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An estimated 1.5 million Americans suffer from Type I diabetes mellitus, and its

incidence is increasing worldwide. Islet allotransplantation offers a treatment, but

the availability of deceased human donor pancreases is limited. The

transplantation of islets from gene-edited pigs, if successful, would resolve this

problem. Pigs are now available in which the expression of the three known

xenoantigens against which humans have natural (preformed) antibodies has

been deleted, and in which several human ‘protective’ genes have been

introduced. The transplantation of neonatal pig islets has some advantages

over that of adult pig islets. Transplantation into the portal vein of the recipient

results in loss of many islets from the instant blood-mediated inflammatory

reaction (IBMIR) and so the search for an alternative site continues. The adaptive

immune response can be largely suppressed by an immunosuppressive regimen

based on blockade of the CD40/CD154 T cell co-stimulation pathway, whereas

conventional therapy (e.g., based on tacrolimus) is less successful. We suggest

that, despite the need for effective immunosuppressive therapy, the

transplantation of ‘free’ islets will prove more successful than that of

encapsulated islets. There are data to suggest that, in the absence of rejection,

the function of pig islets, though less efficient than human islets, will be sufficient

to maintain normoglycemia in diabetic recipients. Pig islets transplanted into

immunosuppressed nonhuman primates have maintained normoglycemia for

periods extending more than two years, illustrating the potential of this novel

form of therapy.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized

by insulin-secreting b cell destruction by CD4+ and CD8+ T cells,

resulting in insulin deficiency and hyperglycemia. Genetic

susceptibility plays a role in the development of T1D, which is

associated in part with certain human leukocyte antigens (HLA) (1).

Conventional treatment of T1D includes exogenous insulin therapy,

which helps reduce hyperglycemia. However, in patients with

unstable (‘brittle’) diabetes, it is difficult to prevent life-

threatening hypoglycemia or hyperglycemia, as well as late

complications, e.g., retinopathy, nephropathy, vascular disease (2).

Islet allotransplantation is viewed as an efficient therapy for T1D.

Studies have demonstrated that islet transplantation can

significantly reduce, or eliminate, the need for daily insulin

injections, marking a pivotal shift in T1D management (3).

Furthermore, the enhanced quality of life, coupled with a notable

reduction in diabetes-related complications, underscores the

transformative potential of islet transplantation (4). By

integrating detailed outcomes from relevant research, this

introduction aims to illustrate the broader implications of islet

transplantation, not only as a mechanism for blood sugar regulation

but also to provide new solutions for the treatment of patients

with T1D.

However, the shortage of pancreases from deceased human

donors poses a problem of increasing need for another source of

islets, which may be met by gene-edited pigs (5–7).

Indeed, xenotransplantation has immense potential for the

treatment of numerous disorders and will prove to be the next

great medical revolution (8). Pancreatic islet transplantation will

benefit greatly from an unlimited number of gene-edited pigs. With

the potential advantages of neonatal islets (see below), the

transplantation of neonatal islet-like cell clusters (NICC), which

will never be available in sufficient numbers from deceased human

neonates, will become possible.

As there are an estimated 1.5 million patients with T1D and

perhaps 30 million with type 2 diabetes in the USA alone, the

number of islet transplants carried out worldwide will increase

exponentially. The islet grafts will control the patient’s blood

glucose for long periods of time (if not permanently) without the

need for daily insulin injections. Because of the ready availability of

the islet-source pigs, islet re-transplantation will be possible

whenever required and will be a relatively simple procedure.
History of islet xenotransplantation

Insulin deficiency can be overcome by transplanting pancreatic

allo-islets (9). Early attempts, none of which succeeded, were

reported in the late 19th and early 20th centuries (6). Novel
Abbreviations: HLA, human leucocyte antigen; IAPP, islet amyloid polypeptide;

IBMIR, instant blood-mediated inflammatory reaction; mAb, monoclonal

antibody; NICC, neonatal islet-like cell clusters; NHP, nonhuman primate;

SLA, swine leukocyte antigen; T1D, type 1 diabetes; WT, wild-type (i.e.,

genetically-unmodified).
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insights in pancreatic islet cell biology, the development of

improved methods of islet isolation (10), and the introduction of

an automated approach for isolating islets from human pancreases

were major steps forward (11).

In regard to islet xenotransplantation, the pig represents the

most probable source of islets for various reasons (Table 1) (5). The

sequence of porcine insulin differs by only a single amino acid from

that of human insulin and, moreover, porcine insulin was

administered to treat diabetes successfully for nearly a century

before the introduction of recombinant human insulin (12).

In the realm of islet xenotransplantation, porcine C-peptide

measurements serve as a critical marker for evaluating the survival

and functionality of transplanted pig islets in human recipients.

