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Introduction: Chemotherapy remains the mainstay treatment for triple-negative

breast cancer (TNBC) due to the lack of specific targets. Given amodest response

of immune checkpoint inhibitors in TNBC patients, improving immunotherapy is

an urgent and crucial task in this field. CD73 has emerged as a novel

immunotherapeutic target, given its elevated expression on tumor, stromal,

and specific immune cells, and its established role in inhibiting anti-cancer

immunity. CD73-generated adenosine suppresses immunity by attenuating

tumor-infiltrating T- and NK-cell activation, while amplifying regulatory T cell

activation. Chemotherapy often leads to increased CD73 expression and activity,

further suppressing anti-tumor immunity. While debulking the tumor mass,

chemotherapy also enriches heterogenous cancer stem cells (CSC), potentially

leading to tumor relapse. Therefore, drugs targeting both CD73, and CSCs hold

promise for enhancing chemotherapy efficacy, overcoming treatment

resistance, and improving clinical outcomes. However, safe and effective

inhibitors of CD73 have not been developed as of now.
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Methods: We used in silico docking to screen compounds that may be

repurposed for inhibiting CD73. The efficacy of these compounds was

investigated through flow cytometry, RT-qPCR, CD73 activity, cell viability,

tumorsphere formation, and other in vitro functional assays. For assessment of

clinical translatability, TNBC patient-derived xenograft organotypic cultures were

utilized. We also employed the ovalbumin-expressing AT3 TNBC mouse model

to evaluate tumor-specific lymphocyte responses.

Results:We identified quercetin and luteolin, currently used as over-the-counter

supplements, to have high in silico complementarity with CD73. When quercetin

and luteolin were combined with the chemotherapeutic paclitaxel in a triple-

drug regimen, we found an effective downregulation in paclitaxel-enhanced

CD73 and CSC-promoting pathways YAP and Wnt. We found that CD73

expression was required for the maintenance of CD44highCD24low CSCs, and

co-targeting CD73, YAP, and Wnt effectively suppressed the growth of human

TNBC cell lines and patient-derived xenograft organotypic cultures.

Furthermore, triple-drug combination inhibited paclitaxel-enriched CSCs and

simultaneously improved lymphocyte infiltration in syngeneic TNBC

mouse tumors.

Discussion: Conclusively, our findings elucidate the significance of CSCs in

impairing anti-tumor immunity. The high efficacy of our triple-drug regimen in

clinically relevant platforms not only underscores the importance for further

mechanistic investigations but also paves the way for potential development of

new, safe, and cost-effective therapeutic strategies for TNBC.
KEYWORDS

triple-negative breast cancer, cancer immunotherapy, CD73, cancer stem cells,
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1 Introduction

Breast cancer recently surpassed lung cancer as being the most

diagnosed and leading cause of cancer deaths among women

globally (1). The triple-negative breast cancer (TNBC) subtype

accounts for approximately 15% of breast cancer cases but

disproportionately causes breast cancer-related deaths (2).

Chemotherapies remain the current mainstay treatment for

TNBC, due to the lack of specific targets (3).

Although chemotherapies are effective for tumor debulking,

they enrich a subpopulation of tumor cells known as cancer stem

cells (CSCs). Enrichment of CD44highCD24low and ALDHhigh CSC

populations in TNBC are attributed to treatment resistance and

drug efflux, among other mechanisms (4). In addition, CSCs are

capable of regenerating new tumors (4, 5).

Another feature of CSCs is their ability to evade anti-tumor

immunity, as evidenced in literature (6–8). Despite remarkable

progress in cancer immunotherapies, they remain costly and

may contribute to autoimmunity and/or off-target toxicities

(9, 10). Although beneficial for other cancer subtypes, the use
02
of PD-L1 antibody atezolizumab, in combination with

chemotherapy, was rescinded for advanced or metastatic

TNBC due to the lack of benefit (11). Moreover, the role of

current immunotherapeutic targets in the maintenance of CSCs

has not been explored.

To this end, the 5’-ectonucleotidase CD73 has emerged as a novel

target that promotes CSC survival and immune evasion of the tumor.

Predominantly expressed on regulatory T cells, CD73 generates

adenosine from its ligand, AMP, to inhibit immune effector

functions. In the tumor microenvironment, the binding of

adenosine may upregulate CSC-promoting pathways, although

specific pathway crosstalk remains open to investigation (12–15).

CD73-driven adenosinergic signaling is further exploited by TNBC to

attenuate tumor-infiltrating T and NK cell activation (16, 17), and

promote regulatory T cell functions (18). This is achieved mainly by

the increase of intracellular cAMP levels in tumor-infiltrating

lymphocytes, inducing a release in IL-10 and TGFb immune-

suppressing cytokines. Interestingly, chemotherapies may directly

upregulate CD73 activity and increase the availability of AMP

ligand from the killing of bulk tumor cells (18–20).
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As a demonstration of its therapeutic potential, CD73-deficient

mice exhibit enhanced anti-tumor immunity, diminished tumor

growth, and improved survival (21). The enzymatic activity of

intracellular CD73 may also be important for tumor growth. To

this point, small molecules have an advantage over anti-CD73

monoclonal antibodies, with the latter only targeting CD73

protein on the cell surface (22). Adenosine 5’-(a,b-methylene)

diphosphate (APCP) is currently recognized as a competitive

inhibitor for CD73. However, it only works at concentrations in

vitro that are not translatable for clinical application (23).

