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3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by

all known picornaviruses, and their structures are highly conserved. In the

process of picornavirus replication, 3D polymerase facilitates the assembly of

replication complexes and directly catalyzes the synthesis of viral RNA. The

nuclear localization signal carried by picornavirus 3D polymerase, combined with

its ability to interact with other viral proteins, viral RNA and cellular proteins,

indicate that its noncatalytic role is equally important in viral infections. Recent

studies have shown that 3D polymerase has multiple effects on host cell

biological functions, including inducing cell cycle arrest, regulating host cell

translation, inducing autophagy, evading immune responses, and triggering

inflammasome formation. Thus, 3D polymerase would be a very valuable

target for the development of antiviral therapies. This review summarizes

current studies on the structure of 3D polymerase and its regulation of host

cell responses, thereby improving the understanding of picornavirus-mediated

pathogenesis caused by 3D polymerase.
KEYWORDS

picornavirus, 3D polymerase, virus replication, nuclear localization signal, interactions,
innate immunity
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365521/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365521/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365521/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1365521&domain=pdf&date_stamp=2024-04-02
mailto:chenganchun@vip.163.com
https://doi.org/10.3389/fimmu.2024.1365521
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1365521
https://www.frontiersin.org/journals/immunology


Xu et al. 10.3389/fimmu.2024.1365521
1 Introduction

Picornaviruses represent one of the largest virus groups and

include several important human and animal pathogens, such as

poliovirus (PV), coxsackievirus (CV), enterovirus (EV), rhinovirus

(RV), encephalomyocarditis virus (EMCV), and foot-and-mouth

disease virus (FMDV) (1). To date, the family Picornaviridae

consists of 158 species grouped into 68 genera (as of March 2022),

such as Enterovirus, Hepatovirus, Cardiovirus and Aphthovirus (2, 3).

The members of the Picornaviridae family are small,

nonenveloped RNA viruses. The picornavirus virion has a

symmetrical icosahedral spherical structure with an approximate

diameter of 20-40 nm (4–6). The viral genome is a single-stranded,

positive RNA strand approximately 6.7-10.1 kb in length that

consists of an open reading frame (ORF), a highly structured 5′
untranslated region (5′ UTR), and a 3′ untranslated region (3′
UTR) with a [poly(A)] tail (Figure 1) (9). The viral genome-linked

protein 3B (also known as VPg) is covalently bound to the 5′ end of

the positive-sense RNA (10). The 5′ UTR harbors an internal

ribosomal entry site (IRES) that recruits ribosomes and other host

factors and mediates cap-independent translation (11, 12). The

ORF initially encodes a single polyprotein that is co and

posttranslationally cleaved by viral proteases to release the capsid

proteins VP0, VP1, and VP3 and nonstructural proteins (2A, 2B,

2C, 3A, 3B, 3C, 3D), as well as some stable precursors, such as 3AB

or 3CD, that are essential for the replication of viral RNA (13–15).

Recently, a second ORF termed the upstream ORF (uORF) was

identified in enteroviruses (16). Some genera of picornaviruses,

such as Aphthoviruses and Cardioviruses, also have a leading

conductor (L) protein at the N-terminus of the polyprotein (17).

This review mainly focuses on 3D polymerase (3Dpol).

The picornavirus 3Dpol, also known as RNA-dependent RNA

polymerase (RdRp), is responsible for genome synthesis (18, 19).

3Dpol becomes active upon cleavage of the precursor 3CD protease
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(3CDpro) (7, 20). Previous studies have yielded a very good

understanding of the 3Dpol structure and fundamental molecular

mechanism for catalysis (21). The N-terminal region of 3Dpol acts as

a nuclear localization signal (NLS), which is involved in nucleotide

recognition and affects the incorporation of nucleotide analogs,

suggesting the multifunctionality of the picornavirus polymerase

domains (22). In addition, recent studies have revealed novel

mechanisms for picornavirus invasion of host cells involving

multiple previously undiscovered functions of 3Dpol that differ from

its traditional role in viral replication. For example, EV71 3Dpol can

enter the cellular nucleus through the NLS to associate with the core

splicing factor pre-mRNA processing factor 8 (Prp8), affecting the

normal function of Prp8 during the second catalytic splicing step,

leading to the inhibition of pre-mRNA splicing, the accumulation of

the lariat form, and a decrease in the resulting mRNA; or it can

facilitate viral and host translation by forming complexes with small

and large subunits of ribosomes (23, 24) (Figure 2B); 3Dpol also

functions as an antagonist against the host innate immune response

(25–27). In this review, we summarize the general structural features

and functions of 3Dpol and discuss the role of 3Dpol in regulating virus

−host interactions to promote viral replication.
2 Structural features of the
picornavirus 3Dpol