This test, measuring the level of C-peptide, a byproduct of insulin

production, provides insights into the pancreatic beta cells’ ability to

produce insulin post-transplantation. Notable studies include

Groth et al. (13), which marked the first human islet

xenotransplantation attempt, though without significant
TABLE 1 Advantages and disadvantages of the pig as a potential source
of organs and cells for humans, in contrast to the baboon in this role.

Pig Baboon

Availability Unlimited Limited

Breeding potential Good Poor

Period to
reproductive maturity

4-8 months 3-5 years

Length of pregnancy 114 + 2 days 173-193 days

Number of offspring 5-12 1-2

Growth Rapid (adult human
size by 6 months) a

Slow (9 years to
reach
maximum size)

Size of adult organs Adequate Inadequate b

Cost of maintenance Significantly lower High

Anatomical similarity
to humans

Close Close

Physiological similarity
to humans

Moderately close Close

Immune system in relation
to humans

Distant Close

Knowledge of tissue typing Considerable (in
selected herds)

Limited

Necessity for blood type
compatibility with humans

Probably unimportant Important

Experience with
genetic engineering

Considerable None

Risk of transfer of
infection (xenozoonosis)

Low High

Availability of designated
pathogen-free animals

Yes No

Public opinion More in favor Mixed
aBreeds of miniature swine vary greatly in size.
bThe size of certain organs, e.g., the heart, would be inadequate for transplantation into
adult humans.
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improvement in glycemic control. The study by Elliott et al. (14)

demonstrates the viability of pig islet xenotransplantation through

C-peptide tests. The transplantation of neonatal pig islets into

diabetic subjects showed a reduction in insulin dosage and an

increase in serum pig C-peptide for up to two years, indicating

sustained graft function. This evidence supports the potential of pig

islets to survive and function in humans, offering a promising

avenue for diabetes treatment by reducing insulin dependency.

Valdes-Gonzalez et al. (15) observed a reduction in insulin

needs and improvements in HbA1c over time, indicating sustained

functionality of transplanted islets. Wang et al. (16) and subsequent

trials (17, 18) further supported these findings, demonstrating the

potential of porcine islets to ameliorate diabetes management,

despite varying degrees of success and the absence of long-term

insulin independence in all cases.
The optimal age of the pig as a source
of islets

The ideal age of the islet-source pig has been discussed for many

years. Pigs can be divided into three age groups – fetal, neonatal

(approximately <14 days-old), and adult (>12 weeks-old (Table 2).

As fetal pig islets are not currently being considered for

xenotransplantation (because of limited b-cell yield and delayed

production of insulin), the choice is between adult or neonatal pigs.

There are advantages and disadvantages to both (19, 20).

Adult pig pancreases provide more fully-differentiated islets

that are thus able to secrete insulin immediately after

transplantation (Figure 1) (6). One adult pig pancreas may yield a

sufficient number of islets to control diabetes after transplantation

into a diabetic patient weighing 60kg (21). However, limitations are

(i) the high cost of maintaining the pig until of adequate size (at

approximately 6 months of age), (ii) the difficulty and high cost of

islet isolation, and (iii) poor proliferation of the islets after

transplantation (22) (Table 2). Adult sows (female pigs) that have

delivered more than two litters of piglets (i.e., retired breeders,

usually >2 years-old and weighing >200kg), may have advantages
Frontiers in Immunology 03
over young adult pigs as sources of islets by providing a greater yield

of high-quality islets (20). However, the cost of maintaining them

for two years would be considerable.

The advantages of neonatal islets (i.e., NICC) include (i) low

cost of maintaining the piglets before pancreatectomy (<2 weeks),

(ii) much simpler and reproducible NICC isolation, (iii) lower

isolation costs compared to adult pig islets (22), and (iv)

considerable proliferation of islets after transplantation (Table 2)

(23). They may also be less susceptible to anoxic injury post-

transplant. However, they have limitations – (i) a greater number

is required to provide sufficient islets for a single adult human

recipient, and (ii) they must be cultured to mature and re-aggregate

before transplantation. Neonatal pigs can yield approximately

25,000-30,000 islets per donor pancreas. However, considering

that a patient may require 10,000-20,000 porcine islet equivalents

(IE)/kg for effective treatment, a 70kg patient may need as many as

25 or more piglet donors (10,000IE/kg x 70kg) (24). Nevertheless, if

diabetes can be efficiently treated, this approach is justified (25).

Neonatal pigs are currently considered by many researchers as

the favored age for obtaining islets for clinical use (26). The much

greater costs of maintaining the pig until adulthood and of adult

islet isolation may eventually prove decisive in favor of neonatal

pigs as sources of islets for commercial clinical transplantation.
The optimal site for pig
islet xenotransplantation

This is another topic that has been debated for many years. The

portal vein/liver is presently the favored location for islet
TABLE 2 Advantages and disadvantages of neonatal and adult pig islets
for clinical xenotransplantation.