Therefore, identifying effective CD73 inhibitors is crucial for

accelerating clinical translation.

In addition to intrinsic CD73 signaling in immunosuppression,

key CSC-promoting pathways, namely Hippo and Wingless (Wnt),

have also been attributed to CSC-mediated suppression of anti-

tumor immunity (24–26). Inhibition of their major downstream

effectors, Yes-associated protein (YAP) and b-catenin (b-cat),
respectively, have been reported to suppress CSCs and

simultaneously enhance anti-tumor immunity (27–29). Our

previous findings identified the need to co-inhibit both YAP and

Wnt for effective targeting of heterogenous CSC populations (30).

Although promising, clinically applicable YAP and Wnt inhibitors

are scarce, highlighting the need for uncovering novel

pharmacological inhibitors.

Finding new compounds for clinical use remains challenging

due to high cost, labor-intensive, and time-demanding processes

(31). These obstacles may be mitigated with the use of high

throughput in silico screening for the identification of drugs that

may be repurposed for inhibiting CD73. In our study, we screened

approximately 1000 natural compounds. Our results indicated

certain flavonoids, presently used as over-the-counter

supplements, are novel inhibitors of CD73, YAP, and Wnt.

Notably, these compounds demonstrated inhibitor properties at

clinically relevant doses. We developed a combinational therapy

consisting of paclitaxel (a chemotherapeutic drug commonly used

in the clinic), quercetin (found to be a CD73 inhibitor), and luteolin

(found to be a Wnt/YAP dual inhibitor).

We found that this triple-drug combination inhibited bulk

TNBC cells, antagonized paclitaxel-mediated enrichment of both

CD44highCD24low and ALDH1high CSCs, and paclitaxel-

upregulated/hyperactivated CD73. These findings were confirmed

ex vivo using patient-derived xenograft (PDX) organotypic cultures

that retain original tumor architecture and heterogeneity to

represent clinical responses (32, 33). Lastly, we found this triple-

drug combination improved frequencies of tumor-infiltrating

lymphocytes in vivo using an immune-competent mouse model.

Together, these findings offer a novel, effective, and clinically

translatable avenue in developing treatments for TNBC.
2 Materials and methods

2.1 Cell culture and reagents

Cells were maintained at 37°C in a 5% CO2 incubator. Human

MDA-MB-231 TNBC cells were purchased from ATCC (Manassas,
Frontiers in Immunology 03
VA, USA) and cultured in DMEM supplemented with 10% FBS and

1% penicillin/streptomycin. The E-cadherinhigh MDA-MB-231 cell

line variant was generated and maintained as described by Sulaiman

et al. (30). Human SUM149-PT TNBC cells were purchased from

Asterand (Detroit, MI, USA) and cultured in Ham’s F-12

supplemented with 5% FBS, 1% penicillin/streptomycin, 5 µg/mL

insulin, 1 µg/mL hydrocortisone, and 10 mM HEPES. Mouse AT3

TNBC cells of C57BL/6 origin and transduced with retroviral

vectors expressing chicken OVA cDNA (AT3ova) were purchased

from the Peter MacCallum Cancer Institute (East Melbourne, AU).

AT3ova cells were maintained in DMEM supplemented with 10%

FBS and 1% penicillin/streptomycin. Cells were routinely tested for

mycoplasma using PCR. All relevant reagents and their sources are

listed in Supplementary Table 1.
2.2 Ligand-receptor docking (in silico)

The docking software Molecular Operating Environment

(MOE) purchased from Chemical Computing Group Inc

(Montreal, QC, CA). The CD73 protein structure (accession code:

4H2G) was downloaded from Protein Data Bank and optimized for

hydrogens and lone pairs within MOE. Natural compound

structures were downloaded as potential ligands from PubChem

in the SDF file format. The docking score, protein-ligand

interactions, and the respective energies released from the

interaction were generated and recorded using MOE Align/

Superpose functions.
2.3 Reverse transcriptase and quantitative
PCR (RT qPCR)

Cells were seeded into 6-well plates (3.0 x 105 cells/well). Total

RNA was extracted 72 hours after treatment using the Qiagen

RNeasy kit (Toronto, ON, CA). cDNA was obtained from mRNA

using the iScript cDNA Synthesis Kit purchased from Bio-Rad

(Hercules, CA, USA), as per manufacturer instructions. Gene

expression levels were determined using the Bio-Rad MyiQ real-

time PCR system in a reaction mixture consisting of 50% SyBr

Green, 37.5% RNAse-free water, 5% of forward/reverse primers,

and 2.5% cDNA. Specific forward and reverse gene primers are

listed in Supplementary Table 2. Results were normalized to 18S or

GAPDH housekeeping genes, and relative fold changes in gene

expression was calculated using the 2DDCT method.
2.4 Flow cytometry

Cells were seeded into 6-well plates (3.0 x 105 cells/well).

