
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Raffaele De Palma,
University of Genoa, Italy

REVIEWED BY

Lan Wu,
Vanderbilt University Medical Center,
United States
Yusuke Endo,
Kazusa DNA Research Institute, Japan

*CORRESPONDENCE

Masashi Satoh

msato@med.kitasato-u.ac.jp

RECEIVED 05 January 2024
ACCEPTED 30 January 2024

PUBLISHED 15 February 2024

CITATION

Satoh M and Iwabuchi K (2024) Contribution
of NKT cells and CD1d-expressing
cells in obesity-associated
adipose tissue inflammation.
Front. Immunol. 15:1365843.
doi: 10.3389/fimmu.2024.1365843

COPYRIGHT

© 2024 Satoh and Iwabuchi. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 15 February 2024

DOI 10.3389/fimmu.2024.1365843
Contribution of NKT cells and
CD1d-expressing cells in
obesity-associated adipose
tissue inflammation
Masashi Satoh* and Kazuya Iwabuchi

Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
Natural killer T (NKT) cell are members of the innate-like T lymphocytes and

recognizes lipid antigens presented by CD1d-expressing cells. Obesity-

associated inflammation in adipose tissue (AT) leads to metabolic dysfunction,

including insulin resistance. When cellular communication is properly regulated

among AT-residing immune cells and adipocytes during inflammation, a

favorable balance of Th1 and Th2 immune responses is achieved. NKT cells

play crucial roles in AT inflammation, influencing the development of diet-

induced obesity and insulin resistance. NKT cells interact with CD1d-

expressing cells in AT, such as adipocytes, macrophages, and dendritic cells,

shaping pro-inflammatory or anti-inflammatory microenvironments with distinct

characteristics depending on the antigen-presenting cells. Additionally, CD1d

may be involved in the inflammatory process independently of NKT cells. In this

mini-review, we provide a brief overview of the current understanding of the

interaction between immune cells, focusing on NKT cells and CD1d signaling,

which control AT inflammation both in the presence and absence of NKT cells.

We aim to enhance our understanding of the mechanisms of obesity-

associated diseases.
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Introduction

Inflammation/immune response control obesity in the adipose tissue (AT) of the body

(1, 2). Obesity is a low-grade chronic inflammatory disease that contributes to metabolic

dysfunction and insulin resistance (3, 4). Initially, hypertrophied adipocytes secrete

inflammatory cytokines and chemokines, thereby recruiting immune cells that promote

AT inflammation, including macrophages (Mfs), T cells, B cells, and neutrophils (5–11).

While various immune cells contribute to AT homeostasis and inflammation, natural killer

T (NKT) cells play a crucial role in developing obesity and insulin resistance (12). NKT cells

are a unique subset of T cells that recognize lipid antigens on MHC class I-like CD1d
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molecules (13–15). NKT cells are further classified into two subsets

depending on their T cell receptor (TCR) expression: type I NKT

(invariant NKT; iNKT) cells that harbor an invariant TCR a-chain
(Va14-Ja18 in mice and Va24-Ja18 in humans) and type II NKT

(variant NKT; vNKT) cells that express diverse TCRs. iNKT cells

recognize a prototypical ligand, a-galactosylceramide (a-GalCer),
whereas vNKT cells recognize various lipid antigens, including

sulfatide (16–18). NKT cells secrete various cytokines/chemokines/

cytocidal molecules, activating and recruiting immune cells to

eliminate target cells (19). Furthermore, iNKT cells can be

categorized based on the expression of transcription factors such

as T-bet for NKT1 cells, GATA3 and PLZF for NKT2 cells, and

RORgt for NKT17 cells (20, 21), which may contribute to the

development of inflammatory diseases, including obesity (22–24).

The contribution of CD1d itself to cellular signaling, aside from

its role in ligand presentation to NKT cells in inflammatory and

immune responses, should be considered. Recent reports have

demonstrated that CD1d can modulate critical responses through

its cytoplasmic portion (25–30). In this review, we discuss how NKT

cells contribute to inflammation through interaction with CD1d-

expressing cells in AT and how the intrinsic function of CD1d itself

may influence the response in an NKT cell-independent manner.
Roles of NKT cells in diet-induced
obesity using global CD1d
knockout mice

Numerous studies have revealed that AT-resident and

infiltrating immune cells control obesity-associated AT

inflammation in a DIO model by feeding mice a high-fat diet

(HFD; 60% fat kcal). T helper type 1 (Th1)-immune responses

formed by M1-Mfs, CD8+ T cells, NK cells, and ILC1s exacerbate

AT inflammation and insulin resistance (5, 7, 31–34). In contrast,

Th2-immune responses induced by M2-Mfs, regulatory T cells,

eosinophils, and ILC2s improve insulin sensitivity (8, 35, 36).