Neonatal Adult

Isolation procedure Simple Difficult

Cost of islet isolation Low High

Islet yield/pancreas (IEQs) 25,000-50,000 200,000-500,000

Beta cells (% of islet cells) 25% >70%

Insulin production May be delayed Immediate

Proliferation in vivo Yes Little/none

Tumorigenicity Low None

Risk of pathogen transmission Low Low

Cost of housing pig until islets utilized Low High
FIGURE 1

Adult pig islets after isolation. Adult pig islets stained in red with
dithizone after isolation and purification (magnification 40x).
(Reproduced with permission from 6).
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allotransplantation (9). Nevertheless, the liver is not an optimal site

for islet engraftment (27). Intraportal islet infusion increases the

risk of hemorrhage and portal vein thrombosis. Furthermore,

oxygen tension in the portal vein is lower than in the pancreas,

which may lead to islet cell apoptosis. Most importantly, the instant

blood-mediated inflammatory reaction (IBMIR – see below) may

reduce the number of surviving islets by 60% within the first few

hours or days (28–32). Furthermore, due to the broad distribution,

biopsies of the engrafted islets are challenging and graft retrieval

impossible. Alternative sites therefore continue to be explored

(Table 3) (5, 26, 27). Transplant sites tested include the omental

pouch, striated muscle, renal subcapsular space, the gastrointestinal

submucosal space, and bone marrow.

Islet transplantation into the renal subcapsular space has shown

some success in experimental models, but limited success has been

reported in humans, possibly from ischemic injury associated with

compression of the islets. Preclinical studies in which pig islets were

successfully transplanted either under the kidney capsule of pig

littermates or in an autologous setting (thus in the absence of an

immune response) , demonstra ted is le t surv iva l and

revascularization (33). The established composite islet-kidney was

then transplanted into an immunosuppressed allogeneic recipient.

In Major Histocompatibility Complex (MHC)-matched pigs,

successful engraftment and immediate function of both the islets

and kidney was reported. In a similar model, successful engraftment

was also reported in an immunosuppressed nonhuman primate

(NHP) model (34).

To ensure the clinical relevance of these studies, it would be

essential to utilize a xenogeneic model. Now that the rejection of a

pig kidney can largely be prevented (35–37; Kinoshita et al. 20241),

it is time to explore this approach again. The primary objective is to

utilize the combined pig islet-kidney to effectively treat both renal

failure and diabetes in individuals suffering from diabetic

nephropathy. This would probably best be achieved by

implanting pig NICC into identical piglet recipients (possibly

littermates), with subsequent transplantation of the islet/kidney

into the patient.
Gene editing of the islet-source pig

Quite remarkably, adult wild-type (WT, i.e., genetically-

unmodified) pig islets have functioned in anti-CD154mAb-based

immunosuppressed diabetic NHPs for up to 965 days (38).

However, gene-editing of the pig would almost certainly have

been associated with equally good or even better results with less

intensive immunosuppressive therapy. Gene editing includes (i)

deletion of expression of the 3 known pig carbohydrate

xenoantigens (Table 4), and/or (ii) the introduction of one or

more human ‘protective’ transgenes, e.g., complement-regulatory,
1 Kinoshita,K, Maenaka A, Rosales I, Karadagi A, Tomsugi T, Ayares D, et al.

Novel factors potentially initiating acute antibody-mediated rejection in pig

kidney xenografts despite an efficient immunosuppressive regimen.

Xenotransplantation (In press) (2024).
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coagulation-regulatory, and anti-inflammatory (anti-apoptotic)

(5, 39).

Knockout of the genes for the 3 glycan xenoantigens

(providing tr iple-knockout , [TKO] pigs) is general ly

considered the basis of the pigs that will be sources of organs

and cells for clinical transplantation (Figure 2) (39). However,

while TKO pig organs represent a significant advancement in

xenotransplantation, the presence of pre-existing antibodies in

Old World NHPs against these cells (Figure 3) (41) presents a

complex challenge in pre-clinical studies, necessitating careful

consideration and ongoing research to enhance compatibility

and reduce immunological rejection.

There is evidence that the expression of protective human

proteins adds to survival of pig organs or islets in NHPs. The

adverse role of complement in pig islet xenotransplantation is well-

known (42). The expression of one or more human complement-

regulatory proteins (e.g., CD46, CD55, CD59) on the islets is

therefore beneficial (43–45). In 2009, van der Windt et al.

achieved insulin-independence in a diabetic monkey for >1 year

by transplanting WT pig islets expressing a single human

complement-regulatory protein, hCD46 (Figure 4) (43). More

recently, Hawthorne and his colleagues achieved consistent long-

term function of neonatal islets from GTKO pigs expressing human

CD55 and CD59 in immunosuppressed baboons (46).