Harvested cells were filtered through a 40 um strainer and

suspended in PBS supplemented with 2% FBS and 2 mM EDTA

96 hours post-treatment. Non-specific binding was reduced with

mouse anti-human IgG Fc from Thermo Fisher (Waltham, MA,

USA) or rat anti-mouse CD16/CD32 from BD Biosciences

(Franklin Lakes, NJ, USA). Cells were then incubated with
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fluorescently labeled antibodies (Supplementary Table 3). For

human cells, apoptosis was determined 7-aminoactinomycin (7-

AAD) purchased from eBioscience (San Diego, CA, USA). For

mouse cells, apoptosis was determined prior to incubation with

fluorescently labeled antibodies using the LIVE/DEAD fixable far

red dead cell stain kit from Thermo Fisher (Waltham, MA, USA).

ALDH activity was determined as per manufacturer instructions

using the ALDEFLUOR kit from StemCell Technologies

(Vancouver, BC, CA). Flow cytometry was performed on

LSRFortessa (BD Biosciences) and data was analyzed using FloJo

software (Ashland, OR, USA).
2.5 CD73 activity assay

Cells were seeded into 96-well plates (5.0 x 103 cells/well). Cells

were washed twice with pre-warmed phosphate-free buffer (distilled

water supplemented with 2 mM MgCl2, 125 mM NaCl, 1 mM KCl,

10 mM glucose, and 10 mM HEPES up to pH 7.2) 48 hours post-

treatment. Cells were then incubated at 37°C with 100 µM

adenosine 5’-(a,b-methylene)diphosphate (APCP) or 250 µM

AMP for 10 minutes. Resultant media phosphate concentrations

were assessed as per manufacturer’s instructions using the

Malachite Green Phosphate Detection Kit, purchased from R&D

Systems (Minneapolis, MN, USA).
2.6 Cell viability assay

Cells were seeded into 24-well plates (1.5 x 103 cells/well). A

viability analysis was performed 120 hours post-treatment with a 3-

hour incubation at 37°C using 10% 3-(4,5-Dimethylthiazol-2-Yl)-

2,5-Diphenyltetrazolium Bromide (MTT, 1 mg/mL). The

supernatant was aspirated, and formazan crystals were dissolved

in DMSO. Resulting absorbance was measured at 570 nm.
2.7 Dual-luciferase reporter assay

Cells were seeded into 24-well plates (1.0 x 105 cells/well). Cells

were transfected with 1000 ng of either Wnt M50 Super 8x

TOPFlash-luciferase (Addgene Plasmid #12456) or YAP

8xGTIIC-luciferase (Addgene Plasmid #34615), in conjunction

with 1000 ng of Renilla pRL-SV40P (Addgene Plasmid #27163)

using Lipofectamine 3000 purchased from Invitrogen (Carlsbad,

CA, USA). Cells were treated 24 hours post-transfection and lysed

for Firefly and Renilla luciferase activity 48 hours post-treatment

using the Dual-Luciferase Reporter Assay System, purchased from

Promega (Madison, WI, USA).
2.8 Tumorsphere formation assay

Cells were resuspended in 1:1 DMEM:F-12 supplemented with

2% B27, 1% sodium pyruvate, 1% penicillin/streptomycin, 20 ng/

mL basic fibroblast growth factor, and 20 ng/mL epidermal growth
Frontiers in Immunology 04
factor and seeded into 96-well ultra-low attachment plates (1.5 x 103

cells/well). Tumorspheres were counted (>100 µm diameter) and

representative pictures were captured 10 days post-treatment using

the Zeiss Axiovert 40 CFL microscope purchased from Carl Zeiss

AG (Feldback, Switzerland). A cell viability assay was also

performed as previously described.
2.9 Patient-derived xenograft
organotypic cultures

The TNBC patient-derived xenograft samples HCI-001, HCI-

002, HCI-015, and HCI-016 were obtained from and characterized

by the University of Utah (33, 34). Extracted tumors were sliced

with a scalpel to obtain 2 mm x 2 mm tumor fragments. These

fragments were cultured in 48-well plates with 1:1 DMEM:F-12

supplemented with 10% FBS, 1 ug/mL insulin, 0.5 ng/mL

hydrocortisone, 3 ng/mL epidermal growth factor, and 1%

penicillin/streptomycin. Tumor fragments were treated, and

viability was assessed daily with 10% resazurin sodium salt. Media

fluorescence intensity was measured at 560 nm excitation and 530

nm emission following a 3-hour incubation at 37°C.
2.10 Mouse syngeneic tumor model
(in vivo)

C57BL/6 wild-type (5-6 week old, female) mice were purchased

from the Charles River Laboratory. Tumors were established in the

mammary fat pads using 1 x 106 AT3ova cells resuspended in

Matrigel purchased from BD Biosciences (Mississauga, ON, CA).

Established AT3ova tumors (3 mm x 3 mm) were treated

intraperitoneally with paclitaxel (P, 10 mg/kg), luteolin (L, 20 mg/

kg), quercetin (Q, 5 mg/kg), or adenosine 5’-(a,b-methylene)

diphosphate sodium (APCP, 20 mg/kg) where indicated. Tumors

were measured every 2 days using calipers. Mice were humanely

euthanized once tumors reached a mean volume of 950 mm3.