Additionally, the ILC2s-eosinophils-M2-Mfs circuit plays a

central role in differentiating beige fat from white fat (beiging),

where beige fat expresses thermogenic genes to defend against cold

and obesity (37–39). Thus, in the steady state, a lean Th2-immune

environment is maintained by the AT-resident cells.

NKT cells appear to play dual roles in the development of

obesity. Reports have shown that both iNKT and vNKT cells

promote AT inflammation and insulin resistance (40–43), whereas

other studies have indicated that iNKT cells play either protective or

neutral roles against obesity in DIO experiments using CD1d KO

and Ja18 KO mice (44–49) (Table 1). Ja18 KO mice exhibit a

significant reduction in T-cell receptor (TCR) diversity (52), thus

mucosal-associated invariant T (MAIT) cells which utilize Ja33 are

lost (53). Considering that MAIT cells also impact the development

of obesity (54–57), Traj18 KO mice (distinct from Ja18 KO mice

here) generated by depleting only the Traj18 locus, essentially

represent iNKT cell KO mice (42). AT-resident iNKT cells express

E4BP4 but not PLZF, reflecting their anti-inflammatory phenotype,

and IL-10-producing NKT cells (NKT10) are enriched in
Frontiers in Immunology 02
subcutaneous white AT (58, 59). Moreover, when the F108Y

substitution was artificially induced in TCRb (Vb8.2), thereby
reducing the interaction of mutated iTCR with CD1d by a partial

disruption of the hydrophobic patch formation with TCR a and b
chain pairing, it altered iNKT cell development to an E4BP4-

expressing, AT-resident-like phenotype (60). Thus, AT-resident

iNKT cells may differentiate and exhibit unique functions

compared to iNKT cells located in other tissues (61).

NKT cell-deficient mice do not show any pathogenic phenotype

in comparison with WT mice, either in an obese or lean state under

normal dietary conditions. However, when they are fed an HFD,

NKT cells function as either pro-obese or pro-lean (40, 41, 44, 45,

49). This implies that NKT cells in HFD-fed mice are activated by

unknown endogenous ligands presented by CD1d+ APCs, including

flora-derived ligands (62–64), presumably even during obesity.

Schipper et al. showed that CD1d KO mice exhibited adipocyte

dysfunction and insulin resistance even under steady-state

conditions (46), suggesting that NKT cells function in both

obesity and a lean state. Alternatively, the dysfunction may be

primarily attributed to the deficiency of CD1d molecules in

adipocytes, as discussed later. Moreover, the phenotype of CD1d

KO and Ja18 KO mice fed an HFD varied among laboratories (12),

ranging from lean to obese, including a neutral state, compared to

WT mice. Although contradictory results have been reported,

presumably due to differences in the lipid composition of the

HFD and intestinal microbiota for different murine strains, the

critical reason for the discrepancy remains elusive. Selvanantham

et al. have reported that CD1d KO mice exhibit altered gut

microbiome profiles, characterized by increase in segmented

filamentous bacteria and decrease of Akkermansia, which

exacerbate intestinal inflammation (65). Bacteroides fragilis

produces the glycosphingolipid a-GalCerBf, which is structurally

related to the prototypic ligand a-GalCer or KRN7000 (62),

exhibiting regulatory activity by iNKT cells. This indicates that

some bacteria in the intestine are involved in the functional

modulation of NKT cells, however, whether it indeed affects the

function of NKT cells during obesity has not been examined.

Meanwhile, the composition and fatty acid concentration in sera,

altered and elevated in obese subjects, are determined based on

endogenous synthesis rates and dietary fat characteristics (66, 67).

Although the ligand for NKT cells in adipocytes remains elusive, it

appears possible that dietary-derived lipid components are involved

in their ligand production. At least, alteration in serum fatty acid

composition affects Mfs, via TLR4 and other receptors, which may

modulate NKT cell activation in an indirect fashion (24).

