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Background: Acute Respiratory Distress Syndrome (ARDS) is a common

condition in the intensive care unit (ICU) with a high mortality rate, yet the

diagnosis rate remains low. Recent studies have increasingly highlighted the role

of aging in the occurrence and progression of ARDS. This study is committed to

investigating the pathogenic mechanisms of cellular and genetic changes in

elderly ARDS patients, providing theoretical support for the precise treatment

of ARDS.

Methods: Gene expression profiles for control and ARDS samples were obtained

from the Gene Expression Omnibus (GEO) database, while aging-related genes

(ARGs) were sourced from the Human Aging Genomic Resources (HAGR)

database. Differentially expressed genes (DEGs) were subjected to functional

enrichment analysis to understand their roles in ARDS and aging. The Weighted

Gene Co-expression Network Analysis (WGCNA) and machine learning

pinpointed key modules and marker genes, with ROC curves illustrating their

significance. The expression of four ARDS-ARDEGs was validated in lung samples

from aged mice with ARDS using qRT-PCR. Gene set enrichment analysis (GSEA)

investigated the signaling pathways and immune cell infiltration associated with

TYMS expression. Single-nucleus RNA sequencing (snRNA-Seq) explored gene-

level differences among cells to investigate intercellular communication during

ARDS onset and progression.

Results: ARDEGs are involved in cellular responses to DNA damage stimuli,

inflammatory reactions, and cellular senescence pathways. The MEmagenta

module exhibited a significant correlation with elderly ARDS patients. The

LASSO, RRF, and XGBoost algorithms were employed to screen for signature

genes, including CKAP2, P2RY14, RBP2, and TYMS. Further validation emphasized

the potential role of TYMS in the onset and progression of ARDS. Immune cell

infiltration indicated differential proportion and correlations with TYMS

expression. SnRNA-Seq and cell-cell communication analysis revealed that

TYMS is highly expressed in endothelial cells, and the SEMA3 signaling pathway

primarily mediates cell communication between endothelial cells and other cells.
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Conclusion: Endothelial cell damage associated with aging could contribute to

ARDS progression by triggering inflammation. TYMS emerges as a promising

diagnostic biomarker and potential therapeutic target for ARDS.
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1 Introduction

Acute Respiratory Distress Syndrome (ARDS) represents a life-

threatening manifestation of severe respiratory failure that can occur in

any condition or disease that causes lung injury (1). The pathological

changes in ARDS are characterized by diffuse alveolar damage,

including damage to alveolar epithelial and pulmonary capillary

endothelial cells, inflammation and infiltration of immune cells,

widening of interstitial edema, protein-rich edema fluid in the

alveoli, fibrous protein deposition, formation of transparent

membranes, and microthrombosis (2). These changes lead to

dysregulation of the ventilation/perfusion (V/Q) ratio, impaired gas

exchange, a significant increase in intrapulmonary shunting, decreased

lung compliance, reduced lung volume (baby lung), and ultimately

acute hypoxemic respiratory failure (3). The mortality rate of ARDS is

as high as 40% (4), making it one of the main reasons for patients to be

transferred to the ICU (5). Based on statistics, the incidence rate of

ARDS is several tens of cases per 100,000 person-years (6). Numerous

studies have shown that elderly patients account for a high proportion

of ARDS patients, and age is a significant risk factor affecting the

development and prognosis of ARDS (7). Currently, the diagnosis of

ARDS mainly relies on clinical manifestations, but the problem of

missed diagnosis and delayed diagnosis remains unresolved. Therefore,

studying the molecular biological mechanisms of ARDS and

identifying potential biomarkers is of great significance for early

recognition, diagnosis, and assessment of the severity and prognosis

of ARDS.