2.1 Overall 3Dpol structure

Following the first report of the complete crystal structure of PV

3Dpol in 2004 (8), crystal structures of 3Dpol from HRV (28) and

FMDV (29) were reported in succession. To date, there are several

viral RdRp structures in the Protein Data Bank (PDB,

www.wwpdb.org) related to different picornaviruses, including

PV, CVB3, EV71, HRV, EMCV, and FMDV (21). Like other
A

B

FIGURE 1

Schematic representation of the EV71 structure and genome structure of the virion. (A) Structure of the EV71 (6). EV71 is a small (circumference
around 30 nm), non-enveloped, icosahedral particle that contains a single-stranded, positive-sense, polyadenylated virus RNA of approximately 7.4
kb (6). (B) The diagram demonstrates the EV71 genome structure. All the structural proteins are encoded by the P1 region (yellow) of the genome.
The P2 (purple) and P3 (green) regions encode seven non-structural proteins—2A–2C and 3A–3D. The last part of the polyprotein is 3Dpol, the RNA-
dependent RNA polymerase that is active only upon cleavage of the 3Cpro–3Dpol junction (7, 8).
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DNA and RNA polymerases, the crystal structure of the

picornavirus 3Dpol resembles a cupped right hand, with three

defined subdomains, termed the thumb, fingers and palm

(Figures 3A, B) (8, 28, 29, 31–33). The finger domain can be

further divided into distinct substructures that are sometimes

referred to by the anatomical analogy of the index, ring, middle,

and pinky domains. The thumb domain interacts with the finger

domain to “close” the hand and envelops the active site, forming an

NTP entry channel behind the RdRp (8, 28, 29, 31–33). The palm

subdomain, consisting of two a spiral and five b-barrel domains

(29), is the catalytic region of 3Dpol with a GDD-3 amino acid active

site shared by all RdRps, and can bind Mg2+ and locate NTP

substrates (34). In addition, 3Dpol contains seven conserved motifs

(A to G) that play key roles in rNTP substrate recognition,

template/primer binding and catalysis (35). Currently, available

data provides high-resolution pictures for a range of

conformational states associated to template and primer

recognition, VPg uridylylation, rNTP recognition and binding,

catalysis and chain translocation (36). These structural

information provide insights into both initiation of RNA

synthesis and the replication elongation processes in picornavirus
Frontiers in Immunology 03
(37, 38). The increased understanding of polymerase structure

could help explore possible ways of vaccine development.
2.2 Nuclear localization signal

The picornavirus 3Dpol primarily replicates in the host

cytoplasm, but 3Dpol/3CDpro can enter the nucleus in virus-

infected cells (39–41). Previous studies have shown that PV 3Dpol

and 3CDpro enter the nucleus through a single basic type of nuclear

localization signal (NLS), KKKRD, which spans 125–129 amino

acids (aa) within 3Dpol (40, 41). The putative NLS is partially

contained within the KKRD sequence (126–129 aa), which is

typical among all known picornaviral 3Dpol (40, 42). However,

these motifs are not completely reiterated in the other members of

this family. In contrast, a NLS (15PRKTALRP22 in EMCV), similar

to that in many yeast ribosomal proteins (43), was identified near

the N-terminus of the EMCV 3Dpol sequence (44). An NLS similar

to that of EMCV was also found in the 3Dpol of HRV16, FMDV and

duck hepatitis A virus type 1 (DHAV-1) (30, 45, 46). By comparing

the 3Dpol amino acid sequences, we found that NLSs within 3Dpol
A

B

FIGURE 2

Roles of 3Dpol in cell cycle and cell translation. (A) Picornavirus 3Dpol induces cell cycle arrest. Red arrow represents “Upregulate”, and red vertical
symbols represent “Inhibit”. (B) Schematic model of 3Dpol-mediated effects on cellular translation. EV 71 3Dpol could enhance EV-A71 IRES-
dependent translation as well as cap-dependent translation by interacting with small and large subunits of ribosomes. Partially, 3Dpol also enters the
nucleus and interacts with the core splicing factor Prp8, which interferes with the function of Prp8 in the C1-complex. The interference of the Prp8
function inhibits the second step of the splicing process and results in the accumulation of the lariat form and a reduction in mRNA synthesis. Red
bidirectional arrows represent “Interact”. The figure was modified from (24).
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were mainly divided into two types: single basic NLSs, KKRDs, and

other NLSs, which are similar to those found in several yeast

ribosomal proteins, G/P(KR)3X1-4[G/P] (Figure 3C). Because

studies have shown that the virus-encoded 3C protease (3Cpro)

cleaves transcription factors at glutamine–glycine sites and is

directly responsible for host cell transcription shut-off, it is likely

that 3Cpro must enter the nucleus of infected cells as is or in the

form of a precursor (47). These data suggest that the NLS present

within 3Dpol plays a role in the nuclear entry of precursor 3CD or

3BCD. This mechanism may be a common feature of picornavirus

infections (48–50).
Frontiers in Immunology 04
NLS sequences have functions other than facilitating the

entry of viral proteins into the nucleus. The 16MRKTKLAPT24

sequence in 3Dpol of FMDV was identified as an NLS, and

substitutions at the K18 or K20 residues resulted in two

conformational changes that reduced 3Dpol binding to RNA (22);

