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Accumulating studies have indicated that the gut microbiota plays a pivotal role

in the onset of autoimmune diseases by engaging in complex interactions with

the host. This review aims to provide a comprehensive overview of the existing

literatures concerning the relationship between the gut microbiota and

autoimmune diseases, shedding light on the complex interplay between the

gut microbiota, the host and the immune system. Furthermore, we aim to

summarize the impacts and potential mechanisms that underlie the

interactions between the gut microbiota and the host in autoimmune diseases,

primarily focusing on systemic lupus erythematosus, rheumatoid arthritis,

Sjögren’s syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis.

The present review will emphasize the clinical significance and potential

applications of interventions based on the gut microbiota as innovative

adjunctive therapies for autoimmune diseases.
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1 Introduction

Autoimmune diseases represent a group of chronic and systemic disorders

characterized by an excessive immune response, abundant inflammation, and the

extensive depositions of immune complexes to tissues and organs. Epidemiological

investigations have revealed a global incidence of 5~8% for autoimmune diseases (1, 2).

The pathogenesis of autoimmune disease is multifaceted involving genetic predisposition,

immune dysregulation, and environmental factors like lifestyle, dietary patterns, and

medications (3). Despite advancements in diagnosis and treatment, early diagnosis and

precise therapeutic strategies of autoimmune diseases remain significant challenges (4).

Increasing evidence has highlighted the pivotal role of the gut microbiota in maintaining

immune balance and homeostasis in autoimmune diseases, particularly including

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic scleorosis, and
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type I diabetes mellitus (T1DM). Disturbances in the composition

and diversity of the gut microbiota are strongly associated with

autoimmune disorders (5–7). This review aims to elucidate the

regulatory mechanisms by which the gut microbiota influence

autoimmunity and inflammation, consolidating available evidence

on their association with autoimmune diseases. Additionally, it

seeks to offer novel insights into early diagnosis and precise

treatment strategies for autoimmune diseases.
2 Compositions and functions of the
gut microbiota

The human gut harbors a diverse array of microbiota,

encompassing bacteria, fungi, viruses and assorted microorganisms (8).

With advances in sequencing techniques, such as 16S rRNA and

metagenomics, certain intestinal microbiota closely associated with

human health have been identified, such as Phyla Firmicutes,

Bacteroidetes, Pseudomonadota, and Actinomycetota, while others

like Fusobacteria are relatively less studied (9, 10).

Microbiota populations colonize not only the gut but also the

skin, respiratory tract, and reproductive system, influencing various

physiological processes, including nutrition, tumorigenesis and

immune homeostasis (11). It has been well established that the

composition and abundance of the gut microbiota can be influenced

by various factors, including environmental factors, diet and the

host’s immune system (12, 13). The gut microbiota is not static but

dynamic throughout human life. The study by Xie et al. has shown

that the gut microbiota diversity changes over time, notably in

genetically identical twins living apart (14). Dietary habits also

significantly impact microbiota; for instance, high-fiber diets

positively correlate with increased abundance of Lachnospiraceae

(15), while Western diets rich in red meat and low in fiber are

associated with Bacteroides spp and Ruminococcus torques

dominance (16). Consequently, microbial compositions vary with

dietary habits, heredity and other factors.

The gut microbiota, evolved alongside its host, profoundly

influences various physiological and pathological processes, including

nutrient production, drug effects, resistance to pathogens, and immune

regulation (17–19). Gut bacteria ferment indigestible carbohydrates,

generating short-chain fatty acids (SCFAs) like acetate, propionate and

butyrate. These SCFAs act as biologically active compounds, providing

energy for colonic epithelial cells (20, 21). In particular, butyrate acts as

a primary energy source for the colonic epithelial cells (22).

Furthermore, the gut microbiota significantly impacts medication

metabolism. For instance, certain bacteria convert gemcitabine

metabolites and irinotecan HCl, affecting therapeutic efficacy and

potential side effects (23). It has been demonstrated that Escherichia

coli (E. coli), Staphylococcus and Clostridium sporogenes produce an

enzyme called beta-glucuronidase, converting the harmless form of the

chemotherapeutic drug irinotecan HCl (CPT-11), known as SN-38

glucuronide, to its active form, SN-38 (24). Moreover, the gut

microbiota exerts crucial effects on the immune system, including

impacts on the proliferation and activation of immune cells,

autoantibodies generation, and the onset of autoimmune diseases.
Frontiers in Immunology 02
Studies comparing germ-free (GF) and specific pathogen-free (SPF)

mice highlight the microbiota’s impact on innate immune cell

modulation and host defense against bacterial infections (25).

Additionally, the microbiota contributes to the production of

neurochemicals like gamma-aminobutyric acid (GABA), impacting

the central nervous system and the gut through the brain-gut axis,

ultimately influencing the immune microenvironment (26). Exploring

the makeup, diversity, and structural alterations in the body’s

microorganisms, along with interactions with the immune system,

holds promise for understanding the fundamental processes of

autoimmune diseases. All these findings offer the possibilities of

identifying new biomarkers and developing effective therapeutic

strategies for various diseases.
3 Role of microbiota in establishing
and maintaining a stable
immune system

3.1 Microbiota and innate immunity

The correlation between the gut microbiota and innate

immunity has attracted significant attention in academic research.