Increasing evidence suggests that the pathogenesis of ARDS

involves multiple biological functions, including inflammatory

response (8), oxidative stress (9), apoptosis (10, 11), and endoplasmic

reticulum autophagy (12). Amidst these factors, aging is pivotal in the

genesis and advancement of ARDS. Aging is a complex and

multidimensional process that leads to widespread organ dysfunction

(13) and various age-related diseases (14), such as neurodegenerative

disorders, diabetes, idiopathic pulmonary fibrosis, etc. (15). DNA

damage serves as a primary catalyst for aging, whereas DNA repair

acts as a pivotal determinant of aging. Additionally, deficiencies in

DNA repair can accelerate the progression of various age-related

diseases (16). Lung aging is associated with molecular and

physiological changes that result in altered lung function, impaired

lung remodeling and regeneration, and increased susceptibility to acute

and chronic lung diseases (17). Older patients with sepsis have worse

outcomes, which may be related to the decline in immune system
02
function and changes in the pulmonary vascular system in the elderly

(18, 19). Immune cell activation is a major mediator of ARDS

inflammation, and immunosenescence may affect the pathogenesis

and prognosis of elderly ARDS subgroups (20). A cross-age study of

ARDS patients showed a correlation between age and neutrophil

biomarker myeloperoxidase (MPO) in bronchoalveolar lavage fluid

(BALF) (21). Compared with younger groups, Tregs and inflammatory

markers increased in older groups (22). Aging is implicated in various

pathways of ARDS pathogenesis, yet the precise mechanisms remain

elusive. Therefore, further research is needed to understand the

relationship between cellular aging, immune infiltration landscape,

and their interplay in the context of ARDS disease.

Over the past decade, high-throughput sequencing has

experienced rapid development and has permeated various fields

of life sciences, significantly advancing the progress of basic medical

research (23). GSE163426 is a dataset related to ARDS, containing a

large number of samples (47 ARDS patients and five control

individuals). In this study, we used various bioinformatics

methods to obtain age-related characteristic genes for ARDS.

Four hub ARDS-ARDEG genes demonstrated significant

diagnostic performance and were validated in external datasets.

Additionally, we corroborated the expression levels of the selected

genes through animal experiments. Thymidylate Synthetase

(TYMS) was identified as a promising diagnostic biomarker for

ARDS in aging individuals. We assessed the enriched signaling

pathways associated with TYMS expression and involvement in

immune cell infiltration. Single-nucleus RNA sequencing

highlighted elevated TYMS expression in endothelial cells,

indicating its potential role in endothelial dysfunction seen in

ARDS. These findings highlight TYMS ’s multifaceted

involvement, particularly its modulation of immune responses

and contribution to endothelial proliferation and vascular injury

repair, presenting TYMS as a potential therapeutic target for precise

intervention in ARDS among the elderly ICU population.
2 Materials and methods

2.1 Data sources

In our study, we acquired two bulk RNA sequencing (bulk-

RNAseq) datasets, specifically GSE163426 and GSE84439, from the

GEO database. The GSE163426 dataset was utilized as the training
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set, encompassing 47 ARDS patients and five control individuals.

The validation group, comprising seven sepsis patients and 8 ARDS

patients, was derived from the GSE84439 dataset. Additionally, we

utilized publicly available single-nucleus RNA sequencing (snRNA-

Seq) data obtained from autopsy lung tissues of 19 COVID-19

patients and seven healthy donors. These data, including the

corresponding clinical information, can be accessed at the GEO

database using the accession number GSE171524.
2.2 Downloading and organizing aging-
related genes

In order to identify ARGs for our study, we downloaded data

from the HAGR database (https://genomics.senescence.info/) (24).

This database comprises the GenAge dataset (307 genes) and the

CellAge dataset (949 genes). After combining these datasets and

eliminating duplicate genes, we obtained 1256 ARGs for

subsequent analysis.
2.3 Identification of aging-related DEGs

To identify ARDEGs, we utilized the R package limma for

differential analysis (25). The filtering criteria were set as |logFC|>1

and P<0.05. This analysis was performed on the ARDS and control

samples. The intersection of the DEGs with the ARGs resulted in

the identification of ARDEGs.
2.4 Construction of PPI network

Using the Search Tool for the Retrieval of Interacting Genes

(STRING) database, we constructed a protein-protein interaction

(PPI) network for evaluating the gene interactions among

ARDEGs (26).
2.5 Functional and pathway
enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Gene Ontology (GO) were used in the functional enrichment

analysis of ARDEGs (27). The GO analysis involved exploring the

biological processes (BP), cellular components (CC), and molecular

functions (MF) associated with these ARDEGs.
2.6 Weighted gene co-expression
network analysis