Additionally, single-cell analysis have unveiled distinct subsets of

AT-resident iNKT cells, including AT-iNKT10 (induction of Tregs

and M2-Mfs), AT-iNKT1 (killing pathogenic Mfs via NK cells and

clearance of dead adipocytes via Mfs) and AT-iNKT17 (via

induction of adipose stem cell proliferation by amphiregulin) (68,

69). Of significance is the inquiry into how AT-iNKT cells are

generated and activated, representing a likely major contribution of

the adipose tissue microenvironment. Additionally, from the

perspective of the CD1d molecule itself, the activation of the

CD1d is differentially regulated by endogenous/exogenous lipid

ligands which are biosynthesized during obesity, or through the
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modulation of the CD1d signaling cascade, as indicated by reports

suggesting that endogenous ligands switch on CD1d activation (28,

29). Hence, further investigation is necessary to reconcile this

contradiction and establish a therapeutic strategy for obesity-

associated diseases.
NKT cell-adipocyte interactions in AT
using tissue-specific CD1d KO mice

NKT cells are activated in AT by interacting with CD1d-

expressing cells, including Mfs, dendritic cells, adipocytes, and

leukocytes, such as eosinophils. AT functions as an endocrine
Frontiers in Immunology 03
organ, as adipocytes secrete adipokines and store triglycerides for

energy (70). Several studies have demonstrated that adipocytes

activate both T and NKT cells through antigen presentation (50,

51, 71–73). CD1d expressed on the surface of adipocytes can induce

iNKT cell activation depending on the expression of microsomal

triglyceride transfer protein (MTP) and CCAAT/enhancer-binding

protein (C/EBP)-b and -d, even in the absence of exogenous ligands,
suggesting that adipocytes express endogenous ligands recognized

by NKT cells (71). The inhibition of UDP-glucose ceramide

glucosyltransferase (UGCG), the first rate-limiting step in the

glucosylceramide biosynthesis pathway, resulted in decreased

iNKT cell activity (74). This finding suggests that the amount of

glucosylceramide influences the biosynthetic pathway of lipid self-
TABLE 1 Role of NKT cells in a murine DIO model.

Strain
KO/Tg mice, NKT

cell agonist
Diet (fat source)

Compared to control
NKT cell responses

in DIO
RefBody

weight
Insulin

resistance

C57BL/6 CD1d KO HFD (soybean oil, lard) ↓ improved (41)

C57BL/6 Ja18 KO HFD (soybean oil, lard) ↓ improved

C57BL/6 aGC administration HFD (soybean oil, lard) → worsened produce TNF-a, IFN-g

C57BL/6 CD1d KO HFD (safflower oil, beef tallow) ↓ improved (40)

C57BL/6 Ja18 KO HFD (safflower oil, beef tallow) → not changed

C57BL/6 aGC administration HFD (safflower oil, beef tallow) → worsened

C57BL/6 CD1d KO HFD (soybean oil, lard) ↓ no data (42)

C57BL/6 Traj18 KO HFD (soybean oil, lard) ↓ improved

C57BL/6 Va14Tg/Ldlr KO
high fat, high sucrose,
0.15% cholesterol

↑ worsened (43)

Balb/c CD1d KO HFD (soybean oil, lard) → not changed (48)

C57BL/6 CD1d KO HFD (soybean oil, lard) → worsened (49)

C57BL/6 Ja18 KO HFD (soybean oil, lard) → not changed

C57BL/6 CD1d KO HFD (soybean oil, lard) ↑ worsened produce IL-10 (44)

C57BL/6 Ja18 KO HFD (soybean oil, lard) ↑ worsened

C57BL/6 aGC administration HFD (soybean oil, lard) ↓ improved

C57BL/6 CD1d KO HFD (soybean oil, lard) no data not changed (45)

C57BL/6 aGC administration HFD (soybean oil, lard) no data improved IL-4/STAT6 dependent

C57BL/6 CD1d KO
both LFD and HFD (soybean

oil, lard)
→ worsened (46)

C57BL/6 Ja18 KO LFD no data worsened

C57BL/6 aGC administration LFD no data not changed produce IL-4, IL-13

C57BL/6 aGC administration HFD (soybean oil, lard) ↓ improved produce IL-13 (47)