Expression of one or more human coagulation-regulatory

proteins (e.g., thrombomodulin, endothelial cell protein C

receptor [EPCR]), contributes resistance to IBMIR (47). The

additional expression of a human anti-inflammatory gene (e.g.,

hemeoxygenase-1 [HO-1] or A20) and/or soluble human tumor

necrosis factor receptor I IgG1-Fc provides some protection from

the effects of inflammation (39, 48). Our group demonstrated

modulation of IBMIR-mediated islet damage by employing

multiple human transgenes that included complement and

coagulation inhibitors. Despite reduced early islet damage,

however, long-term improved outcome was not achieved (44).

There are further specific gene edits that can be made to the pig to

modulate the cellular response to the islet graft, e.g., (i) insertion of a

mutant (human) MHC class II transactivator gene which down-

regulates swine leukocyte antigen (SLA) class II expression, (ii)

deletion of expression of SLA class I (SLA class I-KO), or (iii)

insertion of a CTLA4-Ig gene to induce local immunosuppression,

(iv) expression of PD-L1, and (v) expression of HLA E and G (49–54).
Immunosuppressive therapy

Gene edits designed to protect against innate immunity do not

prevent the adaptive immune response (cellular rejection).

Exogenous pharmacological immunosuppression is therefore

required to modulate the immune response.

Buhler et al. were the first to demonstrate that conventional

immunosuppressive therapy, e.g., tacrolimus-based, was inefficient

in suppressing the adaptive immune response to a pig xenograft, but

that blockade of the CD40/CD154 T cell co-stimulation pathway

was much more successful (55). This observation has since been

supported by numerous studies including several involving pig islet
frontiersin.org
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transplantation in NHPs (38, 43, 44, 56) (Figure 5). Some induction

therapy (e.g., anti-thymocyte globulin, an anti-CD20mAb, and

possibly transient inhibition of systemic complement activity)

appears to be essential (Table 5) (57; Kinoshita et al.1). Anti-

CD154 mAbs have proved more effective than anti-CD40 mAbs

(38, 58), but were originally associated with thrombogenic

complications (59), though these were not seen after pig islet

transplantation (60). However, current modified anti-CD154

mAbs induce no thromboembolic complications in NHPs (36, 37;

Kinoshita et al.1).

Some immunosuppressive regimens that have proven moderately

successful in pig kidney transplantation in NHPs (Table 5) may be

considered too intensive for the treatment of diabetic patients

receiving a pig islet transplant. A less intensive regimen may need

to be developed. Park and his colleagues in South Korea succeeded in

rendering diabetic monkeys insulin-independent for approximately 2

years following transplantion of adult WT pig islets using an

immunosuppression protocol including anti-CD154mAb (38).

When this group substituted anti-CD154mAb treatment with an

anti-CD40mAb (58), they were unable to replicate these exceptional

findings. Moreover, Park et al. demonstrated that a second islet

infusion successfully restored normoglycemia under a clinically

applicable maintenance immunosuppressive regimen, without the

need for further induction therapy (61). Other co-stimulation-

blockade agents, such as CTLA4-Ig, have been less efficient in

protecting a xenograft (62). The use of islet transplantation from

multi-transgenic pigs combined with anti-CD154 mAb-based

therapy seem a promising avenue for successful engraftment.

In summary, genetic modifications in porcine islets aim to enhance

insulin production and functionality but introduce complexities such as

potential immunogenicity and alterations in islet physiology, impacting

their viability and function. Addressing these concerns necessitates
Frontiers in Immunology 05
precision in gene-editing to minimize unintended effects, thorough

preclinical evaluations for safety and efficacy, and adherence to ethical

standards in genetic engineering. These measures are critical for

advancing porcine islet xenotransplantation as a viable treatment

option for diabetes, ensuring both the effectiveness and safety of

genetically modified islets.
The problem and prevention of IBMIR

One of the main difficulties in porcine islet xenotransplantation

is the initial inflammatory and immune reaction to the transplant –

IBMIR (28–30, 32, 63, 64).

IBMIR occurs when pig islets are introduced into the

portal vein, which is currently the preferred location for

allotransplantation. When blood comes into contact with islets,

especially xenogeneic islets, it triggers an inflammatory response

that activates the complement and coagulation systems. As a result,
TABLE 3 Comparison of different sites for free (non-encapsulated) islet xenotransplantationa.

Liver Renal
capsule

Spleen Skin Omentum Gastric
submucosal
space

Pancreas Muscle

Efficacy of
clinical trials

Good Poor Not reported Poor Limited
experience

Limited
experience

Not reported Limited
experience

Patient safety Safe Safe Safe Safe Safe Safe Possible
pancreatitis

Safe

Oxygen tension Low Not
reported

High Low Not reported High Not reported Not
reported

Vasculature Rich Poor Not reported, but
probably rich

Poor Rich Rich Not reported Rich

Site of insulin
released by the graft

Liver Not
reported

Portal vein Systemic
circulation

Portal vein Portal vein Not reported Systemic
circulation

Surgery Invasive,
some
complications

Invasive Invasive Non-
invasive

Easy Easy (endoscopy) Difficult Easy

IBMIR Yes Not
reported

Yes Not
reported

Not reported Not reported Not reported Not
reported
fr
aTable modified from (27).
TABLE 4 Known carbohydrate xenoantigens expressed on pig cells.