The WGCNA analysis was conducted to construct a co-

expression network in the GSE163426 dataset, utilizing the scale-

free topology criterion (28). The dynamic tree-cutting method with

a minimum module size of 30 was used to identify co-expressed

gene modules. Gene significance (GS) values and module
Frontiers in Immunology 03
membership (MM) values were employed to assess the

association between gene modules and both ARDS and aging,

ultimately determining the key modules.
2.7 Identification of hub ARDS-ARDEGs

The least absolute shrinkage and selection operator (LASSO),

Random Forest (RF), and Extreme Gradient Boosting (XGBoost)

algorithms were employed as the methods for screening and

identifying key ARDS-ARDEGs. LASSO analysis was performed

with the glmnet program, and 10-fold cross-validation was used to

assess the penalty parameter (29). This approach outperforms

traditional regression analysis methods in the assessment of high-

dimensional data. XGBoost, a machine learning algorithm based on

gradient boosting trees, was employed to assess the importance of

ARDEGs in both ARDS and aging (30). The R package XGBoost

aided in determining the significance of models constructed with

various sets of ARDEGs. The random forest algorithm with

recursive feature elimination (RFE) is a supervised machine

learning method (31). The RFE approach was conducted by

setting the number of decision trees to 500 and identifying aging-

associated signature genes with relative importance greater than

one. The intersection of aging-associated signature genes obtained

through three machine learning filters using the R package Venn

was defined as hub ARDS-ARDEGs. To assess the diagnostic utility

of hub ARDS-ARDEGs in aging ARDS patients, the receiver

operating characteristic curve (ROC) analysis was performed on

the GSE1919 and GSE89408 datasets.
2.8 Experimental animals

This study was conducted in accordance with ethical guidelines

and received ethical approval from the Ethics Committee of

Hangzhou Hibio Technology Co., Ltd. (HB2311003). C57BL/6

mice, including males and females, were procured from Jiangsu

Jiangsu Huachuang sino Pharma Tech Co., Ltd. The study utilized

young mice (3 months old) and aged mice (18 months old). The

ARDS mouse model was induced by intraperitoneal injection of

lipopolysaccharide (LPS) (Sigma-Aldrich) at 5mg/kg for young

mice and 2.5mg/kg for aged mice. Following 72 hours of LPS

administration, the mice were euthanized, and lung tissues were

collected for subsequent analysis.
2.9 Histopathological observation of
lung tissue

Lung tissue was collected from the middle lobe of the right lung

in mice. Following alcohol dehydration, paraffin embedding, and

sectioning, the samples were stained with H&E and subsequently

examined under an optical microscope to evaluate the extent of lung

tissue damage. The freshly removed lung tissue from the left lobe

was weighed using an analytical scale to obtain the wet weight (W).

The tissue was then dried in an oven until a consistent weight was
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reached to calculate the dry weight (D). To determine the degree of