The gut-associated lymphoid tissues (GALT) play a crucial role in

protecting the intestinal mucosa, working in coordination with the

mucosa-associated lymphoid tissues (MALT). Innate immune cells

within these tissues employ non-specific pathogen recognition,

innate immune reaction initiation and antigens presentation to

activate the adaptive immune system (27, 28). It has been shown

that the gut microbiota is important in regulating the physiological

functions of GALTs in germ-free (GF) models, aiding in their

development and maturation (27). Additionally, metabolic by-

products produced by commensal microbiota, such as SCFAs,

influence the immune response of GALTs through epigenetic

mechanisms, supporting the defensive functions and immune

tolerance (27).

Innate lymphoid cells (ILCs) are integral to GALTs. The

development of ILCs occurs independently of the gut microbiota,

while their specific functions rely on commensal microbiota (29, 30).

For instance, ILC3, a prominent ILC class, supports epithelial cells

survival, antimicrobial peptides production, and the generation of IL-

22 (31). IL-22 is a key cytokine essential for the host’s immune

response to Citrobacter (32, 33). It has been well documented that

SCFAs promote IL-22 production of ILC3 by activating aromatic

hydrocarbon receptor (AHR) through the AKT-STAT3 and ERK-

STAT3 signaling pathways (34, 35) (Table 1). Moreover, SCFAs

stimulate the proliferation of intestinal ILCs by affecting G protein-

coupled receptor (GPCR) activity (45) (Table 1). The gut microbiota

also facilitates interactions between ILC3 and other cell types (31),

promoting the expression of protective proteins like fucosyltransferase

2 (FUT2) that strengthen the intestinal mucosal barrier (60). As the

gut microbiota matures, ILC1 levels increase, indicating their reliance

on commensal microbiota for development (30).

Conventional natural killer (NK) cells, the sole cytotoxic cell

population within innate immunity, detect pathogens and carry out
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TABLE 1 Effects of the gut microbiota and microbiota-derived metabolites on the immune system.

Microbiota/
Metabolites

Immune cells Effects/Mechanisms Ref.

Lactobacillus
sakei K040706

NK cell
• Increasing NK cell activity in the spleen;
• Promoting the maturation of the spleen germinal center

(36)

Listeria
monocytogenes

Macrophage

• Driving the proliferation of yolk sac-derived macrophages;
• Influencing the development of stable bone marrow cells;
• Regulating CCR2;
• Influencing macrophage homing from the periphery to the gut and development

(37, 38)

Segmented
filamentous
bacteria

T cell • Inducing RORgt+Th17 cells in GALT (39)

Bacteroides
fragilis

T cell
• Secreting polysaccharide A;
• Stimulating IL-10 production by CD4+Treg cells

(40)

Lactobacillus
Sutterella
Klebsiella

B cell

• Promoting naïve B cells to differentiate into regulatory B cells in mesenteric
lymph nodes;

• Producing ATP;
• Activating P2X and P2Y of DC;
• Inducing IL-6 and TGF-b production;
• Promoting type arrangement and secretion of IgA

(41)

Bacillus
polyfermenticus

NK cell

• Activating DCs and NK cells;
• Expanding NK cell pool and increasing cytotoxicity;
• Amplifying type I response;
• Promoting IFN-g secretion by NK cells

(42, 43)

Lactobacillus
Bifidobacterium

T cell • Inducing CD4+CD25+FoxP3+Treg cells (44)

SCFAs ILC1 • Increasing the number of ILC1 (45)

SCFAs ILC3
• Activating aryl hydrocarbon receptor (AHR);
• Promoting IL-22 production

(34)

SCFAs

T cell

• Regulating the differentiation of CD4+T cells;
• Inducing the generation of Treg cells;
• Promoting IL-10 production by Th1 cells;
• Promoting the expression of FOXP3;
• Negatively regulating the differentiation of Th9 cells;
• Inhibiting the secretion of IL-9;
• Inhibiting histone deacetylase activity;
• Reducing IL-17a secretion

(44, 46–50)

SCFAs

• Promoting cell metabolism;
• Boosting the memory capacity of activated CD8+T cells;
• Regulating the gene expression of CD8+T cells and Tc17 cells;
• Promoting IFN-g and granzyme B secretion;
• Promoting molecular switch of Tc17 cells to CTL phenotype

(51, 52)

SCFAs B cell

• Activating intestinal epithelial cells through GPR41 and GPR43 receptors;
• Promoting the secretion of TSLP and inflammatory factors;
• Inducing IgA production by B cells;
• Regulating B cell differentiation;
• Inhibiting autoantibodies;

(53, 54)

SCFAs DCs

• Inhibiting LPS-induced maturation of DCs
• Down-regulating the expression of CD80, CD83 and MHC Class II molecules;
• Enhancing endocytosis;
• Reducing the release of CCL3, CCL4 and CXCL9;
• Increasing the expression of IL-10 and IL-23 and inhibiting the production of IL-12 and

IFN-g

(55–57)

SCFAs Macrophage
• Inducing the secretion of NO, IL-6 and IL-12p40 in a dose-dependent manner;
• Enhancing histone H3 acetylation by acting as an HDAC inhibitor;
• Promoting the synthesis of the anti-inflammatory cytokine IL-10

(58, 59)
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cytotoxic functions by releasing proteins like granzymes (61). The

precise mechanisms regulating NK cell equilibrium between

alloreactivity and autotolerance remain unclear. The gut

microbiota, containing ligands for NK cell receptors, influences

NK cell function and cytotoxicity, as observed in GF mice with the

absence of interaction with commensal bacteria.