moreover, K18 and K20 were demonstrated to be essential for virus

proliferation (45). In addition, the T19 and L21 residues are

important for maintaining the fidelity of FMDV RdRps and

ensuring faithful replication of the FMDV genome (51). Thus, the

role of this class of NLS motifs in picornavirus viral polymerases

needs to be revisited.
A

B

C

FIGURE 3

Genome and structure of picornavirus 3Dpol. (A) Cartoon and surface representations of EV71 3Dpol (Protein Data Bank: 3N6L) in three different
orientations. The structure resembles a cupped right hand composed of palm, fingers, and thumb domains; an index finger (residues 1-68) in yellow;
a middle finger (270–286) in canyon; a ring finger (150–179) in green; a pinky finger (96–149, 180–190) in pink; a palm (191–269, 287–381) in gray;
a thumb (382–462) in purple; and a GDD active site (328–320) in magenta. Bar representation of the 3Dpol sequence colored according to the
structural elements are shown in (A). (B) 3Dpol structures of CVB3 (PDB: 3DDK), HRV14 (PDB: 1XR5), PV (PDB: 2ILY), EMCV (PDB: 4NYZ) and FMDV
(PDB: 1U09) are shown, and all of them exhibit a very high degree of structural homology. (C) Localization of the putative nuclear localization
sequence (NLS) on picornavirus 3D sequences. Alignment of the amino acid sequences corresponding to the 3D amino termini from PV, CV, EV, RV,
EMCV and DHAV-1. The single basic NLS KKRD (I) and the consensus NLS found in several yeast ribosomal proteins, G/P(KR)3X1-4[G/P] (II), are
indicated (30).
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2.3 RNA structure in the 3Dpol-
coding region

The genomes of RNA viruses often contain RNA structures that

are crucial for translation and RNA replication and may play

additional roles during the viral replication cycle (52–55). For

picornaviruses, within the ORF, several RNA structures have been

identified. The cis-acting replication element in the 2C coding

region (2C-CRE), which acts as a template for uridylylation of the

VPg (3B) protein (56, 57), and an RNA structure carried in the

3Cpro ORF that potently inhibits the endonuclease activity of RNase

L (an antiviral endoribonuclease) have been identified (58, 59). In

addition, in the PV genome, two stem loops (referred to as loops a
and b) within the coding region of 3Dpol that are important for

proper RNA synthesis during viral infection have been identified

(54, 60). Previous studies have further shown the existence of a

novel functional interaction between these RNA structures in the

3Dpol-coding region and the viral protein (s) 3Cpro and/or its

precursor 3CDpro (54). Three of the RNA structures (ORF-SL51,

ORF-SL52, and ORF-SL53) within the coding region of FMDV

3Dpol have also been identified, and they are critical for efficient

replication of the FMDV replicon (61). Thus, the RNA structures

formed by those genomic regions may play a functional role in the

picornavirus replication cycle.
3 Posttranslational modifications
of 3Dpol

Ubiquitination and SUMOylation are widely studied

posttranslational modifications (PTMs) that play critical roles in
Frontiers in Immunology 05
diverse biological processes (62, 63). The ubiquitin–proteasome

system (UPS) also plays an important role in the different steps of

the viral life cycle (64–66). The mechanisms by which the UPS

regulates viral infection include the degradation of intracellular

proteins or excess viral proteins and the modulation of viral protein

function through ubiquitin-mediated modification or direct

encoding of ubiquitin-related enzymes (67). An increasing

number of studies have suggested that various viruses evolve

different mechanisms to utilize or manipulate the host UPS for

their own benefit (68–71). For picornaviruses, studies have shown

that the UPS may regulate CVB3 replication through ubiquitinating

viral 3Dpol, which is essential for initiating viral RNA replication

(72). In addition, Senecavirus A (SVA) 3Dpol is ubiquitinated by

UBE2L6, an E2 ubiquitin-conjugating enzyme, and this

ubiquitination serves to inhibit the degradation of 3Dpol, thereby

facilitating SVA infection (73) (Figure 4). Normally, the interplay

between SUMOylation and ubiquitination often involves the

stability of the target protein (76–78). EV71 3Dpol was modified

by small ubiquitin-like modifier 1 (SUMO-1) both during infection

and in vitro, and 3Dpol was ubiquitinated in a SUMO-dependent

manner to enhance the stability of the viral polymerase (74).

Moreover, residues K159 and L150/D151/L152 were found to be

responsible for 3Dpol SUMOylation, and mutation of SUMOylation

sites impaired 3Dpol activity and virus replication. Similarly, Hao

et al. reported that the m6A methyltransferase METTL3 interacts

with EV71 3Dpol and induces SUMOylation and ubiquitination of

3Dpol, which boosts viral replication (75) (Figure 4). SUMOylation

and ubiquitination of viral polymerases have been reported not only

in picornaviruses but also in other viral families, such as

nonstructural protein 5 (NS5) of dengue virus (79) and

polymerase basic protein 1 (PB1) of influenza virus (80). Recent
FIGURE 4

Ubiquitination and SUMOylation of 3Dpol. (1) UBE2L6 interacted with SVA 3Dpol and mediated K48/K63 chains to improve the stability of 3Dpol (73).
(2) EV71 exploit the cross talk of SUMOylation and ubiquitination to stabilize the 3Dpol and enhance viral replication. SUMOylation and ubiquitination
may share the same lysine residues and that 3Dpol was ubiquitinated in a SUMO-dependent manner (74). (3) METTL3 interacted with EV 71 3Dpol and
increased K63-linked ubiquitination and SUMOylation of the 3Dpol that boosted viral replication (75). Figure adapted from (73).
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studies have characterized the alterations in UPS-dependent protein