Tumors were minced with scissors and enzymatically digested

with collagenase/hyaluronidase from StemCell Technologies

(Vancouver, BC, CA) and DNAse I from Sigma Aldrich (St Louis,

MO, USA).
2.11 Statistical analysis

Data are expressed as mean ± standard deviation (SD) or

standard error (SE), where indicated, without data transformation

and outlier exclusion. For relative comparison, the data were

normalized to control group and then compared as indicated in

each figure. Data distributions were tested by one-way ANOVA.

When appropriate, statistical differences between groups were

assessed by unpaired Student’s t-test or Mann-Whitney test

(comparison of 2 groups). Statistical tests were completed using

GraphPad Prism 9 software (GraphPad, San Diego, CA). Unless

stated otherwise, experiments have a minimum of three

biological repeats.
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3 Results

3.1 Natural flavonoid quercetin targets
CD73, a key mediator of
immunosuppressive adenosine signaling
commonly upregulated in TNBC

Targeting enriched CSCs in TNBC post-chemotherapy remains

challenging, owing to limited knowledge of immunotherapeutic

targets. To identify novel targets, we adopted the METABRIC RNA-

seq dataset to compare 165 TNBC samples post-chemotherapy with

2344 non-TNBC breast cancer samples post-treatment

(chemotherapy/hormone therapy/radiotherapy). Components of

the adenosinergic signaling pathway were identified as potential
Frontiers in Immunology 05
clinical targets, including CD73 (Figure 1A) and adenosine receptor

ADORA2B (Figure 1B). Given the limitation of current CD73

inhibitors for clinical translation, we used quantitative structure-

activity relationships (QSAR) from high throughput in silico

molecular docking between CD73 and natural compounds for

virtual screening. Using the CD73 inhibitor APCP as a positive

control (Figure 1C), we found that the flavonoids quercetin

(Figure 1D) and luteolin (Figure 1E) exhibited relatively high

docking scores, indicating a notable specificity for CD73 (PDB#

4H2G), with quercetin yielding extensive molecular interactions

(Supplementary Table 4). Of note, quercetin and luteolin have been

safely used as over-the-counter medicine/supplements.

To validate our in silico findings in vitro, we tested clinically

relevant doses of quercetin (35) and luteolin (36) with the
A C

B

H

D

E

G

F

I J

FIGURE 1

CD73high cells and CD73 activity upregulated by paclitaxel are suppressed by quercetin. Relative expression levels of (A) Nt5e and (B) ADORA2B
genes in 165 TNBC patients post-chemotherapy and 2344 non-TNBC patients post-treatment were compared using the METABRIC RNA-seq
dataset on cBioPortal (www.cbioportal.org). Using the in silico drug design application Molecular Operating Environment (MOE), 2D/3D interactions
and docking scores (S-score) between (C) adenosine 5’-(a,b-methylene)diphosphate sodium (APCP), (D) quercetin, and (E) luteolin and CD73 were
visualized. Media phosphate levels, indicative of CD73 activity, were measured in (F) MDA-MB-231 and (G) SUM149-PT cells using the malachite
green phosphate assay. Phosphate levels were assessed in the presence of CD73 inhibitor (APCP, 100 µM) or CD73 substrate (AMP, 250 µM) 48
hours post-treatment with paclitaxel (P, 2.5 nM), quercetin (Q, 0.5 or 10 µM), and luteolin (L, 5 µM) alone and in different combinations.
Representative cell surface expression of CD73 was assessed 96 hours post-treatment with paclitaxel (2.5 nM), luteolin (5 µM), quercetin (0.5 µM), or
APCP (2.5 µM) alone and in different combinations in (H) MDA-MB-231, (I) SUM149-PT, and (J) human TNBC patient-derived xenograft organotypic
slice cultures. Data represents mean ± SD, n=3, ns, non-significant; *, P<0.05; **, P<0.01; ***, P<0.005.
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chemotherapeutic, paclitaxel, on CD73 activity. By measuring

media phosphate concentrations normalized to cell count in the

presence of AMP substrate, we found that 10 µM quercetin potently

inhibited paclitaxel-upregulated CD73 activity, comparable to

paclitaxel combined with 100 µM APCP in human TNBC MDA-

MB-231 (Figure 1F) and SUM149-PT (Figure 1G) cell lines.

Strikingly, quercetin, but not luteolin, antagonized the paclitaxel-

mediated upregulation of CD73 activity (Figures 1F, G),

highlighting the efficacy of quercetin as a clinically translatable

CD73 inhibitor.

Next, we employed flow cytometric analysis to confirm that the

observed reduction in CD73 activity by quercetin reduced

paclitaxel-enriched CD73 protein expression in TNBC cells. The

CD73 inhibitor APCP in combination with paclitaxel was used as a

positive control. We found that quercetin did not lower CD73

expression but reduced the frequency of living CD73high cells alone

and antagonized the paclitaxel-mediated enrichment of living

CD73high cells in combination (Figures 1H, I; Supplementary

Figures S1A, B). Similar results were obtained from the chemo-

resistant mouse AT3ova TNBC cells (Supplementary Figure S1C)

and TNBC PDX organotypic cultures (Figure 1J), implying that

clinically achievable doses of quercetin may effectively reduce

CD73high tumor cells post-chemotherapy.
3.2 Combination of quercetin, luteolin, and
paclitaxel synergistically suppresses
viability of human TNBC cell lines and PDX
organotypic cultures

Given that luteolin did not inhibit CD73 activity, we then tested

its inhibitory efficacy on TNBC cell viability to validate the three-

drug combination. Paclitaxel used in the clinical treatment of

TNBC, and paclitaxel combined with CD73 inhibitor APCP were

taken as positive controls. The combination of quercetin, luteolin,

and paclitaxel was most effective at killing human MDA-MB-231

(Figure 2A) and SUM149-PT (Figure 2B), and chemo-resistant

mouse AT3ova (Figure 2C) TNBC cell lines in MTT viability assays.