Macrophages in the gut are crucial for defending against

infections and play a pivotal role in maintaining the integrity of

the intestinal mucosa. The gut microbiota influences the

development of myeloid-derived macrophages and the intestinal

inflammation by modulating myeloid cell hematopoiesis,

migration, and population sustenance within the gut (37, 38, 62–

64) (Table 1).The relationship between the gut microbiota and

innate immune cells underscores the profound influence of

microbial communities on the development, differentiation, and

functionality of these vital immune components, thus significantly

contributing to the gut’ s microecology balance.

The intricate interplay between the gut microbiota and the local

innate immune system contributes to the shaping of the gut

microenvironment. Increasing evidence has demonstrated that the

dysregulation of gut microbiota can result in disruptions and

imbalance of the innate immune system by regulating the TLR

signaling activation, inflammasome response, and ILC alterations,

ultimately contributing to the onset of autoimmune diseases, such

as RA and SLE (27, 65). Furthermore, fecal transplantation from

healthy mice to certain disease-model mice has been shown to

alleviate symptoms and ameliorate metabolic irregularities due to

impaired activation of innate immune receptors, such as type 1

diabetes mellitus (T1DM) and inflammatory bowel disease (IBD)

(31, 66). These findings have suggested the crucial role of gut

microbiota in regulating autoimmune disorders through

influencing innate immunity.
3.2 Microbiota and adaptive immunity

The gut microbiota plays a pivotal role in establishing and

sustaining adaptive immunity in the gut, orchestrating interactions

between varieties of immune cell types like T cells and B cells to

ensure immunological equilibrium. T cells within the gut, specifically

the CD4+T cells known as Th cells, display remarkable diversity and

functions shaped by the unique metabolic characteristics of the gut

microbiota (67). Notably, the gut microbiota influences the

differentiation of naïve CD4+T cells into subsets like Th17 cells and

Treg cells. Th17 cells are vital in defending against bacterial and

fungal infections in the lamina propria (LP) of the small intestine by

producing IL-17A, IL-17F, and IL-22. They also promote intestinal

epithelial cells for more production of antimicrobial peptides (AMP),

activate endothelial cells (ECs), and aid in neutrophils recruitment

(68, 69). Segmented filamentous bacteria (SFB), a relatively low-

abundance microbial population in the ileum, can induce the

generation of RORgt+Th17 cells in the tissue-associated lymph

nodes in the gut, although the excessive activation of RORgt+Th17
cells might lead to autoimmune diseases (70).

In contrast, regulatory T (Treg) cells contribute to immunological

tolerance by promoting self-tolerance and suppressing excessive
Frontiers in Immunology 04
immune activation (71). The forkhead box P3 (Foxp3) is the key

transcription factor for CD4+CD25+Treg cells, inhibiting excessive

immune reactions. Certain probiotics, like Lactobacillus and

Bifidobacterium infantis induce the production of anti-

inflammatory CD4+CD25+Foxp3+ Treg cells, while Bacteroides

fragilis and its polysaccharide A (PSA) stimulate IL-10 production

by CD4+Treg cells depending on IL-2 pathway, suppressing

inflammation (72). In addition, some bacterial metabolites, such as

adenosine and inosine, can interact with T cells’ adenosine A2A

receptor (A2AR), enhancing Treg cell activity while inhibiting Th1

and Th17 inflammatory responses (73).

Several pathways, including B cell receptor (BCR), CD40, Toll-

like receptors (TLRs), B cell activating factor receptor (BAFF), and

proliferation-inducing ligand (APRIL) receptors, primarily control

the activation and differentiation of B cells (74). Activation of TLRs

and BAFF/APRIL receptors significantly impacts T cell-dependent

B cell antibody production (74). It is firmly established that the gut

microbiota modulates B cell function by interacting with BCR

through antigenic determinants and activating TLRs and NOD-

like receptors (NLRs) via specific metabolites (74). Moreover, the

gut microbiota stimulates dendritic cells (DCs) and the intestinal

tissue cells to release cytokines like IL-1b and IL-6, which enhances

the differentiation of naïve B cells into regulatory B cells (Bregs)

within mesenteric lymph nodes (MLN) (41) (Table 1). Additionally,

microbiota-derived ATP in the gut is converted to adenosine,

activating adenosine receptors on B cells and promoting the

production of IgG and IgA antibodies (74). Beyond these direct

effects, the gut microbiota indirectly influences B cell differentiation

and activation. As gut microbiota-derived metabolites, SCFAs can

activate the intestinal epithelial cells via the cell receptors, such as

GPR41, GPR43, and FFAR2, which prompts the release of thymic

stromal lymphopoietin (TSLP) by epithelial cells and the release of

TNF-a and iNOS of dendritic cells. This cascade triggers the

expression of APRIL and IL-10, further enhancing IgA antibody

production by B cells (75). Additionally, SCFAs can also activate

receptors on the intestinal epithelial cells, like FFAR2, FFAR3 or

GPR109a, and modulate the nuclear factor-k-light chain enhancer

(NF-kB) pathway involved in B cell activation, thereby suppressing

inflammatory responses (Figure 1). Consequently, the gut

microbiota and its metabolites are closely intertwined with the

development, differentiation, and activation of B cells, exerting a

substantial influence on immune responses and inflammation.