homeostasis during infection with CVB3 and demonstrated that the

activity of the proteasome is exploited for the processing of viral

precursor proteins (81). Furthermore, both the viral 3Cpro and the

viral 3Dpol have been reported to be subjected to UPS-dependent

proteolysis. This may be a strategy used by picornaviruses to

maintain the proper balance of the expression levels of these two

viral proteins to prevent premature cell death and ensure effective

viral replication.

Studies have proposed that SUMOylation and ubiquitination at

specific 3Dpol sites contribute to maintaining the cellular level of

3Dpol and that corresponding deSUMOylation and deubiquitination

may be necessary for 3Dpol to restore polymerase activity since, when

3Dpol is responsible for RNA genome replication, it is free of

SUMOylation (74). These findings imply that the 3Dpol of

picornaviruses exploits host cell modifications for efficient

replication, revealing potential targets for antiviral therapy.
4 Roles of 3Dpol in
picornavirus replication

The picornavirus 3Dpol plays a critical role in viral genome

replication by catalyzing different steps of viral genomic RNA

replication, from primer synthesis (VPg-uridylylation) to viral

RNA synthesis and polyadenylation of progeny genomic RNA.

The first step in picornavirus genome replication is uridylylation

of VPg. In this process, 3Dpol catalyzes the covalent attachment of

two uridine monophosphate (UMP) molecules to the hydroxyl

group of tyrosine 3 (Y3) of VPg and generates VPg-pUpU-OH,

which serves as a primer to initiate the replication process (82–84).

This process has been extensively studied in different members of

the Picornaviridae family (37, 85–90), and detailed information can

be found in this Review (90). Subsequently, 3Dpol catalyzes the

synthesis of viral negative- and positive-sense RNA within the

replication complex (RC) (91). In addition, to ensure genome

integrity, a variable poly(A) tail is regenerated on the 3′ UTR end
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of newly synthesized viral RNAs during each round of viral

replication (92–94). The length of poly(A) affects viral mRNA

translation and RNA replication (95, 96). Previous studies have

shown that virus replication can be severely impaired when the poly

(A) tail is curtailed to 14 or 12 adenines or less (96–98). Alanine

mutations in PV 3Dpol change the sizes of poly(A) tails in virion

RNA, suggesting that 3Dpol is primarily responsible for the sizes of

poly(A) tails (99–101).

Picornavirus infection induces the redistribution and

rearrangement of cytoplasmic organelles to form membrane-bound

structures that contribute to viral RNA replication; these structures

are known as replicating organelles (ROs) (102–106). ROs may

originate from Golgi membranes or the endoplasmic reticulum

(ER) and contain host factors such as the lipid kinase PI4KB (also

called PI4K IIIb) as well as viral proteins, including 3A and 3Dpol

(104, 107–109), which are thought to protect viral RNAs from RNase

degradation or cellular RNA sensor detection (110–112). Increasing

evidence suggests that proteins of picornaviruses hijack host factors

involved in membrane trafficking and biosynthesis pathways to

promote efficient viral genome replication (102, 113). Membrane-

associated protein 3A (114) recruits PI4KB to the replication site

through interaction with acyl-CoA binding domain containing 3

(ACBD3) (107, 108). PI4KB then catalyzes the formation of a

phosphatidylinositol 4-phosphate (PI4P)-rich microenvironment

that facilitates the recruitment of 3Dpol (102, 108).

Viral nonstructural proteins and their precursors, such as the

3A and 2BC proteins, contain hydrophobic regions that interact

extensively with cell membranes and assemble to form RCs with

cellular proteins and viral RNAs on the RO surface (112, 115).

However, since picornavirus 3Dpol is a soluble protein with no

obvious membrane-binding region, 3Dpol can be recruited to

complex only by protein–protein or protein–RNA interactions

(87). As shown in Figure 5, four methods for recruiting 3Dpol to

the RO surface have been described in existing studies: i) 3AB, a

small basic protein with biochemical properties similar to those of

membrane proteins (117), interacts with 3Dpol through its VPg

domain and recruits 3Dpol to the RC (117–121); ii) the PI4P lipid-
A B

FIGURE 5

3Dpol is recruited to the surface of the lipid bilayer to promote RC formation. (A) Upon infection, synthesis of the 3A protein leads to remodeling of
the Golgi/TGN and the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) into replication organelles (ROs). PI4P lipids are indicated
by red ovals. The enrichment of PI4P in these ROs promotes the binding of 3Dpol or 3CD to the membrane, which in turn facilitates the assembly of
replication complexes (RCs) and the synthesis of viral RNA. (B) Four methods for recruiting 3Dpol to the surface of the lipid bilayer. The red
bidirectional arrows represent interactions between viral and host proteins. The figure was modified from (105, 116).
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rich microenvironment promotes the recruitment and stabilization