pulmonary edema, the formula W/D × 100% was applied to obtain

the wet-to-dry weight ratio.
2.10 Quantitative real-time PCR

Reverse transcription of total RNA into complementary DNA

(cDNA) was performed using the TOROBlue® qPCR RT Kit after

RNA extraction from the upper lobe of the right lung was

performed using Trizol (Vazyme). TOROGreen®qPCR Master

Mix was used for qRT-PCR. The primer sequences for hub

ARDS-ARDEGs are presented in Table S9 of the Supplementary

Materials. Internal reference gene GAPDH was employed. Each

group included six biological samples.
2.11 Analysis of SnRNA-seq data

The raw matrix in each dataset was normalized using the

“LogNormalize” function in Seurat (version 4.3.1) (32). The

“RunHarmony” function in the “harmony” package was utilized

to reduce the batch effect (33). The “FindVariableFeatures” function

was employed to select the top 2000 most variable genes as input

data. Principal component analysis was used to determine the 19

best principal components for data integration. Following the

acquisition of principal components, several cell types were

distinguished using established cell-specific markers, and uniform

manifold approximation and projection were utilized to view

the cells.
2.12 Cell–cell communication analysis

Based on ligand-receptor interactions, cell-cell communication

between several cell clusters was inferred and visualized using the R

software’s “CellChat” package (34). The “CellChat” tool was used to

import the snRNA-seq data that had been normalized using the

“Seurat” package. We focused on the secreted signaling pathways

and analyzed the communication between all cell types. Moreover,

endothelial cells acted as signal senders and receivers in our

particular analysis and visualization of the communication

between these cells and other cell types.
2.13 Statistical analysis

R software (version 4.3.1) was used to conduct statistical

analysis. Two groups were compared using Wilcoxon tests. The

association between immune cell infiltration and hub ARDS-

ARDEGs expression levels was examined using Spearman

correlation analysis. A statistical significance threshold of P < 0.05

was applied. The mean ± standard deviation of a minimum of six

independent experiments was used to present the statistical analysis

of the qRT-PCR data, and unpaired two-tailed Student’s t-tests were

employed to evaluate differences (*P < 0.05; **P < 0.01; ***P <
Frontiers in Immunology 04
0.001). For statistical significance, a P-value of less than 0.05

was used.
3 Results

3.1 Identification of ARGEGs

The study’s procedural diagram is depicted in Figure 1. A total

of 2448 DEGs between control and ARDS tracheal aspirates were

identified, with 1312 genes up-regulated and 1136 genes down-

regulated (Figure 2A). 134 ARDEGs were obtained by the

intersection of ARGs and DEGs (Figure 2B; Supplementary Table

S1). Using the R program limma, expression matrices of ARGs were

taken out of the training set, and their differences were examined. A

gene expression heat map was created to see the top 50 genes with

the most significant differences (Figure 2C). A close association

between ARDEGs at the protein level was found by the PPI protein

network analysis (Figure 2D; Supplementary Table S2).
3.2 Functional enrichment analysis
of ARDEGs

To understand the potential mechanisms of ARDEGs in ARDS

and aging, we employed the R package clusterProfiler to perform

GO and KEGG enrichment studies on ARDEGs (Supplementary

Tables S3, 4). The GO enrichment analysis in BP showed that the

first five ARDEG enrichments were primarily associated with

protein phosphorylation, cellular response to DNA damage

stimulus, negative regulation of apoptotic process, peptidyl-

threonine phosphorylation, and positive regulation of

transcription from RNA polymerase II promoter (Figure 3A). The

top 20 enriched elements in MF and CC are shown in Figures 3B, C.

Furthermore, these ARDEGs were considerably enriched in Cellular

senescence, Cell cycle, FoxO signaling pathway, Longevity

regulating pathway, and Autophagy (Figure 3D).
3.3 Construction of the weighted gene co-
expression network

The R package WGCNA was employed for co-expression

network construction, utilizing the variance in gene expression of

the initial 75% of genes as a screening criterion. A total of 13,906

genes were encompassed in this network assembly. The

determination of the soft threshold power at 12 yielded a scale-free

index of 0.85, along with notably favorable mean connectivity,

enabling the establishment of a scale-free network (Figures 4A, B).

Following this, cluster analysis was conducted to identify highly

analogous modules, resulting in the display of the cluster

dendrogram (Figure 4C). The correlation among these modules

was calculated (Figure 4D). The findings revealed a notable

correlation between the MEmagenta module and ARDS (cor=0.34;

p=0.01), as well as aging (co=-0.34; p=0.01) (Figure 4E;

Supplementary Table S5). Moreover, a significant correlation
frontiersin.org
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betweenMM and GS for ARDS within the magenta module (cor=0.3;

p=3.8e-14) was observed, as well as aging (co=0.39; p=1.4e-23)

(Figures 4F, G). The genes in the magenta module were selected as

the candidate genes and compared with ARDEGs, resulting in the

identification of 14 genes that were both in the magenta module and

associated with ARDS and aging (Figure 4H).
3.4 Correlation and enrichment analysis of
ARDS-ARDEGs

We used the Pearson correlation coefficient to assess the

relationship between the ARDS-ARDEGs. PSMA2 exhibited a
Frontiers in Immunology 05
high correlation with TTBPL1 (cor=0.84) (Figure 5A). The KEGG

pathway enrichment analysis demonstrated that the top ten

enriched pathways associated with ARDS-ARDEGs were

primarily involved in Spinocerebellar ataxia, Proteasome, Measles,

Hepatitis C, Necroptosis, Influenza A, and the NOD-like receptor

signaling pathway (Figure 5B; Supplementary Table S6). According

to the GO enrichment analysis, ARDS-ARDEGs are enriched in BP,

including the regulation of hematopoietic stem cell differentiation,

deoxyribose phosphate biosynthetic process, negative regulation of

G2/M transition of the mitotic cell cycle, regulation of the innate

immune response, and deoxyribonucleotide biosynthetic process

(Figures 5C, D; Supplementary Table S7). The map illustrating the

interactions among BP was subsequently constructed (Figure 5E).
FIGURE 1

The flowchart outlining the methodology of this investigation.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1365206
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1365206
3.5 Identification of hub ARDS-ARDEGs via
machine learning