It has been well documented certain gut microorganisms

harboring epitopes resembling host proteins, such as the RNA-

binding protein Ro60, are capable of activating T and B cells in SLE,

thereby triggering abnormal adaptive immune response and

inducing production of pathogenic autoantibodies (76). Besides,

the roles of Th9 cells and IL-9 have been demonstrated in UC,

functioning to impair intestinal barrier function, prevent mucosal

wound healing in vivo and compromise tolerance to commensal

bacteria by inducing inflammation and adaptive immune disorders

(77–79). Therefore, the gut microbiota may contribute to

autoimmune diseases by regulating T- or B-cell mediated adaptive

immunity. The complex interplay between the gut microbiota and

immune cells influences immune responses and homeostasis.

Metabolites like SCFAs significantly impact cytokine and
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immunoglobulin production, affecting the progression of

autoimmune diseases. This close interaction between the

microbiota and the immune system forms a protective barrier

against various threats. Alterations in the microbiota can lead to

immune dysfunction and the onset of autoimmune diseases.
4 Role of microbiota and
autoimmune diseases

The integrity of human gut microbiota has been shown to

correlate with susceptibility and outcomes of various diseases, such

as metabolic, infectious and autoimmune diseases (80). As suggested

in a groundbreaking article in 2002, the incidences of some classic

infectious diseases such as tuberculosis and measles as well as

intestinal infections have declined significantly but with a higher

incidence of autoimmune diseases like T1DM and asthma in western

countries in the last 50 years of the 20th century due to the improved

sanitation, antibiotics usage and vaccination (81). This trend of

change could still be observed in the last few years even until now

that the incidence of autoimmune diseases is still steadily increasing,

accompanied by a steady decline in the incidence of primary

infectious diseases (82). According to “old friend hypothesis”,

limited exposure to specific microbes (“old friends”) prevent

immune system from forming a tolerogenic microenvironment,

especially in early childhood phase (83–86). For children, the

delivery mode, diet, and exposure to antibiotics and antacids are

common factors for the contact with microbiota. Researches

have shown that infants undergoing vaginal delivery and

exclusive breastmilk feeding usually have a lower cumulative

allergic burden, while those who exposed to antibiotic and

antacid have an increased cumulative allergic burden conversely,

thereby demonstrating the importance of microbiota in resisting

excessive autoimmune response (87). Therefore, investigating the
Frontiers in Immunology 05
development, management, and prognosis of autoimmune disorders

holds paramount importance due to the potential impact of

microbiota dysfunction on both immunodeficiency syndromes and

autoimmune diseases.

Dysbacteriosis, a commonly recognized term, refers to

disruptions in the composition or activity of the microbiota

within specific anatomical areas. This disruption encompasses

alterations in both a-diversity and b-diversity. a-diversity reflects

the variability in types and quantities of microorganisms of the host,

while b-diversity delineates differences in microbial community

makeup between individuals (88). Recent research has increasingly

linked microbiota dysregulation to compromised intestinal barrier

integrity, diminished functionality, and enhanced inflammation in

autoimmune diseases (89, 90). Therefore, a growing body of

evidence has underscored the intimate relationship between

microbiota compositions and these conditions.
4.1 Microbiota and systemic
lupus erythematosus

SLE is one of the most prevalent autoimmune diseases with

multisystemic clinical manifestations caused by abundant immune

complex depositions to tissues and target organs, leading to long

sustained inflammation, immune disorders and ultimately multi-

organ damages (91). A previous study has suggested that

transferring microbiota from the cecum of lupus-prone mice into

healthy mice can induce lupus (92). Similarly, GF mice receiving

fecal matter from lupus mice exhibit increased levels of anti-

DsDNA antibodies in serum, implicating the crucial role of the

gut microbiota in autoantibody formation and immune reactions

(93). Consequently, the gut microbiota is recognized as a pivotal

factor contributing to SLE (27, 94, 95). The migration of microbial

products from the colon and elevated permeability of the intestinal
FIGURE 1

Role of the gut microbiota in autoimmune disease. The gut microbiota contributes to the pathogenesis of autoimmune diseases through various
complicated mechanisms, such as the secretion of SCFAs, modulation of NF-kB and Nrf2 signaling pathways, disruption of the balance between
Treg, Th1, and Th17 cells, and modulation the release of inflammatory factors. The image was created utilizing the FigDraw online platform (https://
www.figdraw.com/#/) and was identified by the in-house image ID: UPORSc4cf4. SCFAs: Short chain fatty acids; MUC2: Recombinant Mucin 2;
ROS: Reactive oxygen species; GPR109a: G protein-coupled receptor 109a; FFAR2/3: Recombinant Free Fatty Acid Receptor 2/3; NF-kB: Nuclear
factor kappa-B; COX-2: Cyclooxygenase 2; iNOS: Inducible nitric oxide synthase; ZO-1: Zona Occludens 1; MAPK: Mitogen-activated protein kinase;
IL-1b: Interleukin-1 beta; TNF-a: Tumor necrosis factor alpha; Est-1: Estrogen sulfotransferase-1; SHP-2: SH2 domain-containing protein-tyrosine
phosphatase-2; Nrf-2: NF-E2-related factor 2; HO-1: Recombinant Heme Oxygenase 1; IL-6: Interleukin-6; IL-10: Interleukin-10; TGF-b:
Transforming growth factor beta; IFN-g: Interferon gamma; IL-17: Interleukin-17; IL-21/IL-22: Interleukin-21/Interleukin-22; IL-12 p40: Interleukin-
12 p40.
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mucosal barrier are well recognized mechanisms implicated in the

initiation and progression of SLE. Research in lupus-susceptible

(NZB×BXSB) F1 mice has shown the migration of Enterococcus

gallinarum from the intestine to mesenteric veins, intestinal

draining lymph nodes, liver, and spleen (96). Enterococcus

gallinarum has been also detected in liver biopsy specimens from

SLE patients (96). Calprotectin, a calcium-containing protein in

neutrophils and macrophages, acts as a crucial biomarker for

impaired intestinal barrier (97). A close association between

damaged intestinal barrier function in SLE patients and elevated

levels of fecal calprotectin has been well documented (96, 98).