of the 3Dpol membrane (102, 122); iii) negatively charged lipids

cooperate with membrane-anchored 3B to recruit the 3Dpol enzyme

(116); and (iv) host proteins recruit 3Dpol by interacting directly

with 3Dpol. Annexin A2 (ANXA2), which is localized on ROs,

interacts with PI4KB, promotes the interaction of EV71 3Dpol with

PI4KB and forms a higher-order protein complex with 3Dpol

and PI4KB located in ROs (122). EV71 3Dpol interacts with host

UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1), a key

ER protein involved in the unfolded protein response (UPR),

to promote the formation of RCs on cellular membranes

that enhance viral RNA synthesis (123). In addition, upon

infection, the lysosomal tethered Ragulator-Rag complex

promotes EV71/CVA16 replication by recruiting viral 3Dpol to

the lysosomal surface through the interaction between 3Dpol and

RagB (124). 3Dpol, as part of a replication complex of 3A and several

other viral proteins, subsequently initiates RNA synthesis at

these membranes.

Interestingly, recent studies have shown that the CCT8, DBN1,

IQGAP1 and ELMO2 proteins are involved in the regulation of

cytoskeleton assembly and interact with EV71 3Dpol, suggesting

that viral 3Dpol may also play a role in cytoskeletal rearrangement

during infection (23).
Frontiers in Immunology 07
5 Regulation of host cell responses
by 3Dpol

Viruses have developed sophisticated mechanisms to

manipulate host cellular pathways to facilitate viral replication

and evade host defenses. In recent years, an increasing number of

researchers have focused on the functions of 3Dpol (other than that

of a RdRp) during viral infections. 3Dpol acts on host cells through

interactions with host proteins and plays an important role in

inducing cell cycle arrest (Figure 2A), regulating host cell

translation (Figure 2B), inducing apoptosis and autophagy,

evading immune responses (Figure 6), and activating the NLRP3

inflammasome (Figure 7). 3Dpol promotes the replication and

proliferation of these viruses by regulating these responses.
5.1 Induction of cell cycle arrest and
regulation of cellular translation

As part of their pathogenic mechanism, many viruses create a

favorable environment for viral replication by manipulating the

host cell cycle (130–133). The cell cycle is divided into a stationary
FIGURE 6

Roles of 3Dpol in subverting host innate immunity. ①The RIG-I/MDA5/LGP2-MAVS pathway recruits downstream adaptors, including tumor necrosis
factor (TNF) receptor-associated factor 3 (TRAF3), TRAF6, and the TRAF family member-associated NF-kB activator (TANK), to directly induce the
TBK1-IKKϵ-NEMO complex. These signaling cascades lead to the phosphorylation of interferon regulatory factors (IRFs) and NF-kB in the nucleus,
where they promote the expression of interferons (IFNs), interferon-stimulated genes (ISGs) and proinflammatory cytokines (125). ②NOD2 signaling
induces the activation of MAVS and the IKKa-IKKb-NEMO complex. ③IFNs bind to IFN-a/b receptors (IFNARs), activating the Janus kinase-signal
transducer and activator of transcription (JAK/STAT) pathway to amplify IFN production (126). Moreover, (i) PGAM5 affects mitochondrial
morphology and affects the expression of MFN2, and MFN2 binds to MAVs to inhibit the RIG-I-like signaling pathway; (ii) Beclin-1 is a negative
regulator of the RIG-I-MAVS-mediated IFN response. Figure adapted from (127).
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G0 phase, interphase (G1, S and G2 phases), and a mitotic phase (M