Three machine learning algorithms were used to screen hub

ARDS-ARDEGs in order to identify signature genes in the elderly

population with ARDS: LASSO (Figures 6A, B), RF (Figures 6C, D),

and XGBoost (Figure 6E). Following the integration of the

outcomes from the three algorithms, we ultimately identified four

hub genes: CKAP2, P2RY14, RBP2, and TYMS (Figure 6F;

Supplementary Table S8).
3.6 Diagnostic efficacy of hub
ARDS-ARDEGs

The ROC analysis revealed that the four hubs ARDS-ARDEG had

high diagnostic values in the training set. The area under the curve

(AUC) of ROC for these signature genes was observed as follows: 0.902

for CKAP2, 0.843 for P2RY14, 0.770 for RBP2, and 0.834 for TYMS

(Figures 7A–D). Furthermore, the screened signature genes

demonstrated higher expression levels in individuals with ARDS

than those in the healthy control group, indicating a potential role of
Frontiers in Immunology 06
these genes in the pathogenesis of ARDS (Figures 7E–H).

Subsequently, a correlation analysis was conducted between patient

age and the expression of hub ARDS-ARDEGs (Figures 7I–L). As

patient age increased, the expression of these genes decreased, with

TYMS demonstrating the strongest correlation with the aging process.

In addition, the diagnostic efficacy of each signature gene in

predicting ARDS was evaluated in an external validation cohort. By

GSE84439, the AUC values of ROC for CKAP2, P2RY14, RBP2, and

TYMSwere 0.411, 0.321, 0.607, and 0.821, respectively (Figures 8A–D).

In comparison to sepsis patients, only TYMS demonstrated significant

changes in expression among these characteristic genes in ARDS

patients, indicating a remarkable upregulation (Figures 8E–H). These

observations indicate that TYMS exhibits superior diagnostic efficiency

for ARDS, irrespective of whether it is used to distinguish elderly ARDS

patients or differentiate sepsis patients.
3.7 Aging inhibited TYMS induction in mice
after ARDS modeling

The murine model of ARDS was established by administering

LPS to both aged (18 months) and young (3 months) mice. Despite
A

B D

C

FIGURE 2

Identification of ARDEGs between control and ARDS. (A) The differential gene expression between the control and ARDS groups is displayed using a
volcano plot. (B) A Venn diagram illustrates the overlap between ARGs and DEGs in the ARDS and control groups. (C) A heatmap is presented
illustrating the expression patterns of the 50 most significant ARDEGs, based on the smallest p-values, in both the control and ARDS groups. (D) An
interaction network map shows protein interactions among the 134 ARDEGs.
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being challenged with a lower dose of LPS (2.5 mg/kg) compared to

young adult mice (5 mg/kg), aged mice exhibited more severe lung

injury (Figures 9A, B). At 72 hours after LPS administration, aged

mice exhibited lung edema, a condition not observed in young adult

mice (Figure 9C). To confirm the mRNA expression levels of hub

ARDS-ARDEGs, qRT-PCR was performed on total mRNA

extracted from lung tissues (Figures 9D–G). After ARDS

modeling, the expression of characteristic genes CKAP2, P2RY14,

RBP2, and TYMS was significantly altered. Notably, there was a

significant disparity in TYMS expression between the young and

aged mice after modeling. The findings demonstrated that the four

characteristic genes were strongly activated following the onset of

ARDS, whereas aging inhibited the proper induction of TYMS

expression in the progression of ARDS.
3.8 Difference analysis and GSEA analysis
of TYMS grouping