The triple-drug combination also reduced cell viability more

significantly than any other dual-combinations (Supplementary

Figures S2A–C). In contrast, the inclusion of quercetin and

luteolin in the triple-drug combination did not lead to a

reduction in the viability of MCF10a cells (a non-tumorigenic

mammary cell line) beyond that observed with paclitaxel alone

(Supplementary Figure S2D). Interestingly, the chemo-resistant

mouse AT3ova cells were sensitized to treatment, mainly by

luteolin. Using the Chou-Talalay method, synergism was also

observed in the triple-drug combination using the clinically

relevant doses of each drug (Supplementary Figures S2E, F).

Since MTT cell viability assays are metabolic activity-

dependent, we performed flow cytometry and confirmed that the

triple-drug combination was the most effective in increasing

frequencies of late apoptotic and dead TNBC cells (Figures 2D–

F). Furthermore, we found that clinically relevant doses of the

triple-drug combination significantly reduced ex vivo viability of

four distinct TNBC PDX organotypic cultures compared to control
Frontiers in Immunology 06
or paclitaxel alone (Figures 2G–J). Of note, chemo-resistant PDX

samples were sensitized to triple-drug treatment and exhibited

significant reductions in viability (Figures 2G, H). Together, these

data suggest that luteolin played an important role in the triple-drug

combination by promoting TNBC cell killing via other mechanisms

associated with treatment resistance post-chemotherapy.
3.3 Combination of quercetin, luteolin, and
paclitaxel represses YAP and Wnt cancer
stem cell-promoting pathways

Since CSCs are crucial for tumor relapse, we then asked whether

triple-drug combination could suppress two key CSC-promoting

pathways, YAP and Wnt, that have been closely linked to the

maintenance and enrichment of mesenchymal-like and epithelial-

like CSCs, respectively (28, 37–39). Gene expression analysis

showed that luteolin significantly reduced expression of YAP

target genes Ctgf, Cyr61 and Ankrd1 in MDA-MB-231 human

TNBC cells, comparable to simvastatin, a known YAP inhibitor

(Figure 3A). Similarly, luteolin significantly reduced expression of

Wnt target genes Tcf4, Lef1, and Axin2 in SUM149-PT human

TNBC cells, comparable to PRI-724, a known Wnt inhibitor

(Figure 3B). In both instances, luteolin but not quercetin

antagonized the paclitaxel-mediated upregulation of those target

genes (Supplementary Figures S3A, B). To consolidate these

findings, we performed dual-luciferase reporter assays to assess

transcriptional activity of YAP and Wnt. We found significant

reductions in the transcriptional activity of both CSC-promoting

pathways by the triple-drug combination in human MDA-MB-231

(Figure 3C) and SUM149-PT (Figure 3D) TNBC cells, respectively.

These results imply that triple-drug combination may not only

suppress CD73 but also mesenchymal-like and epithelial-like CSCs.
3.4 Combination of quercetin, luteolin, and
paclitaxel antagonizes paclitaxel-mediated
enrichment of mesenchymal-like and
epithelial-like CSCs

Next, we hypothesized that quercetin and luteolin would

antagonize the paclitaxel-mediated enrichment of CD44highCD24low

mesenchymal-like and ALDH1high epithelial-like CSC populations

(4). Through flow cytometric analysis, we found that the triple-drug

combination circumvented the paclitaxel-mediated enrichment of

CD44highCD24low CSCs in mesenchymal-like MDA-MB-231 cells

(Figure 4A) and PDX organotypic cultures (Figure 4B). The same

trend was observed with ALDHhigh CSCs in epithelial-like SUM149-

PT cells (Figure 4C) and mouse AT3ova TNBC cells (Supplementary

Figure S3C). Interestingly, quercetin in combination with paclitaxel

was unable to reduce paclitaxel-mediated CSC enrichment as

effectively as APCP in combination with paclitaxel (Supplementary

Figures S3D, E).