phase) (Figure 2A). Typically, the cell cycle is controlled by the

binding of cyclin-dependent kinases (CDKs) to the corresponding

cyclin regulatory subunits (134, 135). Cyclin E/CDK 2 is responsible

for regulating cellular S-phase entry from G1 (136), cyclin A/CDK 2

regulates S-phase progression by replacing cyclin E (137, 138), and

cyclin B/CDK 1 is involved in the mitotic process (139). Previous

studies have indicated that the cell cycle affects picornavirus

replication (140, 141). Studies using cell cycle inhibitors have

revealed that cell cycle arrest at the G1 or G1/S phase could

promote viral replication of CVB3 (142) (Figure 2A). In contrast,

protein expression and virus yield were significantly reduced after

cell cycle arrest in the G0 and G2/M phases (142). The expression of

EV71 3Dpol increased the expression of cyclin E and

phosphorylated CDK2 T160, which promoted S-phase entry,

thereby facilitating viral production (143). In addition,

coxsackievirus A16 (CA16)-induced S-phase arrest of the host cell

cycle was also observed (143). However, the expression of CVA6

3Dpol induced cell cycle arrest in the G0/G1 phase, which promoted

CVA6 replication and viral production (144). Surprisingly, EV71,

CA16, and CVA6 all belong to the family Picornaviridae and cause

hand, foot, and mouth disease; however, there are significant

differences. Perhaps these viruses employ different strategies to

promote their replication, which leads them to have different

characteristics, such as clinical symptoms and epidemiological

scopes (144). In addition, EV-D68 3Dpol was found to induce cell

cycle arrest at the G0/G1 phase (145), DHAV-1 infection-induced

cell cycle arrest in duck embryo fibroblasts (DEFs) in the S phase,

and both the S phase and G0/G1 phase synchronization facilitated

the replication of DHAV-1 (146). These results suggest that

inducing cell cycle arrest in the S or G0/G1 phase and promoting

viral replication are common strategies for picornaviruses.
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Translation of most eukaryotic mRNAs is facilitated by a 5′ cap,
a structure absent from picornavirus mRNA, which instead

contains an IRES. Cap-dependent translation of cellular proteins

is most robust during the G1 phase but is impaired at mitosis (142).

Picornavirus IRESs evolved to operate in the G1 phase, a time at

which cap-dependent translation is dominant. Upon infection,

picornavirus caused inhibition of the cap-dependent translation

machinery and utilized host translation machinery for cap-

independent translation of viral proteins mediated by its IRES

element within the 5′-UTR (142, 147, 148). Studies have shown

that 2Apro and 3Cpro cleave eukaryotic initiation factor 4G (eIF4G)

(149–151), eukaryotic initiation factor 4A (eIF4A) (152), and

eukaryotic initiation factor 5B (eIF5B) (153), leading to host cell

translation shutdown. However, it has been reported that EV71

3Dpol can enter the cellular nucleus through the NLS to associate

with the core splicing factor Prp8 (24) (Figure 2B). 3Dpol affects the

normal function of Prp8 during the second catalytic splicing step,

resulting in the inhibition of pre-mRNA splicing and a decrease in

the amount of resulting mRNA (24). In contrast to viral proteases

blocking host transcription and translation mechanisms,

picornaviruses utilize their polymerases to alter cellular gene

expression by hijacking the splicing machinery, which potentially

providing another advantage for virus replication. Interestingly,

another study showed that EV71 3Dpol directly increases EV71

IRES-dependent translation as well as cap-dependent translation.

3Dpol, encoded by EV71, can interact with ribosomal proteins to

form complexes with small and large subunits of ribosomes and

activate viral and host translation (23) (Figure 2B). Since cellular

factors known as ITAFs may regulate IRES-mediated translation

initiation, 3Dpol increases the expression of these cellular proteins

by facilitating host translation, favoring viral replication (130, 154).

It is conceivable, therefore, that virus-induced cell cycle block may
FIGURE 7

Picornavirus 3Dpol regulates inflammasome activation. The NLRP3 inflammasome is an oligomeric complex composed of the NOD-like receptor
NLRP3, the adaptor protein ASC, and the effector protein pro-caspase-1 (128). 3D regulates inflammasome activation by inducing NF-kB activation,
interacting with NLRP3 to facilitate NLRP3-ASC assembly or inducing calcium influx and potassium efflux. Figure adapted from (129).
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create an environment favorable for viral replication, which could

then maximize virus production by manipulating the host cell

translation devices.
5.2 Regulation of autophagy

Viruses have been shown to employ autophagic machinery to

replicate and survive during the infection process (155–157). Recent

studies have revealed a distinct mechanism by which EV71 induces

apoptosis and autophagy in neural cells (158). EV71 3Dpol interacts

with the peroxisomal protein acyl-CoA oxidase 1 (ACOX1),

attenuates ACOX1 production, and enhances reactive oxygen

species (ROS), thereby inducing apoptosis and autophagy in

neuronal cells (158). In addition, EMCV 3Dpol induces autophagy

in BHK-21 cells by activating the ER stress pathway, which

ultimately benefits viral replication (159). Furthermore, EMCV-

3Dpol has been demonstrated to regulate proteins associated with

the PERK and ATF6a pathways. Other picornaviruses with similar

structures/sequences to EV71 or EMCV 3Dpol may also have similar

functions; however, further research is needed.
5.3 Regulation of the host cellular
immune response

The innate immune system is the first line of defense against

invading pathogens (160). Upon pathogenic microbial infection,

they are recognized by pattern recognition receptors (PRRs),

leading to the activation of signaling cascades to generate

immune responses (161). Picornaviruses have evolved strategies

to evade the innate immune response, and studies have focused

mainly on the 2A (26, 162, 163), 2B (164–166), and 3Cpro (26, 167).

To date, 3Dpol, essentially known for its significant role in viral

genome RNA replication as a polymerase, has been the subject of

very few studies concerning its action against the antiviral response.