Furthermore, certain gut microorganisms harboring epitopes

resembling host proteins are capable of activating T and B cells,

thereby triggering abnormal immune responses and abundant

production of pathogenic autoantibodies. For instance, the RNA-

binding protein Ro60, found in various gut microorganisms, shares

homologous sequences with human Ro60 epitopes (76, 99). Anti-

Ro60 antibodies can induce the generation of autoantibodies

against Ro52, Smith, or U1RNP by spreading their epitopes (76,

99). Therefore, the intestinal microbiota containing sequences akin

to human Ro60 epitopes may contribute to SLE by exacerbating
Frontiers in Immunology 06
pathological damages and dysregulated autoimmune responses in

lupus-susceptible individuals.

It has been reported that certain gut microbiota can exert

inhibitory effects on SLE through various mechanisms (Figure 1).

Lactobacillus has been demonstrated to possess the capability to

diminish the number of ILC3 cells and Th17 cells, suppress the pro-

inflammatory factor IL-17 production, shift the Treg/Th17 balance

in favor of the Treg phenotype, stimulate IL-10 production, and limit

the accumulation of IgG-2a in the kidney (94, 100). This cascade

ultimately reduces the kidney injures induced by dysregulated

autoimmune responses. Moreover, it has been reported that

Lactobacillus can significantly enhance the expression of key

molecules associated with the intestinal mucosal barrier, such as

ZO1, occludin and Cldn1 (100). Lactobacillus helps to enhance the

intestinal barrier’s functionality without affecting the expression of

Cldn2, responsible for creating lining pores (100) (Table 2).

MicroRNAs (miRNAs) play pivotal roles in diverse biological

processes, including immune cell maturation, the establishment of

central and peripheral tolerance, and the differentiation of T helper

(Th) cells. Alterations in miRNA expression can lead to immune

system dysfunctions (123). Earlier studies have indicated a positive
TABLE 2 Roles and mechanisms of probiotics in regulating autoimmune diseases.

Disease Probiotics/Metabolites Effect/Mechanism Ref.

SLE Lactobacillus

• Increasing the secretion of IL-10;
• Inhibiting the secretion of IL-17;
• Increasing the production of ZO-1, occludin and Cldn1;
• Enhancing intestinal barrier function

(100)

SLE
Bifidobacterium
Lactobacillus

• Binding to symbiotic bacteria;
• ActivatingFFAR2, FFAR3 or GPR109a;
• Inhibiting inflammatory response;
• Blocking nuclear factor-k light chain enhancers of the B-cell activation

(73)

SLE SCFAs
• Inhibiting IL-6, IL-12 and p40;
• Decreasing autoantibody production;
• Maintaining intestinal epithelial barrier function

(57)

SLE Bacteroides fragilis
• Increasing CD1d expression via Est-1 signaling pathway in B cells;
• Inhibiting CD86 expression via SHP-2 signaling pathway;
• Restoring the immune response of B cells

(101)

RA Prevotella histicola

• Increasing the number of Treg cells;
• Inhibiting the response of Th17;
• Promoting the release of IL-10;
• Increasing the expression of ZO-1 and occluding;
• Maintaining intestinal barrier function;

(102)

RA Lactobacillus casei

• Reducing joint swelling;
• Inhibiting RA pathophysiology;
• Decreasing arthritis score;
• Reducing inflammatory cytokines;
• Decreasing total cholesterol and low-density lipoprotein cholesterol levels in blood

(103)

RA Bifidobacterium adolescentis
• Competing for growth factors,
• Reducing vitamin K;
• Inhibiting Porphyromonas gingivalis growth

(104)

RA Faecalibacterium prausnitzii
• Increasing butyrate production;
• Promoting IL-10 secretion

(105)

SS
Enterococcus faecalis

Saccharomyces boulardii

• Alleviating subjective symptoms;
• Increasing secretion of tears;
• Prolonging tear film breakup time

(106, 107)

(Continued)
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correlation between elevated expression levels of miR-155 and miR-

181a and increased disease severity of SLE patients. Conversely, miR-

155 deficiency reduces anti-dsDNA IgG titers and alleviates disease

symptoms (124, 125). Interestingly, it has been discovered that

Lactobacillus rhamnosus and Lactobacillus delbrueckii can

attenuate the activity of miR-155 and miR-181a in peripheral
Frontiers in Immunology 07
blood mononuclear cells (PBMCs) of SLE patients (126). However,

it’s noteworthy that Lactobacillus reuteri can exacerbate SLE by

increasing the expression of type I interferon gene in the spleen and

ileum of C57/B6 mice, resulting in anemia, increased intestinal

permeability, and immune dysfunctions (127). These findings have

suggested that different Lactobacillus strains may induce distinct
TABLE 2 Continued

Disease Probiotics/Metabolites Effect/Mechanism Ref.