Carbohydrate
(Abbreviation)

Responsible
enzyme

Gene-
knockout

pig

Galactose-a1,3-
galactose (Gal)

a1,3-galactosyltransferase GTKO

N-glycolylneuraminic
acid (Neu5Gc)

CMAH CMAH-KO

Sda
b-
1,4N-
acetylgalactosaminyltransferase

b4GalNT2-KO
CMAH, Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH).
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A B

FIGURE 2

Human serum antibody binding to WT and TKO pig red blood cells (pRBCs). Correlation between human serum antibody binding to pig RBCs, by
relative geometric mean [rGM]) and age. Human serum (A) IgM and (B) IgG antibody binding to wild-type (WT) pRBCs (top) and to Triple-knockout
(TKO) pRBCs (bottom). The dotted lines indicate no IgM or IgG binding. (Note the great difference in the scale on the Y axis between A and B.) There
is almost no anti-TKO pig antibody production during the first year of life and very low levels in adults compared to antibody against WT pig cells.
(Reproduced with permission from 40).
FIGURE 3

Human and Old World monkey serum antibody binding and cytotoxicity to WT, GTKO, and TKO pig peripheral blood mononuclear cells (PBMCs).
Human (top) and Old World monkey (OWNHPs) (bottom) IgM (left) and IgG (middle) binding and complement-dependent cytotoxicity (CDC, at 25%
serum concentration) (right) to WT, GTKO, and TKO pig PBMCs. Results are expressed as mean ± SEM. (*p<0.05, **p<0.01; N.S. = not significant).
On the y axis, the dotted line represents cut-off value of binding (relative geometric mean [GM]: IgM 1.2, IgG 1.1), below which there is no binding.
For CDC on the y axis, the dotted line represents cut-off value of cytotoxicity (6.4%), below which there is no cytotoxicity. (Note the difference in
scale on the y axis between IgM and IgG.) Although there is reduced antibody binding and cytotoxicity to GTKO PBMCs in both humans and
monkeys, there is an increase in antibody binding and cytotoxicity to TKO PBMCs in monkeys. (Reproduced with permission from 40).
Frontiers in Immunology frontiersin.org06
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the islets are quickly destroyed. One of the triggers of IBMIR is the

expression of tissue factor on the islets (31, 65, 66), as well as the

activation of complement and coagulation (63, 64). In addition,

the binding of the host’s natural anti-pig antibodies to the islets

further exacerbate IBMIR-mediated damage (Figure 6). In line with

these mechanistic observations, various complement inhibitors and

anti-inflammatory agents have been demonstrated to modulate

early islet loss (29, 31, 32), e.g., heparin, thrombin inhibitors, and

anti-platelet agents (28, 31, 67, 68).

Targeting IBMIR and immune rejection seems equally

important to ensure that pig islet grafts survive and function in

the liver (Figure 7) (69).

The destruction of pig islet grafts by IBMIR and rapid antibody-

mediated rejection are events that have similarities and differences,

but they share common features (63). Many of the genetic

modifications that influence IBMIR have a significant impact on

reducing antibody-induced rejection (5). Downregulation of pig

antigen expression, as well as transgenic expression of human

complement- and coagulation-regulatory proteins have all been

shown to protect organ and islet grafts (44, 70, 71). With relevance

to clinical application, the genetic modifications described do not

appear to impair beta cell function in vivo—orand in vitro (72, 73).

Composite transplantation of porcine islets with mesenchymal

stem cells or Sertoli cells demonstrated improved islet engraftment

after xenotransplantation (74–81). The mechanisms behind

improved islet function are thought to be associated with the

anti-inflammatory, regenerative, and immunomodulatory

properties of mesenchymal stem cells and Sertoli cells.
Encapsulation

An alternative approach to protect islets from the recipient

microenvironment is to physically isolate the islets by
Frontiers in Immunology 07
‘encapsulation. Ongoing investigations propose micro- and macro-

structures that isolate the islet grafts from the host immune system,

while also ensuring the provision of oxygen and nutrients to the

enclosed cells and tissues (79, 82–86). Encapsulation technology in

islet xenotransplantation offers the theoretical advantage of

immunoprotection, potentially eliminating the need for systemic

immunosuppression. It aims to create a semi-permeable barrier

that shields transplanted islets from immune cells while allowing

insulin, nutrients, and oxygen to pass through. However, this

approach faces challenges, including the risk that the biomaterials

may permit cytokine penetration, potentially triggering an immune

response, and the possible insufficiency of oxygen and nutrient

transport across the encapsulation barrier, which could lead to islet

dysfunction or loss. These limitations underscore the need for

ongoing research to optimize encapsulation materials and

techniques for successful xenotransplantation outcomes.
Sensitization to HLA or to
pig xenoantigens