However, previous studies have shown that RdRp can also be

involved in regulating innate immune responses (168, 169). The

regulatory effect of 3Dpol on the host cell immune response mainly

manifests as antagonistic effects (Figure 6).
5.3.1 3Dpol affects RNA sensors
Two cytoplasmic pathogen recognition receptors, melanoma

differentiation-associated gene 5 (MDA5) and retinoic acid-

inducible gene I (RIG-I), have been identified as sensors for

recognizing RNA viruses and stimulating type I IFN expression

(170–172). RIG-I recognizes cytoplasmic 5′ triphosphate single-

stranded RNA with poly (U/A) motifs and short dsRNA, while

MDA5 primarily recognizes long double-stranded RNAs (172–

174). LGP2, the smallest member of the RIG-I-like receptors

family, is pivotal in regulating the signaling pathway through

positive and negative regulation of MDA5 and RIG-I, respectively

(175–179). A recent study has shown that cleavage of MDA5 by the

3Cpro from Theilovirus leads to dysfunction of MDA5 as an innate

immune RNA sensor for IFN induction (180). In addition, FMDV
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3Cpro inhibits MDA5 protein expression as a mechanism to evade

the innate immune response during FMDV infection (181).

RIG-I andMDA5 can sense viral RNA through their C-terminal

domains (CTDs), and their caspase activation and recruitment

domains (CARDs) can interact with CARDs of the downstream

adaptor MAVS to transduce signals (125, 182). Recent studies have

shown that EV71 3Dpol interacts with CARDs of MDA5 and plays a

role in the inhibition of MDA5-mediated beta interferon (IFN-b)
promoter activation and mRNA expression (25). This inhibition

was also detected by using the RdRp activity knockout mutant

(D330A) of EV71 3Dpol, which demonstrated that EV71 3Dpol

inhibits IFN-b promoter activity without interfering with viral RNA

replication. This study also has shown that CVB3 interacts with

MDA5 and downregulates the antiviral signaling initiated by

MDA5 (25). In addition, Sarry, Morgan et, al. found that FMDV

3Dpol interacts with MDA5 and IFN pathway proteins (IKKa,
IKKϵ , IRF3, IRF7, NEMO, and MAVS), which may be

responsible for the inhibitory effect on the IFN pathway induction

phase by FMDV (127). Moreover, studies have shown that DHAV-

1 3CD interacts with RIG-I, interferes with the interaction between

RIG-I and MAVS, and degrades RIG-I protein through the

proteasomal degradation pathway, thereby inhibiting its mediated

antiviral innate immunity to promote DHAV-1 replication (183).

5.3.2 Interference with IFN-mediated signaling
Interferons are cytokines that play a crucial role in regulating

and activating the host innate immune response to viral infection

and limiting viral replication (126, 184). Upon the production and

release of IFNs, the interferon a receptor (IFNAR) is ligated, which

subsequently activates Janus-associated kinase 1/2 (Jak1/2) and

recruits signal transducers and activators of transcription 1

(STAT1), ultimately leading to the expression of antiviral effector

molecules (185–188). Experimental results have shown that EV71

3Dpol attenuates IFN-g-induced tyrosine phosphorylation of STAT1

accompanied by a STAT1 decrease (189); either restoring STAT1 or

inhibiting 3Dpol activity effectively reversed IFN-g-induced IRF1

transactivation. However, it is still unknown how the 3Dpol

regulates STAT1 activation and expression. The specific causes of

the decrease in STAT1 transcriptional and/or posttranslational

levels by the 3Dpol require further investigation.

5.3.3 3Dpol targets other proteins associated with
the innate immunity response

PGAM family member 5 (PGAM5) can affect the fission/fusion

process of mitochondria and inhibit the mitochondrial autophagy

pathway (190–193). During EV-D68 replication, the 3Dpol, via its

interaction with PGAM5, can affect the mitochondrial dynamics

and suppress the expression of IFN-b by impacting the RIG-I-like

receptor signal pathway (27) (Figure 2). In addition, extensive

studies have shown that the innate immune response and

autophagy constitute a mutually coordinated system (194, 195).

The autophagy pathway is tightly controlled by numerous

autophagy-related genes (ATG) (196–198). Among these, Beclin1

(which encodes BECN1, also called ATG6) is not only a critical

regulator in both the early and late steps of autophagy but is also
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antagonistic to innate immune responses (199–201). It has been

reported that EV71 possibly propels 3Dpol to interact with Beclin1

in order to regulate the process of autophagy to promote viral

replication (202). Further, EV71 3Dpol makes use of the interaction

with Beclin1 to suppress the type I IFN signaling pathway due to

Beclin1 acting as a negative regulator of RIG-I-MAVS mediated

IFN response (202, 203). In addition, recent studies have shown that

inhibition of IKBKE expression by SERPINB1 induced autophagy

to decrease type I interferon signaling, and ultimately promoted

SVA proliferation (204). These studies imply the reciprocal

coordination between autophagy and innate immunity. However,

the mechanism of innate immunity and autophagy regulating viral

proliferation and the interaction between these classical pathways

remain unclear.
5.4 Regulation of the activation of the
NLRP3 inflammasome

Inflammasome formation is an innate immune response induced

in host cells in response to stimulation by microbial invasion that

triggers the maturation of the proinflammatory cytokine interleukin-

1b (IL-1b) (205). IL-1b causes the production of cytokines such as IL-
6 and TNF-a, and plays a critical role in modulating the immune

response during both acute and chronic viral infections (206, 207).