SS Bifidobacterium
• Resisting pathogens;
• Reducing bacterial growth in the tear film

(108)

SS

Lactobacillus casei
Lactobacillus acidophilus
Lactobacillus reuteri
Bifidobacterium

Streptococcus thermophilus

• Decreasing the number of CD8+ IFN-gHi cells;
• Increasing the number of Treg cells

(109)

T1DM Bifidobacterium lactis HY8101

• Up-regulating GLUT4 and PPAR-g in TNF-a-treated L6 cells;
• Down-regulating PCK1 and G6PC;
• Decreasing fasting insulin and blood glucose;
• Improving insulin tolerance;
• Decreasing plasma total cholesterol and triglyceride levels

(110)

T1DM L. johnsonii N6.2

• Increasing the expression of Claudin-1;
• Decreasing the expression of occludin;
• Increasing the number of goblet cells;
• Promoting the formation of an anti-inflammatory environment;
• Down-regulating iNOS and IFNg;
• Decreasing mature caspase-1

(111, 112)

T1DM
Lactobacillus

Bifidobacterium

• Promoting the release of GLP-1, Resulting in reduced food intake and improved
glucose tolerance;

• Increasing the levels of butyrate
(113)

T1DM

Lactobacillus salivarius subsp. salicinius
AP-32

L. johnsonii MH-68
Bifidobacterium animalis subsp. lactis

CP-9

• Decreasing fasting blood glucose and HbA1c levels;
• Reducing the levels of inflammatory cytokines;
• Increasing the expression of TGF-b1

(114)

T1DM Saccharomyces boulardii Tht 500101
• Increasing the C-peptide levels and hepatic glycogen content to lower glycemia;
• Regulating fat metabolism;
• Promoting the recovery of the gut microbiota

(115)

UC Lactobacillus plantarum SC-5
• Inhibiting activation of MAPK and negatively regulating NF-kB;
• Increasing the expression of ZO-1, Occludin, and Claudin-3;
• Regulating the balance of the gut microbiota

(116)

UC
Bifidobacterium longum subsp.

longum YS108R

• Inhibiting NF-kB signaling pathway;
• Activating Nrf2 signaling pathway;
• Increasing SCFA-producing bacteria and declining Gram-negative bacteria

(117)

UC Limosilactobacillus mucosae CCFM1273

• Mitigating the disease symptoms and colonic pathologic damage;
• Restoring goblet cell numbers and MUC2 production;
• Enhancing intercellular junctions;
• Inhibiting Fas/Fasl pathway and epithelial cell apoptosis;
• Inhibiting NF-kB signaling pathway;
• Increasing SCFA-producing bacteria and declining Gram-negative bacteria

(118)

UC
Lacticaseibacillus

rhamnosus 2016SWU.05.0601
• Reducing the expression of inflammatory cytokines;
• Regulating the activation of NF-kB-iNOS/COX-2 signaling pathway

(119)

psoriasis Bifidobacterium infantis strain 35624 • Decreasing the levels of CRP and TNF-a (120)

psoriasis Lactobacillus
• Decreasing hs-CRP and MDA levels and increasing total antioxidant capacity;
• Alleviating disease symptoms

(121)

psoriasis Bacillus spp.
• Improving quality of life with lower PASI and DLQI scores;
• Reducing the levels of TNFa, IL-6, and IFN-g, but enhancing the levels of IL-10;
• Enhancing the diversity of the gut microbiota

(122)
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immune responses in varying conditions in mice, leading to diverse

outcomes (128). Additionally, the Firmicutes/Bacteroidetes (F/B)

ratio is found to be significantly lower in SLE patients compared

to non-SLE individuals (129–131), with Firmicutes showing a

negative correlation with SLE Disease Activity Index (SLEDAI)

scores (132). This suggests that Firmicutes may potentially delay

the progression of SLE. Butyric acid and propionic acid, produced by

Firmicutes, directly impact B cells by promoting the differentiation

and proliferation of extrathymic Treg cells. Additionally, they

suppress the expression of LPS-induced inflammatory cytokines

such as IL-6, IL-12, and p40, thereby reducing the production of

autoantibodies. Furthermore, these acids enhance and sustain the

integrity of the intestinal epithelial barrier function in lupus-prone

animals (57, 133, 134).
4.2 Microbiota and rheumatoid arthritis

The gut microbiota composition in early RA patients differs

significantly from that of healthy individuals, characterized by a

significant reduction in Bifidobacterium and Bacteroides families

and a notable increase in Prevotella species (135–137). These

distinctions suggest a potential contribution of the gut microbiota-

host interaction to the onset and progression of RA. However, the

precise mechanism remains unclear. Recent studies propose that the

influence of the gut microbiota on RA might involve various

mechanisms, including the activation of antigen-presenting cells,

production of citrullinated peptides through interactions with Toll-

like receptors (TLRs) or NOD-like receptors (NLRs), induction of

antigen-mimicking cross-reactivity, alterations in the intestinal

mucosal permeability, and the promotion of Th17 cell-mediated

inflammation in the mucosa (138, 139) (Figure 1).

Citrullinated peptides, formed when arginine residues are

converted into citrullinated residues by protein arginine

deiminase (PAD), can disrupt immune tolerance and trigger

autoimmune reactions in individuals genetically predisposed to

RA under specific conditions (140–142). The gut microbiota

dysregulation may compromise PAD function, impacting

immunological tolerance and contributing to autoimmune

diseases (138, 143–145). Additionally, the gut microbiota itself

can encode bacterial PAD enzymes, facilitating citrullination (146,

147). Different species of Prevotella play varying roles in RA.