Based on the median TYMS value and a significant threshold of

“P<0.05” and “|log2FC|>1,” tracheal aspirate samples from ARDS

patients in the GSE163426 dataset were classified into two groups: a

high-expression group and a low-expression group. As a result, 582

genes exhibited up-regulation, and 544 genes displayed down-regulation
Frontiers in Immunology 07
(Figure 10A). The heat map depicted the top 30 DEGs (Figure 10B). To

evaluate the signaling pathways linked to TYMS, GSEA analysis was

conducted (Figures 10C–H). The findings demonstrated a significant

correlation between TYMS and the regulation of immune system

processes, defense response, negative regulation of alpha-beta T cell

activation, blood vessel morphogenesis, regulation of cell population

proliferation, and negative regulation of inflammatory response.
3.9 Evaluation and analysis of immune
cell infiltration

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was employed to analyze immune cell infiltration,

aiming to discern immunological features (Supplementary Table

S10). In ARDS samples, the infiltration levels of Activated CD4 T

cells, Activated CD8 T cells, and Effector memory CD4 T cells were

significantly increased compared to the healthy control. Conversely,

the infiltration of CD56dim natural killer cells and Natural killer cells

in ARDS samples was significantly reduced (Figure 11A). Following

this, a correlation analysis was conducted, linking the expression of

hub genes with immune cell infiltration in ARDS patients

(Figure 11B). Notably, a strong correlation exists between TYMS

expression and the infiltration of various immune cells. Subsequent
A

B D

C

FIGURE 3

Functional enrichment analysis of ARDEGs. (A) Depicted are the outcomes of GO enrichment analysis for BP, (B) CC, and (C) MF. The bubble plot
illustrates the top 20 significantly enriched functions, with bubble size representing the number of DEGs (larger circles indicate more DEGs) and
color representing the adjusted p-value (redder colors indicate smaller p-values). (D) KEGG enrichment analysis results are visualized in a Sankey dot
pathway enrichment plot, displaying the top 10 significantly enriched pathways.
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analysis involved grouping individuals based on TYMS expression

levels to explore the relationship between TYMS and immune cell

proportion (Figure 11C). The analysis revealed a significant

upregulation in the proportion of activated B cells, Memory B

cells, and Type 2 T helper cells in the group exhibiting high

TYMS expression.

Conversely, there was a distinct decrease in the proportion of

CD56dim natural killer cells, Central memory CD4 T cells, and

Immature dendritic cells. Figures 11D–I demonstrate the six

correlations between TYMS and the immune cells. These findings

indicate an association between TYMS and the regulation of immune

responses, thereby enhancing the ability to resist pathogenic

microorganisms and inhibiting excessive inflammatory responses.
3.10 Discrimination of cell source of TYMS
at single-cell resolution

To investigate the cellular origin of TYMS, we acquired snRNA-

Seq data, including data from autopsy lung tissues of approximately

116,000 nuclei taken from the lungs of nineteen individuals who
Frontiers in Immunology 08
died from COVID-19 and seven control individuals from

GSE171524. Based on the clinical information of these 19

patients, it is evident that they were over 55 and presented with

concomitant respiratory symptoms. Unsupervised analysis

identified 19 distinct cell clusters (Figure 12A). These clusters

were recognized as distinct cell types based on the expression

levels of established markers: alveolar type I (AT1) cells, alveolar

type II (AT2) cells, airway epithelial cells, B cells, CD4+ T cells,

CD8+ T cells, cycling NK/T cells, dendritic cells, endothelial cells,

fibroblasts, macrophages, mast cells, monocytes, NK cells, neuronal

cells, other epithelial cells, plasma cells, smooth muscle cells, and

Tregs. The disruption of alveolar epithelial and endothelial barriers

was attributed to the loss of AT1 cells, AT2 cells, and endothelial

cells and the proliferation of mononuclear/macrophage cells,

fibroblast cells, and neuronal cells (Figure 12B). It was discovered

that endothelial cells exhibited high TYMS expression (Figure 12C).

Compared to the control group, patients with respiratory symptoms

manifested a discernible upregulation in TYMS expression within

endothelial cells (Figure 12D). The findings above indicate that

TYMS is primarily expressed in endothelial cells, and moderate

induction may contribute to endothelial regeneration and the
A B D

E F G H

C

FIGURE 4

WGCNA analysis and identification of ARDS-ARDEGs in GSE163426. (A) The soft thresholding power of WGCNA is shown. (B) The average
connectivity of WGCNA is displayed. (C) The top 75% of the gene clustering tree’s variance is displayed, with each gene represented by a branch and
a co-expression module by a color underneath. (D) The association of feature genes between modules is displayed on a heatmap. (E) A heatmap
illustrating the correlations between the modules and traits is displayed; each color corresponds to a co-expression module, and the numbers
indicate the p-values and module-trait correlation coefficients. (F) The relationship between the ARDS GS and the magenta module’s MM is
displayed as a scatter plot. (G) A scatter plot illustrates the relationship between the magenta module’s MM and aging GS. (H) The intersection of
ARDEGs along with significant genes in the magenta module is shown in a Venn diagram.
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maintenance of endothelial barrier integrity, thereby reducing the