IL-1b production is tightly regulated by the NLRP3 inflammasome

complex, which consists of the NOD-like receptor NLRP3 and the

adaptor protein ASC to recognize danger signals to promote cleavage

of the effector protein pro-caspase-1 (128, 208–210). NLRP3

inflammasome activation requires NF-kB activation (priming

signal) and assembly of NLRP3-ASC (second signal) (208, 210–

212). First, PRRs (such as RIG-I or MDA5) induce a priming signal,

which recognize viral nucleic acid and other molecular patterns and

then induce NF-kB activation; NF-kB activation acts as a priming

signal to initiate the transcription of pro-IL-1b and NLRP3 (210). The
second signal is NLRP3-ASC inflammasome assembly, and there are

three models for its induction: (i) the ion channel model (213); (ii) the

lysosomal rupture model (214); and (iii) the reactive oxygen species

(ROS) model (215). The ion channel model, which regulates the

concentration of K+ or Ca2+ in the cells, ultimately helps pathogen-

associated molecular patterns (PAMPs) and damage-associated

molecular patterns (DAMPs) to enter into the cytosol or cause

mitochondrial dysfunction to activate the NLRP3 inflammasome

(129), the lysosomal rupture model, which causes the release of

cathepsin B after lysosomal damage, leads to NLRP3 activation (216,

217), and the ROS model, which invigorates the circulation of K+ and

induces NLRP3 inflammasome activation (218, 219).

As reported, SVA can induce IL-1b production (129). SVA has a

+ssRNA genome, and it can be recognized by the RIG-I-like receptor of

RIG-I/MDA5 and then induce the activation of NF-kB, which leads to

the upregulation of NLRP3 and pro-IL-1b transcription (220)

(Figure 7). Meanwhile, SVA 3Dpol promotes the activation of NF-kB
by interacting IKKa and IKKb, which upregulates the NLRP3 and pro-
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IL-1b transcription (129). These results suggested that the effects of

SVA RNA and 3Dpol induction of NF-kB activation are superimposed.

This study also proved that SVA 3Dpol directly interacts with the

NATCH domain of NLRP3 through the N-terminus (amino acids 1 to

154) to facilitate NLRP3-ASC assembly, which induces IL-1b
production (129). At the same time, 3Dpol also affects the production

of IL-1b through ion channels. 3Dpol induces calcium influx and

potassium efflux to activate the NLRP3 inflammasome at the second

signaling step (129, 221). In addition, other studies revealed a novel

mechanism by which EV71 stimulates the activation of NLRP3

inflammasome by the virus-encoded 3Dpol. 3Dpol interacts directly

with NLRP3 to facilitate the assembly of NLRP3 inflammasome

complex by forming a “3D-NLRP3-ASC” ring-like structure (222).

These studies revealed a new role of picornavirus 3Dpol as an important

regulator of inflammatory responses and provided new insights into

the development of drugs for the treatment and prevention of virus-

associated inflammation and diseases.
6 Conclusions

The past decade has been fruitful for the viral RdRp structure

field, and providing insights into the initiation of RNA synthesis and

the replication elongation processes in picornavirus (21, 36, 92).

However, the NLS sequence carried by picornavirus 3Dpol, combined

with its ability to interact with other viral proteins, viral RNA and

cellular proteins, indicate that the noncatalytic role of picornavirus

3Dpol could be underestimated. In addition to its traditional role in

replication, 3Dpol can interact with several host proteins, which

participate in a variety of biological processes in host cells, such as

cell cycle progression, protein synthesis, apoptosis and autophagy,

and these interactions may result in multiple consequences that

benefit the viruses in different lifecycle stages. Interactome analysis

has been widely applied to explore virus–host interactions. Yeast-two-

hybrid assays and proteomic approaches based onMALDI-TOFmass

spectrometry have been used to screen host factors that may interact

with viral proteins in infected cells (24, 123, 223, 224). Advanced

approaches using immunoprecipitation coupled with liquid

chromatography−tandem mass spectrometry (LC−MS/MS) can be

practical to broadly detect cellular proteins that associate with viral

proteins (23, 225). Further development of these related technologies

and methods may help to identify and validate novel host proteins

that interact with 3Dpol and provide a better understanding of how

3Dpol regulates and usurps host processes, while also helping to

uncover the mechanisms underlying pathogenesis.

Importantly, there are currently only limited therapies for the

treatment of picornavirus infection. The key role of 3Dpol in viral

replication and its structural and sequence conservation make it a

promising target for specific antiviral therapeutics (19, 31, 226).

Several compounds that bind to 3Dpol active sites to block viral

replication have been identified, which markedly reduce the

synthesis of viral RNA by interacting with or occupying the 3Dpol

active sites to inhibit enzyme function (227–229). Therefore, further
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elucidating the structures and molecular functions of 3Dpol is

valuable and could be useful for future antiviral treatment

of picornaviruses.
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