Overcolonization of Prevotella copri (P. copri) might intensify

mucosal inflammation and induce immune responses, potentially

leading to arthritis (138). P. copri can also compromise the

intestinal barrier integrity by disrupting the tight junctions (TJs)

between intestinal epithelial cells, facilitating disease occurrence

(139, 148). Conversely, Marietta et al. have demonstrated that

Prevotella histicola (P. histicola) can prevent and treat collagen-

induced arthritis (CIA) in HLA-DQ8 transgenic mice by boosting

Treg cells, suppressing Th17 responses, enhancing IL-10 release,

and stabilizing the intestinal barrier (102) (Table 2, Figure 1).

Various strains of Lactobacillus casei (L. casei) in preclinical

studies have shown efficacy in treating RA, including reducing joint

swelling, arthritis scores, and serum inflammatory cytokine levels,

highlighting probiotics’ potential in RA remission (103, 149, 150).
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Additionally, the interplay between periodontal disease and RA

involves shared pathogenic mechanisms and immunological

pathways. RA patients often display elevated antibody levels

against Porphyromonas gingivalis (P. gingivalis) and Prevotella,

with P. gingivalis antibodies correlating with the levels of RA-

specific anti-CCP antibodies (151, 152).

The enzyme PAD from P. gingivalis in periodontal disease

can citrullinate human fibrinogen and a-enolase. Antibodies

generated against these citrullinated antigens may cross-react

with joint antigens, exacerbating RA-related inflammation (153).

Researchers are actively exploring strategies to mitigate microbial

self-antigen cross-reactivity and curb excessive citrullination,

aiming to develop microbiota-based treatments for RA.
4.3 Microbiota and Sjögren syndrome

SS is one of the most prevalent autoimmune diseases, primarily

affecting the lacrimal and salivary glands. The precise pathogenesis of

SS remains largely unknown. Dysfunction of T cells and B cells play a

critical role in the onset and progression of SS (154, 155). An

imbalance, marked by an increase in Th17 cells and a decrease in

Treg cells, can prompt lymphocyte infiltration, epithelial cell

activation, enhanced proinflammatory cytokines production (e.g.,

IFN-g and IL-17), exposure to autoantibodies, and damages to the

corneal barrier, contributing to the development of SS (156–158).

Furthermore, Th1 cells, known contributors to the pathogenesis of

SS, partake in ocular inflammation by secreting pro-inflammatory

cytokines like IFN-g, IL-1b, IL-6 and TNF-a (159). Elevated

expression of B cell activating factor (BAFF) is mainly induced by

type I and type II interferons (IFN) (160). Significantly elevated levels

of BAFF in the peripheral circulation and the salivary gland tissues

have been observed in 55% of SS patients, highlighting increased B

cell activation in SS (154, 161). A significant reduction in the

diversity of the gut microbiota has been reported in SS patients,

characterized by diminished symbiotic bacteria and increased

potentially pathogenic strains, positively correlated with disease

severity (158). Fecal transplantation (FMT) effectively ameliorates

ocular symptoms in germ-free (GF) mice with SS, highlighting the

strong link between gut microbiota and SS pathogenesis (162–164).

The protective role of the gut microbiota in SS operates through two

main mechanisms (Figure 1). Firstly, microbiota-produced

metabolites like SCFAs exert anti-inflammatory properties,

alleviating ocular inflammation (165–167). Secondly, the gut

microbiota plays a critical role in regulating the development,

differentiation and activation of ocular immune cells, effectively

modulating the balance between pro-inflammatory Th17 cells and

anti-inflammatory Treg cells (109, 165, 168). As a result, strategies

aiming at maintaining microbial balance may hold promise for

effective biological prevention approaches for SS.
4.4 Microbiota and T1DM

T1DM emerges from a multifaceted autoimmune process,

characterized by the T-cell-mediated destruction of insulin-
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producing b-cells. It is the most commonly diagnosed diabetes in

young population, while the incidence of T1DM in adult has also

increased rapidly in the past 15 years (169, 170). More and more

evidence provide supports that the composition of the gut

microbiota, as an environment factor, is different between diabetes

patients and healthy individuals. Bacteroidetes has been recognized as

the most common microbial phylum in T1DM patients, while the

number of butyrate-producing species from Clostridium clusters IV

and XIVa, as well as mucin-degrading bacteria such as Prevotella and

Akkermansia in T1DM patients has significantly reduced (171). The

importance of butyrate in preserving the integrity of the intestinal

mucosal barrier has been highlighted (172) (Figure 1). The reduction

in butyrate-producing bacteria leads to increased gut permeability.