Two important questions have arisen. The first Is whether

sensitization to human leukocyte antigens (HLA) harms pig islet

xenotransplantation. Blood transfusions, human organ transplants,

or pregnancies can trigger the generation of antibodies directed

towards HLA antigens. In these instances, if an organ or cell

transplant is required, preexisting anti-HLA antibodies can pose

challenges in finding a suitable human donor for organ or cell

transplantation. There is evidence that anti-HLA antibodies may

target some swine leukocyte antigens (SLA), due to cross-reactivity,

but cross reactivity is expected to be minimal, thus unlikely

negatively affecting xenotransplantation (reviewed in 87).

The second question is whether sensitization to SLA would be

detrimental to subsequent human islet allotransplantation. If

sensitization to a pig xenograft develops, the existing limited
FIGURE 4

Post-transplant course of an immunosuppressed diabetic monkey
following hCD46 pig islet transplantation. Blood glucose (blue) and
pig C-peptide levels (red) in a streptozotocin-induced diabetic
cynomolgus monkey before and after intraportal transplantation of
islets from a pig expressing the human complement-regulatory
protein, CD46. No exogenous insulin was administered after the
transplant. The normoglycemic monkey was electively euthanized
after 12 months. Day 0 = day of islet transplantation. (Reproduced
with permission from 43).
FIGURE 5

GTKO pig kidney survival in baboons receiving US FDA-approved
immunosuppressive agents (Group A, in red) was much shorter than
in those receiving an anti-CD40mAb-based regimen (Group B, in
black). (Reproduced with permission from 56).
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information suggests that the recipient would not be at an

immunological disadvantage to subsequently undergo

allotransplantation (reviewed in 87).
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The induction of immune tolerance

The ultimate goal of organ and cell allo- or xeno-

transplantation is to induce a state in which the host immune

system recognizes the transplanted pig islets as ‘self’ and makes no

effort to reject them. Discontinuing all immunosuppressive therapy

would be possible if immunologic ‘tolerance’ could be attained.

Immune tolerance to allografts has been explored by different

approaches, e.g., (i) donor-specific hematopoietic progenitor cell

transplantation (chimerism) or (ii) concomitant donor-specific

thymus transplantation (88). The role of regulatory cells,

however, in immune tolerance remains uncertain (89).

In contrast to allotransplantation with deceased donor organs,

xenotransplantation offers the advantage of elective timing of the

transplant, which provide a time window for the manipulation of

the host’s immune system towards immune tolerance. In light of

this potential advantage, if the early inflammatory events causing

IBMIR, can be successfully modulated, immune tolerance might be

achievable to control cellular rejection.
Improving function of porcine islets

Compared to humans, the porcine islet response to stimuli

presents some differences requiring further investigation. Pigs use

less insulin, need lower levels of C-peptide, and sustain higher

blood glucose levels in comparison to NHPs (Table 6) (72, 73, 92).

When stimulated with glucose in vitro, isolated porcine islets

secrete 3 to 6 times less insulin than human islets (86, 93, 94).

Genetic modifications aimed at enhancing islet function and
TABLE 5 Representative immunosuppressive and adjunctive regimen
currently administered in our center to baboons with life-supporting
TKO pig kidney grafts (which would be similar for TKO pig
islet transplantation).

Agent Dose (duration)

Induction

Thymoglobulin (ATG)
5mg/kg i.v. (day -3) (to reduce the
lymphocyte count to <500/mm3)

Anti-CD20mAb (rituximab) 10mg/kg i.v. (day -2)

C1-esterase inhibitor 17.5U/kg i.v. on days 0 and 2.

Maintenance

Anti-CD154 mAb (Tonix-1500)
30mg/kg (days 0, 2, 7, 10, 14,
and weekly)

Rapamycin
0.1-0.2mg/kg i.m./day (target trough 6-
12 ng/ml) beginning on day -5.

Methylprednisolone
10mg/kg/d on day 0, tapering to 0.25
mg/kg/d by day 7.

Adjunctive

Aspirin
40mg p.o. (alternate days), beginning
on day 4.

Erythropoietin 2,000 U i.v. x1-2 weekly (if Hct<30),

Anti-CMV and/or antibiotic
prophylaxis when
considered necessary
FIGURE 6

Binding of human IgM and IgG antibody to pig islets (xenogeneic) (A, B) and to human islets (allogeneic) (C, D). IgM (green, A, C), IgG (green, B, D),
insulin (red), nucleus (DAPI/blue). Yellow indicates colocalization of insulin and IgM/IgG. The greatly increased binding of human IgM and IgG to pig
islets (compared to human islets) is obvious. (Reproduced with permission from 63).
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insulin production in pig islets have been explored (95, 96).

