, we will now examine how Cov-2S

performs in terms of prognosis and its response to

immunotherapy across different algorithms and datasets that have

been treated with ICIs. TIDE has the potential to forecast the result

of cancer patients who undergo treatment with initial anti-PD1 or

anti-CTLA4 medications (31, 48). A higher TIDE score suggested a
B C
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FIGURE 11

Cellular and histological and validation candidate gene expression changes. (A) Cov-2S genes expression in cancer and normal cell lines. beta-actin
was used as the internal reference gene and experiment was performed in triplicate and at least three times. (B, C) IHC analysis of GGH in 10 LUAD
and 10 adjacent tissues. ns, not significant. *P < 0.05, ***P < 0.001.
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more favorable reaction to immunotherapy. The algorithm is

utilized to assess the similarity in gene expression patterns

between patients in distinct molecular subtypes and those with

metastatic melanoma who received ICIs, facilitating submap

analysis (32). The results of submap and TIDE analysis suggested

that low Cov-2S was more promising for PD1 and CTLA4

treatment. The Cov-2S exhibited a significant decrease in patients

who responded, as observed in the GSE78220, NIHMS1611472, and

IMvigor210 datasets, in comparison to patients who did not

respond. The performance of Cov-2S in prognosis and predicting

immunotherapeutic response was indicated by all these indicators.

Since chemotherapy is considered a crucial treatment for LUAD,
Frontiers in Immunology 16
we additionally examined the IC50 value of typical medications

for each LUAD patients. Consequently, LUAD patients with high

Cov-2S exhibited lower IC50 values for paclitaxel, SB-743921,

ispinesib, epothilone-b, and cabazitaxel, indicating a potential

higher susceptibility to chemotherapy in these individuals. Hence,

implementing various approaches could enhance the clinical

result for individuals. For example, tumors that were considered

“hot” were advised to undergo therapy specifically targeting T-cells

(49, 50). The sensitivity of “cold” tumors can be improved by

combining chemotherapy with T cell enhancement or stimulatory

signals (51). Considering the TME score when selecting LUAD

treatment could enhance the survival outcome of patients.
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FIGURE 12

GGH promoted proliferation, migration, invasion and inhibited apoptosis of LUAD cell lines. (A, B) Knockdown of GGH was confirmed by qRT-PCR.
(C, D) CCK8 and clone formation assays were performed to assess cell viability and proliferation of A549 and H838 cells. (E) Transwell assay was
performed to assess cell migration and invasion of A549 and H838 cells. **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1366928
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1366928
In our research, we developed a Cov-2S signature composed of 10

CRGs, which emerged as a promising prognostic predictor for

LUAD. Notably, the majority of these genes have been previously

reported to be involved in the onset and progression of LC,

underscoring their relevance in the disease’s pathology. PKP2 is a

member of the plaque-bound plakophilins family and is extensively

present in epithelial cells (52). PKP2 is overexpressed in LUAD

tissues and its high expression correlates with poor outcome of

patients. PKP2 overexpression enhances proliferation and invasion

of LUAD cells, and this effect is potentiated by EGFR activation (53).

Cheng et al. discovered that inhibiting PKP2 methylation reduces its

binding affinity to b-catenin, thereby overcoming the radioresistance

in LUAD cells (54). CENPF functions as a component of the

centromere-kinetochore complex and as an element of the nuclear

matrix during G2 phase of interphase (55). CENPF was

overexpressed in LUAD tissues and cell lines (56). The progression

of LUAD is influenced by both CENPF and ERb2/5, and inhibiting

the expression of ER2/5 can impede the advancement of LUAD

through the knockdown of CENPF (57). CHPF, a 775 amino acid

type II transmembrane protein belonging to the chondroitin synthase

family, was found overexpressed in LC tissues, correlating with

reduced OS (58). In vitro experiments revealed that CHPF

stimulated the proliferation, migration, and invasion of LC cells, as

well as induced tumorigenesis in vivo (59). FKBP10, an endoplasmic

reticulum chaperone with four PPIase domains, exhibits an

expression inversely related to the survival of LC patients (60).

Through its PPIase activity, FKBP10 mechanistically enhances both

cancer growth and stemness. Also, FKBP10 is involved in interactions

with ribosomes. The downregulation of FKBP10 has been shown to

lead to a reduction in translation elongation, particularly at the start

of open reading frames (61). FBLN5, a newly discovered member of

the fibulin family, has the ability to inhibit angiogenesis in a manner

that relies on the presence of RGD (62). Activation of the ERK

pathway induces MMP-7 expression, facilitating LC invasion and

metastasis, by promoting epigenetic suppression of FBLN5 (63).

F2RL1 belongs to the extensively researched G protein-coupled

receptor family, recognized as significant targets in drug

development (64). The inhibition of F2RL1 significantly increased

the effectiveness of gefitinib in regulating EGFR transactivation, cell

survival, movement, and programmed cell death in LC cells (65).

Moreover, inhibiting F2RL1 could restrict ERK-induced epithelial-

mesenchymal transition (EMT) and immune checkpoints, thereby

reducing EGFR transactivation and reactivating osimertinib (66). We

conducted qRT-PCR to evaluate the expression of 10 CRGs in LUAD

cells, ultimately selecting GGH for experimental validation due to its

markedly differential expression and lack of prior reporting in LUAD.

IHC assay further confirmed high expression of GGH protein in

LUAD tissues. The functional trials revealed that the robust

inhibition of LUAD cell growth, proliferation, migration, and

invasion was observed when siRNA induced GGH silencing,

indicating a potential oncogenic function of GGH in LUAD.

Apart from the encouraging results of this work, we were also

aware of the limitations of the present study. Although our

research has the merit of using large cohorts from multiple
Frontiers in Immunology 17
databases for the generation and verification of the Cov-2S, the

present study is still retrospective in nature. There is a need for a

prospective set study to further validate the utility of the Cov-2S.

We conducted preliminary validation of the expression levels and

biological functions of key genes in the Cov-2S only in LUAD cells

and tissues, further validation in clinical samples and further

mechanistic investigation are needed.
Conclusion

In conclusion, the Cov-2S identified in this research is an

innovative prognostic indicator that reveals fresh targets for

therapy and new theoretical principles for assessing the prognosis

and personalized treatment of LUAD. Furthermore, our

experiments validated that GGH functioned as a cancer-causing

gene that could potentially enhance the advancement of LUAD.
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