And it will allow the passage of microbial antigens, products, and

even the microorganisms themselves, which may promote

the inflammation and the progression of T1DM (173, 174). In

addition to this, there are many kinds of microbiota that can have

an impact on the development of disease. An increase in the gut

microbiota and abundance of Firmicutes was observed in non-obese

diabetic (NOD) mice fed with human lacto-oligosaccharide, helping

to inhibit islet inflammation and diabetes (175). Although Prevotella

has been associated with the development of chronic inflammatory

diseases by augmenting mucosal Th17-mediated immune responses,

it has also been established that Prevotella play a role in protecting

against Bacteroides-induced glucose intolerance, promoting glycogen

storage, and enhancing glucose metabolism (176, 177). When

transplanting human amniotic mesenchymal stem cells (hAMSC)

into T1DMmice, scientists noticed that the therapeutic effect of MSC

strongly depends on the modification of the beneficial gut microbiota,

including Bifidobacterium, Providencia, Veillonella, and Prevotella,

indicating the significant role of the gut microbiota in alleviating

symptom and controlling the development of T1DM (178). Except

for forming the intestinal mucosal barrier, the metabolic products of

the gut microbiota, such as tryptophan derivatives and SCFAs, also

regulates intestinal immunity. SCFAs protect NOD mice from

insulitis and slow down the development of T1DM by inhibiting

inflammatory responses and the accumulation of IFN-g+T cell in the

pancreas (179, 180). As the precursor of SCFAs and an important by-

product, intracellular succinic acid could activate intestinal

gluconeogenesis positively to regulate gluconeogenesis and blood

glucose levels (181, 182). Hence, clinical treatments based on the

gut microbiota show promise in maintaining intestinal homeostasis,

slow down disease progression, and even reverse T1DM.
4.5 Microbiota and ulcerative colitis

UC is a kind of IBD characterized by unpredictable and chronic

clinical symptoms, with alternating periods of exacerbation and

remission (183). Based on next-generation sequencing technique,

scientists have found reduced bacterial diversity and imbalance

between beneficial and aggressive bacteria in UC cases (184).

Species from the Proteobacteria including E. coli, Enterobacteriaceae,

Klebsiella, and Proteus spp., as well as members from Fusobacteria,

could enhance inflammatory response and aggravate symptoms, and

have been demonstrated to be positively associated with UC (185–
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188). The microbial metabolites also vary between UC patients and

the healthy. SCFAs plays an important role in suppressing intestinal

inflammation (34, 189). SCFAs could also induce the production of T-

cell-dependent IgA and maintain mucosal homeostasis by regulating

the localization of commensal bacteria (190). It has been determined

that acetic acid and butyric acid in feces of UC patients were lower

than those in the healthy individuals (191). Taken together, all of the

changes reveal the close relationships between the gut microbiota and

the development of UC (Figure 1). However, given the individual

phenotypic differences in the gut microbiota, it is still necessary to

further study the exact effect mechanisms between individual

microbiota and the host (192).
4.6 Microbiota and psoriasis

The pathogenesis of psoriasis is complex and not very clear. For

now, Th17/IL-23 axis has been established as a crucial

immunological mechanism in the development of psoriasis, which

is also the basis of biologics treatment (193–195). The gut microbiota

and their metabolites could adjust the balance between immune

tolerance and inflammation, such as acting on differentiation of

naïve T cells into either regulatory or Th17 lineages, so that affecting

the progression of psoriasis (168) (Figure 1). It has been found that

the gut microbiota has impact on the manifestation of the psoriatic

phenotype through a Th17-mediated T-cell response on imiquimod-

induced mouse models; meanwhile, germ-free mice or

conventionally housed mice treated with antibiotics showed

protective effect on skin (196) (Figure 1). Scientists also noticed an

interesting phenomenon that the gut microbiota dysbiosis in

psoriasis patients is similar to those of IBD, both with reduced

Eubacterium rectale (E. rectale), Alistipes finegoldii (A. finegoldii) and

Alistipes shahii (A. shahii) species (197–200). Based on this

consistency, using probiotics to restore the gut microbiota

homeostasis and reduce inflammation to achieve therapeutic

purpose for psoriasis is possible. Probiotic could suppress the

expression of TNF−a, IL−6 and proinflammatory cytokines in the

IL−23/IL−17 cytokine axis and enhance gut barrier function to

prevent further infection (201). In another case, patients with

severe pustular psoriasis showed obvious clinical improvement

within 2 weeks after applying Lactobacillus sporogenes

supplementation 3 times per day, and almost get remission after 4

weeks (202).

In this manuscript, our focus was directed towards examining

the involvement of certain prevalent autoimmune diseases of the

gut microbiota, including SLE, RA, SS, T1DM, UC, and psoriasis.

However, diseases such as multiple sclerosis (MS), autoimmune

thyroid disease (AITD), celiac disease (CeD), among others, were

not addressed. Further research is warranted to explore the

underlying mechanisms governing immune disorders.
5 Conclusions and prospects

The interaction between human microbiota and the host plays a

crucial role in maintaining health and influencing disease onset.
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The complex relationship encompasses multiple facets, with

microbiota and their metabolites wielding significant influence

over host inflammation and immune responses. The gut

microbiota participates in regulating immune cell proliferation,

differentiation, activation, intestinal permeability, and the

integrity of mucosal barriers. Probiotics have emerged as a

promising strategy for managing autoimmune diseases, such as

SLE and RA. They operate by promoting a healthy gut microbiota

and fostering a balanced interaction with the host’s immune system.

However, further investigations are warranted to identify specific

biomarkers that can accurately distinguish between healthy and

compromised microbiota states. Additionally, understanding how

microbiota and their metabolites impact normal balanced states

versus inflammatory conditions, and discerning potential

differences between effects on mucosal surfaces and systemic

tissues, remains crucial. In-depth studies investigating the role of

microbiota in autoimmune diseases provide insights into the

underlying mechanisms of diseases. These insights may reveal

prominent diagnostic markers and therapeutic targets, ultimately

help us to understand the pathogenesis of autoimmune diseases and

explore novel diagnostic and therapeutic strategies.
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