C57BL/6 sulfatide HFD (soybean oil, lard) ↓ improved

C57BL/6 Adipoq-cre-Cd1d1f/f HFD (safflower oil, beef tallow) ↓ improved produce IFN-g (50)

C57BL/6 Adipoq-cre-Cd1d1f/f HFD (soybean oil, lard) → worsened produce IL-4 (51)

C57BL/6 LysM-cre-Cd1d1f/f HFD (safflower oil, beef tallow) → worsened produce IFN-g (24)

C57BL/6 CD11c-cre-Cd1d1f/f HFD (safflower oil, beef tallow) → improved (24)
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antigen presentation by adipocytes in iNKT cells. Additionally,

during their interaction with adipocytes within a lipid-rich

microenvironment, the cytokine output of NKT cells skews

towards IFN-g rather than IL-4 (75), indicating that lipid

conditions, such as the balance of fatty acids, are important

factors for NKT cell activation by adipocytes. Furthermore, the

LDL-a-GalCer complex elicits a stronger iNKT cell response than

a-GalCer alone; while, LDL receptor mutation impairs their

activation. Thus, lipoproteins can form complexes with lipid

antigens to facilitate LDL receptor-mediated uptake by APCs,

leading to enhanced iNKT cell activation (76).

Our group has demonstrated the role of NKT cell-adipocyte

interactions in vivo using adipocyte-specific Cd1d1-deficient

(AdipoqCre-Cd1d1f/f) mice during obesity. In comparison to

control mice fed a HFD, AdipoqCre-Cd1d1f/f mice exhibited

suppressed body weight gain and insulin resistance, suggesting

that the interaction between iNKT cells and adipocytes plays a

pro-inflammatory role in AT. iNKT cells activated by adipocytes

secrete IFN-g, which enhances the expression of CD1d and CCL2 in

adipocytes, thereby promoting a positive loop for AT

inflammation (50).

In contrast, other reports have shown that a similar conditional

knockout mouse, adipocyte-specific CD1d-KO (CD1dADKO),

exhibited reduced IL-4 expression in adipose iNKT cells, resulting

in aggravated AT inflammation and insulin resistance in HFD-fed

mice. This implies that iNKT cells stimulated by CD1d-expressing

adipocytes induce anti-inflammatory responses in the AT (51).

Furthermore, the results observed in CD1dADKO mice recapitulated

those in whole-body CD1d KO mice, demonstrating the

opposite conclusion.

Recently, Xiao et al. re-expressed CD1d by transferring the

Cd1d gene into the visceral AT (VAT) of CD1d KO mice using an

adeno-associated viral (AAV) vector to investigate the interactions

between adipocytes and immune cells. The mice with the Cd1d gene

transferred showed massive expansion of CD8+ T cells in the VAT,

leading to the dysregulation of adipocyte functions through the

activation of the NLRP3 inflammasome (77). Although the

transduced mice exhibited a 25% reduction in VAT weight, there

was no significant change in other parts of the AT. Since the mice

were NKT cell-deficient and CD1d-gene in AAV appeared not to be

expressed in either CD4+CD8+ thymocytes or thymic epithelial

cells, CD1d expressed on adipocytes served as a neoantigen

introduced like an allograft, inducing responses by CD8+ T cells

along with an increase in CD4+ and CD4-8- T cells. It would be of an

interest whether iNKT cells or vNKT cells respond in CD1d-AAV

transduced WT or Ja18 KO mice fed on HFD.
NKT cell-macrophage interactions in
AT using cell lineage-specific CD1d
KO mice

Mfs are abundantly present in AT and play a crucial role in

maintaining AT homeostasis. Mfs are phenotypically and
Frontiers in Immunology 04
functionally classified into two types: pro-inflammatory M1 and

anti-inflammatory M2, based on gene expression and markers.

Adipose iNKT cells have been shown to interact with Mf, which
act as antigen-presenting cells that polarize Mfs towards M2 under

the influence of IL-10 (44). To examine the role of the interaction

between NKT cells and Mfs during obesity, we utilized myeloid-

specific Cd1d1-deficient (LysMCre-Cd1d1f/f) mice. If the

interaction is beneficial, its disruption between iNKT cells and

Mf should result in AT inflammation and obesity. However,

LysMCre-Cd1d1f/f mice gained body and VAT weights similar to

those of control mice and exhibited enhanced insulin resistance,

which was associated with M1-Mf and a bias toward NKT1/Th1 in

the AT. The insulin resistance result aligns with the findings of a

previous study (44), while the weight gain was not significantly

greater than that of the control mice. These results may be primarily

interpreted as defective M2 polarization due to the lack of

interaction between iNKT cells and Mf via CD1d. Additionally,

CD1d-deficient Mfs expressed more IL-12p40 than control Mfs in
response to palmitic acid, and the inflammatory phenotype was

enhanced by direct contact with iNKT cells (24).