Since CD73 has been related to CSC survival, we gated on

CD73high and CD73low MDA-MB-231 cells to further understand

the association between CD73 and CSCs. Interestingly, significantly
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higher frequencies of CD44highCD24low CSCs were observed in

CD73high, but not in CD73low populations, irrespective of the

different treatments (Figure 4D). This suggested that CD73 itself

may be a promoter of mesenchymal-like CSCs. Given very low

expression of CD73 in epithelial-like TNBC cells, we tested the
Frontiers in Immunology 07
effect of quercetin, luteolin, and CD73 inhibitor APCP on epithelial-

like tumorsphere formation (an in vitro functional assay to assess

CSCs). Quercetin and luteolin were observed to reduce the

paclitaxel-enhanced tumorsphere formation in human MDA-MB-

231 over-expressing E-cadherin (Figures 4E, F) and SUM149-PT
A B C

D

G H

I J

E F

FIGURE 2

Triple-drug combination effectively suppresses bulk human TNBC cells. Viability of (A) MDA-MB-231 and (B) SUM149-PT human TNBC, and (C)
AT3ova mouse TNBC cell lines were assessed in an MTT assay 120 hours post-treatment with paclitaxel (P, 2.5 nM), quercetin (Q, 0.5 µM), luteolin (L,
5 µM), and adenosine 5’-(a,b-methylene)diphosphate (APCP, 5 µM) alone and in different combinations. Representative flow cytometric analysis of
(D) MDA-MB-231, (E) SUM149-PT, and (F) AT3ova cells 96 hours post-treatment with DMSO control, paclitaxel, triple-drug combination, and
paclitaxel with APCP using 7-AAD to assess apoptotic/dead cells. Viabilities of chemo-resistant (G) HCI-001, (H) HCI-015 and chemo-sensitive (I)
HCI-016 and (J) HCI-002 TNBC patient-derived xenograft organotypic slice cultures were assessed daily using the alamar blue assay. Data
represents mean ± SD, n=3, ns, non-significant; *, P<0.05; **, P<0.01; ***, P<0.001.
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(Figure 4G) epithelial-like TNBC cells, implying inhibition of CSC

functions in vitro. In contrast, CD73 inhibitor APCP did not

antagonize paclitaxel-mediated enrichment in epithelial-like

tumorspheres, thereby emphasizing the potential benefit of

quercetin, luteolin, and paclitaxel in the inhibition of CSCs in vitro.
3.5 Combination of quercetin, luteolin, and
paclitaxel reduces tumor mass and CSC
frequencies while boosting anti-tumor
immunity in C57BL/6 mice

To investigate whether the triple-drug combination would

maintain superior treatment potential within a heterogenous tumor

microenvironment, we injected chicken ovalbumin (ova)-expressing

(AT3ova) mouse TNBC cells into the mammary fat pads of syngeneic

immune-competent C57BL/6 mice, followed by treatments

(Figure 5A). We found that the triple-drug treatment significantly

inhibited the growth of chemo-resistant AT3ova tumors (Figure 5B).

We repeated the experiment to further investigate the effect of each

drug alone on tumor growth, with APCP in combination with

paclitaxel as a positive control. The triple-drug combination was

much more effective than APCP combined with paclitaxel at reducing

tumor growth (Figure 5C). Moreover, quercetin and luteolin in

combination were more effective at reducing tumor growth than

each drug alone; notably, none of the treatments impacted mouse

body weight (Supplementary Figures S4A, B).

Next, we investigated the frequencies of tumor-infiltrating

lymphocytes, given the observations that CD73 inhibits CD8+ T
Frontiers in Immunology 08
andNK cells while upregulating CD4+ regulatory T cell activities (16–

18). The OVA-expressing tumors allowed for the assessment of

tumor-specific CD8+ T cell responses using the ovalbumin peptide

SIINFEKL loaded tetramers. We found that the triple-drug

combination markedly increased the frequency of tumor-specific

activated CD8+ T cells (Figure 5D) and mature activated NK cells

that were suppressed following paclitaxel treatment (Figure 5E). Of

note, luteolin alone was the significant contributor to a higher

frequency of tumor-specific activated CD8+ T cells, whereas

quercetin alone was the significant contributor to a higher

frequency of activated mature NK cells. We also found that the

triple-drug combination reduced the paclitaxel-mediated increase in

the frequencies of immune-suppressing CD4+ regulatory T cells

(Figure 5F). CD73 expression on activated regulatory T cells was

also reduced significantly by quercetin and its upregulation by

paclitaxel was antagonized by the triple-drug combination

(Supplementary Figure S4C). Consistent with our in vitro findings,

paclitaxel alone enriched the frequency of CD44highCD24low CSCs,

which was averted mainly by luteolin alone and in combination

(Figure 5G). A similar trend in response to the treatment was

observed among CD73high tumor cells (Figure 5H).
4 Discussion

CSCs and their ability to evade anti-tumor immunity contribute

to the aggressive nature of TNBC (4), while targeting CSCs using

small molecules have yet to be developed. Although there are ongoing

early phase clinical trials involving CD73 monoclonal antibodies (40),
A

B

C

D

FIGURE 3

Triple-drug combination effectively suppresses cancer stem cell-promoting YAP and Wnt signaling pathways. RT-qPCR analysis was carried out on
(A) YAP target genes in MDA-MB-231 cells and (B) Wnt target genes in SUM149-PT cells 72 hours post-treatment with paclitaxel (5 nM), quercetin (1
µM), and luteolin (10 µM) alone and in different combinations. Simvastatin (500 nM) and PRI-724 (5 µM) were used as positive controls for YAP and
Wnt inhibition, respectively. Transcriptional activity of (C) YAP and (D) Wnt were also assessed using the dual-luciferase reporter assay 48 hours
post-treatment with paclitaxel (P, 5 nM), quercetin (Q, 1 µM), luteolin (L, 10 µM), simvastatin (S, 250 nM), and PRI-724 (PRI, 2.5 µM) alone and in
different combinations. Data represents mean ± SD, n=3, ns, non-significant; *, P<0.05; **, P<0.01.
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FIGURE 4