However, there is some concern that forcing insulin secretion

might result in islet metabolic imbalance, and ‘exhaustion’ (86).

To overcome this potential problem, transplantation of a greater

number of islets may provide a solution.
Metabolic aspects and glucose
‘counter-regulation’

The ability to control blood glucose levels within a normal range

is dependent on the interaction of several factors. Endocrine

hormones of the pancreas, paracrine effects, the release of

neurotransmitters and neuropeptides, gluconeogenesis and

glycogenolysis all play roles in maintaining blood glucose levels.

These parameters differ between species, thus raising questions on the

potential effects of cross-species metabolic variability in the context of

xenotransplantation (92). Understanding the metabolic differences

between pigs and humans, and the potential ramifications, is vital for

the advancement of clinical xenotransplantation.

Parameters of metabolic control are more similar between

pigs and humans than between pigs and NHPs (92). However,

pigs are more glucose tolerant and have lower basal insulin levels

than humans (97). Thus, metabolic control may be more easily

established in pig-to-human than in pig-to-NHP islet

transplantation. In response to glucose changes, both isolated

neonatal and adult porcine islets demonstrate coherent insulin

and glucagon secretion and suppression in vitro. A high

concentration of glucose increases insulin secretion and

inhibits glucagon secretion. Alpha cells may play a more

prominent role in the response to glucose changes in pigs than

in humans. Glucagon secretion is more pronounced in neonatal

compared to adult pig islets (98).

Taken together, these data suggest not only that the metabolic

profile of porcine islets may be similar to human islets but also that

the highly efficient glucagon response to hypoglycemia may
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represent a clinically relevant factor predictive of timely glucose

counter-regulation.

One aspect of pig metabolism that has not yet been fully

explored has emerged from a genetic study aimed on the “thrifty

gene hypothesis” in human populations (99). According to this

hypothesis, humans have survived famine and starvation for

millennia, thus certain populations may have genes that

determine increased fat storage, which would facilitate survival

in times of want or famine. Nonetheless, in an environment

characterized by easy access to food, as in modern Western

cultures, for example, such genes predispose the genetic carrier

to develop type 2 diabetes. In contrast to this outlook for humans,

domesticated pigs and cows have long been selectively bred for

their ability to efficiently accumulate and store energy (for later

consumption by humans). Pigs and cows should, therefore, be

protected against the toxic effects of a “diabetogenic” environment

(i.e., one that favors inactivity and energy abundance).

The mechanisms that determine this resistance to diabetes are

not fully understood. However, it is known that pigs do not

accumulate amyloids (100) and are, therefore, resistant to

amyloidosis, which is one of the pathological hallmarks of

diabetes (101). Porcine islets transplanted into mice do not

accumulate amyloids, in contrast to human islets (100). Similar

observations were reported when porcine islets were transplanted

into NHPs (44). Sequencing of porcine islet amyloid polypeptide

(IAPP, or amylin, the peptide responsible for formation of fibrils of

amyloids) and comparison with human IAPP demonstrated 10

substitutions that differentiated the porcine form from the human

form and contributed to reduced amyloidogenesis. Reduced toxicity

of porcine IAPP was, indeed, demonstrated in vitro in rat (INS)

cells (100).

Moreover, genetic engineering of pig donor tissues, including

the introduction of human transgenes expressed under an insulin

promotor, do not appear to affect glucose metabolism (72,

73, 102).
TABLE 6 Fasting blood glucose, C-peptide, insulin, and glucagon levels
in cynomolgus monkeys (Macaca fascicularis), pigs, and humans a.

Cynomolgus
monkeys222a

Pigs222a Humans

Blood
glucose
(mmol·L−1)

2.2 – 4.1 (3.2) 4.0 – 5.2 (4.8) 3.9 – 5.6222b

C-
peptide
(nmol·L−1)

0.47 – 3.14 (1.39) 0.11 – 0.32 (0.16) 0.17 – 0.66222c

Insulin
(pmol·L−1)

15 – 201 (109) 7 – 12 (9) 34 – 138222c

Glucagon
(pmol·L−1)

18.7 – 179.4 (54.3) 11.3 – 13.8 (12.5) 5.7 – 28.7222c
Data are presented as ranges (mean). C-peptide (p<0.001), insulin (p=0.021) and glucagon
(p<0.001) levels were significantly higher in monkeys than in pigs, while blood glucose levels
were significantly (p<0.001) lower in monkeys. Human data are obtained from the literature
and were measured in venous plasma (90, 91).
aTable based on Casu et al. (92).
FIGURE 7

Healthy islet in the liver of an immunosuppressed cynomolgus
monkey 12 months after hCD46-transgenic pig islet transplantation.
(Reproduced with permission from 69).
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Clinical trials of pig
islet xenotransplantation

With the exception of studies by Groth et al. (13), and Wang

et al. (16, 103), free islet xenotransplantation has not undergone

clinical testing, though there have been several clinical experiments

or trials involving encapsulated islets in the absence of

immunosuppressive therapy (6). None has been totally successful.