Alternatively, these results may indicate that CD1d-deficient

Mfs themselves exhibit an inflammatory phenotype upon TLR

stimulation (palmitic acid as a TLR4 ligand), and the interaction

with iNKT cells strengthens the TLR responses, however, the

mechanism of interaction remains elusive. A previous report by

Zhang et al. suggested that the iNKT cell-Mf interactions are

important in controlling AT inflammation during obesity. They

employed LysMCre-Cd1d1f/f mice as M2-specific CD1d-deleted

mice, induced inflammation and insulin resistance during obesity

due to the inhibition of M2-Mf and iNKT cell interactions (78).

M2-Mf express more CD1d than M1-Mf in murine VAT,

facilitating the induction of IL-4 and IL-13 by interacting with

iNKT cells (44, 78).

In humans with diabetes, CD11c+ VAT Mfs laden with several

lipids express more CD1d than CD206+ VAT Mfs, although
functional profiling such as M1 or M2 classification is not clear

based on surface markers, thus implying that the signatures of

human ATMf subtypes are unique (79, 80). In the presentation of

antigens via CD1d, Th1-biasing glycolipids such as a-GC C26:0

(both Th1+Th2) and a-C-GC C26:0, which stimulate much lower

IL-4 and relatively higher and more prolonged IFN-g secretion,

have consistently been observed to form complexes with CD1d that

preferentially localize to cholesterol-rich membrane rafts.

Contrarily, CD1d with Th2-biasing glycolipids such as a-GC
C20:2, a-GC C20:1, a-GC C18:3, and a-GC C10:0, which

stimulate strong IL-4 secretion relative to IFN-g, are more evenly

distributed throughout the cell membrane. Neutralization of

lysosomal pH enhanced the localization of the CD1d-Th2-biasing

glycolipid complex to lipid rafts on the plasma membrane, although

the presentation of Th1-biasing glycolipids was drastically reduced.

These results suggest that lysosomal pH controls the stability and

localization of CD1d-glycolipid complexes in lipid rafts by

modulating the cytokine output of iNKT cells (81, 82). Lysosomes

accumulate in lipid-laden ATMfs and appear to be important for

lipid metabolism (83). However, it is unclear whether lysosomal
frontiersin.org
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activation and pH are involved in M1/M2 Mf polarization and

obesity development.

In addition to Mfs, DCs contribute to the control of AT

homeostasis and insulin sensitivity. Flt3 KO mice lacking DCs or

CD11c+ cell-depleted mice treated with diphtheria toxin failed to

induce obesity, insulin resistance, and liver steatosis compared to

that in control mice during HFD feeding (84, 85). In contrast, Batf3

KOmice lacking cDC1 showed increased body weight and adiposity

during aging, partially mediated by the cDC-iNKT cell axis.

However, these data did not show the actual interaction between

cDC and iNKT cells (86). In our model, inhibition of the interaction

between iNKT cells and DC in CD11cCre-Cd1d1f/f mice

demonstrated that insulin sensitivity was improved in obese mice

compared to that in control mice (24). iNKT cells activated by

adipose DCs produced more IFN-g than those activated by adipose

Mfs, and different phenotypes were observed between LysMCre-

Cd1d1f/f and CD11cCre-Cd1d1f/f mice. These findings suggest that

NKT cells play different roles in the development of obesity by

interacting with adipose Mfs or DCs. However, it is unclear

whether the lack of CD1d affects the functions of CD1d-

expressing cells.
The function of CD1d signaling in
CD1d-expressing cells

Although the NKT cell-Mf interaction seems beneficial in

obesity (24), CD1d-deficient Mfs may exhibit pro-inflammatory

functions independent of their lack of cellular interaction with

iNKT cells. Given our results that BMMfs derived from LysMCre-

Cd1d1f/f mice express more IL-12p40 in a cell-autonomous manner,

it is the deficiency (or downregulation) of CD1d molecules on the

cell surface that causes Mfs to produce more IL-12p40 in response

to TLR4 stimulation. The cytoplasmic domain of CD1d transduces

signals for the trafficking and regulation of inflammatory responses.