Co-inhibition of CD73, YAP, and Wnt effectively suppresses paclitaxel-upregulated TNBC cancer stem cells. Flow cytometric analysis was performed
to assess CD44highCD24low cancer stem cells post-treatment on (A) MDA-MB-231 and (B) TNBC patient-derived xenograft tumor chunks. (C)
ALDHhigh cancer stem cell markers were also assessed on SUM149-PT cells post-treatment. All cells were treated with paclitaxel (P, 2.5 nM),
quercetin (Q, 0.5 µM), luteolin (L, 5 µM), and adenosine 5’-(a,b-methylene)diphosphate (APCP, 5 µM) alone and in different combinations. (D)
Frequencies of CD44highCD24low cancer stem cells were reassessed following CD73high versus CD73low gating in MDA-MB-231 cells. MDA-MB-231
cells were transduced with a lentiviral vector encoding the E-cadherin gene insert. Epithelial-like E-cadherin+ MDA-MB-231 cells were grown in
non-adherent and serum-free conditions for tumorsphere formation. Tumorspheres were treated with paclitaxel (P, 2.5 nM), quercetin (Q, 0.5 µM),
luteolin (L, 5 µM), and APCP (10 µM) alone and in different combinations. (E) Representative pictures (scale bar = 100 µm) were captured on Day 10
of tumorsphere formation; (F) an MTT assay was performed to corroborate tumorsphere viability. (G) The latter was repeated on epithelial-like
SUM149-PT cells. Data represents mean ± SD, n=3, ns, non-significant; *, P<0.01; **, P<0.005; ***, P<0.0005.
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FIGURE 5

Triple-drug treatment effectively suppresses TNBC tumors and simultaneously improves frequencies of tumor-infiltrating lymphocytes. (A) AT3ova

mouse TNBC tumors were established in the mammary fat pads of C57BL/6 mice which were randomized into treatment cohorts. (B) Tumor
dimensions were measured every second day to assess tumor growth in response to treatment. (C) Experiment was repeated to include more
treatment groups and analysis of tumor infiltrating lymphocytes. Flow cytometric analysis revealed an increase in the frequencies of (D) tumor-
specific activated CD8+ T cells and (E) mature activated NK cells, and a decrease in (F) activated regulatory T cells in response to the triple-drug
combination relative to chemotherapy alone. (G) Cancer stem cell analysis on mouse tumor samples using CD44highCD24low markers outlined
significant improvements by the triple-drug combination relative to paclitaxel alone. (H) Similar trends were observed for CD73 expression on tumor
cells in response to treatment. Data represents mean ± SEM (B, C); mean ± SD (D–F), n=6, ns, non-significant; *, P<0.05; **, P<0.005; ***, P<0.001
by two-way ANOVA.
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they face challenges such as inadequate tumor penetration and the

inability to target intracellular CD73. Furthermore, the current pre-

clinical small molecule inhibitor, APCP, demands high doses that

may lead to intolerable toxicity (23). To address this concern, we

investigated flavonoids that have been consumed as over-the-counter

supplements and exhibit several advantages for the development of

cancer therapies, such as relatively low toxicities, cost-effectiveness,

and high commercial availability (41, 42). Drug repurposing through

in silico screening allow for the bypass of high costs, labor-intensive,

and time-consuming processes associated with conventional drug

discovery (31).

In addition to exhibiting in silico docking specificity for CD73,

quercetin and luteolin used in this study were stable and

demonstrated plasma concentrations achievable in a clinical

setting (43–46). Both quercetin and luteolin are commonly used

as over-the-counter supplements and are recorded to have excellent

safety profiles with no reported serious adverse effects (47–49). This

was consistent with our findings in which the triple-drug treatment

did not reduce viability of MCF10a non-tumorigenic breast cells

relative to paclitaxel alone. Although we have high confidence in the

safety of combining quercetin and luteolin with paclitaxel, further

in vivo studies may be required to determine whether the

combination would influence the bioavailability of other drugs.

The role of chemotherapeutics such as paclitaxel in enriching

CD73high cells in both mesenchymal-like and epithelial-like cancer

cell populations and upregulating CSC-promoting pathways such as

YAP orWnt have limited its treatment efficacy (4). Contrary to our in

silico findings, we showed that quercetin but not luteolin antagonized

the paclitaxel-mediated enrichment of CD73, which may be

associated with its potential targeting of upstream transcriptomic

regulators of CD73, such as c-Jun/AP-1 (50–53). In contrast to its

prominent role in CD73 inhibition, quercetin had insignificant

inhibitory effects on both YAP and Wnt CSC-promoting pathway.

Given the potential activation of Wnt signaling downstream of

CD73-mediated adenosinergic signaling (14, 15), the suppression of

CD73high cells by quercetin alone may not strongly translate to an

inhibition of downstream signaling in CSCs. While our in silico and

in vitro findings support and align with the specificity of quercetin for

CD73 (54, 55), there remains a limited understanding of its exact

molecular targets, thus warranting further investigation into the

selectivity of quercetin for CD73.