In some of these experiments it was unclear whether improved

glycemic control was associated with meticulous medical

management (i.e., attention to diet, glucose monitoring, and

expert medical attention) rather than to insulin production by the

pig islets. However, Matsumoto et al. demonstrated a substantial

reduction of HbA1c levels for >600 days in recipients of

encapsulated porcine islets in the absence of immunosuppressive

therapy (17, 18). Minimal adverse events were reported, but

improved and more consistent efficacy is still required.

Islet-source pigs will be housed in biosecure ‘designated

pathogen-free’ facilities that eliminate most potentially-pathogenic

microorganisms. By implementing Good Manufacturing Practices

and established Standard Operating Procedures, the risk of transfer

of a pathogenic microorganism is considered small (104–106).

Although there were initial worries that porcine endogenous

retroviruses (PERV) could become activated in humans, the risk,

although hitherto unknown, is also thought to be small (14, 107,

108). Furthermore, if necessary, PERV-KO is possible (37,

109, 110).

Because the risk to the recipient is considered to be low, clinical

trials of pig islet transplantation should possibly not be held to the

high standards expected of pig organ xenotransplantation. This

particularly relates to trials of encapsulated islets in which no

immunosuppressive therapy is administered (105, 106).

According to the regulations of the U.S. Food and Drug

Administration (FDA), it is required to prioritize the selection of

patients who (i) suffer from a life-threatening disease with no access

to effective alternative treatment, and (ii) have the potential to

experience a noteworthy enhancement in their quality of life

following the procedure (111). Individuals suffering from diabetes

who are facing repeated and intense unawareness of hypoglycemia

even after receiving the best possible medical treatment may be the

most appropriate individuals to consider as potential candidates.

Those with diabetic nephropathy would benefit from the successful

transplantation of both a pig kidney and pig islets. The low risk in

pig islet xenotransplantation trials is attributed to rigorous safety

protocols, including genetic engineering of pigs to reduce human

immune reactions and meticulous screening for pathogens. This

approach minimizes potential zoonotic infections and

immunogenic complications. Compliance with FDA regulations is

ensured through adherence to established guidelines for

xenotransplantation, encompassing product safety, ethical

standards, and clinical trial conduct. Detailing these aspects can

enhance the research’s credibility, demonstrating a commitment to
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safety, regulatory compliance, and ethical considerations in

advancing xenotransplantation as a therapeutic option.

Furthermore, if the islets are rejected, this is unlikely to be life-

threatening for the patient.
Potential insights from single-cell
RNA sequencing

The advent of scRNA-seq has inaugurated a new era in the

molecular dissection of biological processes. This technique,

distinguished by its capacity to unravel the complexities of gene

expression at an individual cell level, may prove pivotal in

demystifying the heterogeneity inherent within cellular

populations (112). This granularity of data may prove valuable in

elucidating the nuanced interplays that govern both physiological

and pathological states in complex biological systems.

In the realm of xenotransplantation, scRNA-seq may facilitate

resolution in characterizing diverse cell types within a xenograft,

encompassing the spectrum from immune cells to specialized graft

cells (113). This advanced molecular profiling may afford insight

into the intricacies of immune rejection mechanisms, graft

tolerance phenomena, and the overarching molecular

orchestration of transplantation (114). The ability of scRNA-seq

to pinpoint cellular stress responses and pathophysiological

transformations within xenografts may help refine transplantation

strategies and prolong graft viability.

In the specific context of islet transplantation, scRNA-seq has

already begun to demonstrate its potential. By dissecting the

molecular heterogeneity of islet cells and delineating the complex

immune interactions post-transplantation, scRNA-seq may help

reshape our comprehension of graft dynamics (115). This molecular

clarity may optimize immunomodulatory approaches post-

transplantation and enhance overall graft efficacy.

The integration of scRNA-seq into pig islet xenotransplantation

research may not only improve our understanding of transplanted

islet cell biology but also pioneer novel therapeutic avenues for Type

1 diabetes.
Comment and conclusions

We anticipate that eventually pig free islet transplantation will

offer a clinically-applicable therapy for patients with T1D. We

suggest that this will be a preferable approach to any form of

implantation of encapsulated islets, and that the intensity of

immunosuppressive therapy that is required will not be prohibitive.

Porcine islets appear to be metabolically compatible with

human islets, with potential advantages in glucose counter-

regulation, resistance to beta cell damage, and resistance to a

diabetogenic lifestyle.
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