The CD1d molecule contains a tyrosine-based signal (YXXZ)

(where Y represents tyrosine, X represents any amino acid, and Z

is a hydrophobic amino acid) that mediates intracellular trafficking,

antigen presentation, NKT cell development (87–90), and a leucine-

based basolateral sorting signal in the cytoplasmic tail (91). Another

threonine residue (T322) and a serine residue (S323) in the

cytoplasmic tail of CD1d control its transport to the cell surface

and lysosomal degradation; thus, these motifs can regulate the

functional expression of CD1d (92, 93). A few components for

sorting CD1d into lysosomes, such as the AP-3 adaptor protein

complex and MTP, are necessary to functionally express CD1d

(94, 95).

Moreover, phosphorylation of tyrosine residues in the

cytoplasmic tail is induced by CD1d crosslinking with an anti-

CD1d antibody, which leads to upregulated expression of IL-10 in

intestinal epithelial cells (25, 26). Conversely, CD1d crosslinking
Frontiers in Immunology 05
induces IL-12 production in monocytes and DC via NF-kB
activation (27), indicating that the output of the CD1d

crosslinking may vary depending on the cell type where CD1d is

expressed. Similarly, CD1d in endosomal compartments binds

isoglobotrihexosylceramide (iGb3), an endogenous ligand for

iNKT cells, induces Tyr332 phosphorylation of the CD1d

cytoplasmic domain, and synergizes with TLR signaling in Mfs
and DC (28). Cui et al. have reported that CD1d stimulated with

iGb3 induces Ser330 dephosphorylation of CD1d cytoplasmic

residue, followed by the downregulation NF-kB activation

through the reduction of Peroxiredoxin 1 (PRDX1)-associated

AKT-STAT1 phosphorylation in Mf (29). The short cytoplasmic

tail of CD1d might mediate inhibitory signals for NF-kB activation,

depending on Ser330 rather than Tyr332 residue. A similar signaling

pathway has been studied as reverse signaling by MHC class Ia in

immune and non-immune cells (96).

Notably, a recent study has shown that CD1d-deficient Mfs
amplify TLR signaling by increasing lipid uptake via CD36,

independent of CD1d cytoplasmic signaling. This is demonstrated

by the fact that the expression of CD1d with a deficient cytoplasmic

tail (7 residues) or the tail mutant (332Y -> A) showed similar

activity as that of the WT CD1d molecule (30).

According to above reports, the inhibitory effect of CD1d on

TLR signaling is weakened in the Mfs of LysMCre-Cd1d1f/f mice,

thereby potentiating the IL-12-IFN-g circuit leading to AT

inflammation (24). However, whether the signaling via CD1d

influences only TLR responses or other factors, such as C-type

lectins and scavenger receptors, remains unclear. These data suggest

that it is difficult to distinguish whether the phenotype observed in

CD1d-deficient mice is due to the lack of NKT cells or the CD1d

deletion in the respective studies. Caution should be exercised when

interpreting the results of studies using mice with either whole-body

or conditional deletions of CD1d.
Conclusion

NKT cells control obesity-associated AT inflammation by

interacting with CD1d-expressing cells such as adipocytes, Mfs,
and DCs. In the interactions among these cells, unknown

endogenous lipid ligands are presented via CD1d. Different

ligands are possibly expressed depending on the cell type, leading

to the respective immune microenvironment and phenotypes in the

development of obesity (Figure 1). Additionally, NKT cells may

contribute to both lean and obese phase, and their interaction with

the predominant APCs at the time, such as M2-Mfs in steady state

AT or hypertrophied adipocytes in obesity, can affect NKT cell

function. However, if CD1d molecules had a regulatory function

that either enhances or suppresses the inflammatory process in

Mfs, this pathway could function independently of NKT cells. To

understand the chronic inflammatory process during obesity, it will
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be important to further investigate the regulatory effect of CD1d,

endogenous glycolipids, and NKT cells on immune responses in the

AT. Thus, we obtained new insights into the strategies for

overcoming obesity and obesity-associated diseases.
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