Of note, we found that luteolin but not quercetin effectively

inhibited both YAP and Wnt CSC-promoting signaling pathways,

alone and in the triple-drug combination, partially explaining the

observed reductions in CSC frequencies at a clinically achievable

concentration. While the mechanistic interactions between CD73

and CSC-promoting pathways remains unclear, we found that

CD73 expression is highly correlated with mesenchymal-like

CSCs, but not non-CSCs. CD73 has shown to exhibit intrinsic

roles in promoting epithelial-to-mesenchymal transition (14),

partially explaining our results that paclitaxel and APCP in

combination increased tumorsphere formation. It is possible that

CD73 inhibition without co-inhibiting CSC-promoting pathways

may facilitate proliferation of epithelial-like CSCs.
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Our results suggest that the three-drug combination, using

clinically relevant doses of quercetin and luteolin, is an effective

approach to simultaneously inhibit paclitaxel-enriched CD73 and

CSCs in TNBC. This approach may also be effective for overcoming

treatment resistance, as several studies have shown that

chemotherapy-enriched CSCs often fail to respond to subsequent

treatments (56, 57). We used the CD73 inhibitor APCP as a control

for quercetin, and the YAP and Wnt inhibitors, simvastatin (a

repurposed clinical drug) and PRI-724 (in clinical trials) as controls

for luteolin. Of note, we found quercetin exhibited greater efficacy

than APCP at suppressing CD73 activity and expression, while

luteolin exhibited equivalent efficacy as simvastatin and PRI-724 in

suppressing YAP and Wnt CSC-promoting pathways. Luteolin has

shown to inhibit other pathways associated with CSC promotion

(58–60). However, it remains unclear whether the three-drug

combination also suppresses interactions between CD73 and

other CSC-promoting pathways.

To further emphasize on clinical translatability of the triple-

drug combination, we performed experiments using ex vivo PDX

organotypic cultures using clinically achievable concentrations and

obtained similar results. Resemblance between the viability and

CSC frequencies in organotypic cultures and actual clinical

responses support potential benefit of the triple-drug combination

in the treatment of TNBC. Since CSCs remain known contributors

to treatment resistance in TNBC, the ability of the triple-drug

combination to suppress CSCs in PDX organotypic cultures implied

its clinical potential.

Given the important role of CD73 in suppressing anti-tumor

immunity (16–18), we explored the role of the natural flavonoids

and triple-drug treatment using a TNBC immune-competent

C57BL/6 mouse model. The injection of mouse AT3ova cells into

the mouse mammary fat pats, along with intraperitoneal drug

administration, provided a suitable model of TNBC (61), as it

allows for the hepatic metabolism of drugs prior to systemic

circulation. Quercetin but not luteolin increased mature NK

activation, which may be partially explained by the direct

inhibition of NK functions by CD73-generated adenosine (16).

On the other hand, luteolin but not quercetin increased tumor-

specific CD8+ T cell activation, which may be partially due to

inhibition of YAP/Wnt-induced suppression of cytotoxic T cell

responses rather than tumor-mediated adenosinergic signaling (62,

63). Interestingly, the frequency of CD73high cells following

paclitaxel treatment increased considerably more on tumor cells

than regulatory T cells, suggesting a higher vulnerability of tumor

cells in response to chemotherapy. Similar to our in vitro findings,

the triple-drug treatment was more effective than paclitaxel in

combination with APCP at reducing CSC frequencies, implying

that CD73 inhibition alone might be insufficient for tumor control.

Moving forward, investigating the interplay between CD73 and

CSC-promoting pathways may strengthen the understanding of

TNBC immune evasion. Specifically, the adenosine receptors in

TNBC may exhibit specific methylation patterns (64), potentially

amplifying their activity and promoting CSC survival. While our

work provided insight into the influence of CD73 and CSCs on
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tumor-infiltrating lymphocytes, future studies might involve

investigating metastatic tumors post-treatment as a measure of

disease recurrence (61, 65), or employing humanized mouse

models to evaluate translatability of our findings regarding

tumor-infiltrating human lymphocytes (66). Moreover, recent

preclinical studies have indicated that bivalent CD73/PD-1

antibodies significantly improve the activation of tumor-

infiltrating lymphocytes (67, 68), implying that our triple-drug

treatment might enhance treatment response if combined with

FDA-approved anti-PD-1 therapies such as pembrolizumab.

Additionally, the exploration of nano-molecularly imprinted

polymers (nano-MIPs) or other nanotechnologies to enhance

tumor-specific drug delivery could be investigated to improve

activation of tumor-infiltrating lymphocytes (69).

Taken together, our results show that each natural flavonoid in

the triple-drug combination plays a unique yet important role in

targeting TNBC. By screening the efficacy and function of each drug

alone and in various combinations using clinically relevant doses,

we identified luteolin and quercetin as potent antagonists of

paclitaxel-enriched CD73 and CSCs, and their combination with

paclitaxel effectively reducing TNBC tumor growth and promoting

anti-tumor immunity in vivo. In conclusion, this study integrated in

silico, in vitro, and in vivo findings to propose a novel, cost-effective,

clinically translatable approach for targeting CSCs and improving

anti-tumor immunity, thereby increasing the potential of

significantly improving clinical outcomes for patients with TNBC.
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