infiltration of inflammatory cells and inhibiting the progression

of ARDS.
3.11 Investigation of communication
between endothelial cells and other
cell types

In order to evaluate intercellular communication, expression

levels of ligands and their matching receptors are examined. The

results above indicate that TYMS is primarily expressed in

endothelial cells and is associated with immune cell infiltration.

To investigate intercellular communication further, we employed

the “CellChat” software package for a comprehensive analysis.

Circular plots were generated to visualize the secretion signals

involved in intercellular communication across all cell types

(Figures 13A, B). The analysis demonstrated that endothelial cells

communicate with airway epithelial cells through the VISFATIN

signaling pathways (Figure 13C). Moreover, endothelial cells

primarily receive signals from AT1 cells, fibroblasts, smooth

muscle cells, neuronal cells, fibroblasts, and macrophages

(Figure 13D).
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Furthermore, we conducted a ligand-receptor pair analysis that

identified specific signaling interactions. Endothelial cells were

found to preferentially send signals via the NAMPT - INSR

pathway while receiving signals through the VEGFA - VEGFR1,

IGF1 - IGF1R, ANGPT1 - TEK, SEMA3A - (NRP1+PLXNA2),

SEMA3C - (NRP1+PLXNA2), and SEMA3D - (NRP1+PLXNA2)

pathways (Figures 13E, F). Intercellular communication between

endothelial cells and other cells is predominantly mediated by the

SEMA3 signaling pathway, with endothelial cells serving as the

primary receiver cells in this pathway (Figure 13G). The SEMA3

signaling pathway exerts a significant influence on the vascular

system, contributing to the development and regeneration of blood

vessels. Conclusively, these discoveries provide invaluable

perspectives on the intercellular dialogue between endothelial cells

and various cell types, shedding light on the distinct signaling

pathways and molecules implicated in this intricate process.
4 Discussion

ARDS is a common and severe respiratory condition,

particularly in the elderly (35). Extensive research has established

a close association between ARDS and the patient’s systemic or
A B

D EC

FIGURE 5

The correlation and enrichment analysis of ARDS-ARDEGs. (A) The ARDS-ARDEG correlation analysis is shown, with statistical significance denoted
by *P<0.05, **P<0.01, and ***P<0.001. (B) A circular plot illustrates the top 10 entries for KEGG enrichment analysis of ARDS-ARDEGs. (C) A chord
plot shows the top 10 BP entries for GO enrichment. (D) A bubble plot is presented, displaying the BP entries for GO enrichment. (E) A network plot
indicates the BP entries associated with the ARDS-ARDEG analysis.
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localized inflammatory response, with impairment of the

pulmonary endothelial barrier function significantly contributing

to lung injury and poor prognosis in sepsis and ARDS (36).

Accumulating evidence also emphasizes the role of aging in this

context, as ARDS incidence and mortality rates are increased in the

elderly population (≥65 years old) (37). Research conducted by Soo

Jung Cho et al. suggests that the susceptibility of the elderly to

pulmonary diseases may be related to age-related changes in the

composition and functionality of endothelial cells (11). Relevant

studies have found elevated levels of ATP2B1 expression in ARDS

patients, which is associated with endothelial barrier disruption

(38). Aging impairs lung resident endothelial cell-mediated

endothelial regeneration, leading to persistent inflammatory lung

injury and high mortality rates (39). Aging exposes the immune

system to sustained immune stressors and inflammatory assaults,

contributing to immune senescence (40). These findings provide a

solid basis to support the potential link between aging and immune

regulation in ARDS.

With the current application of bioinformatics in the field of

medicine, new avenues have opened up for scientific research on
Frontiers in Immunology 10
ARDS, allowing for the discovery of potential essential target genes.

This study combines bioinformatics analysis with machine learning

strategies to investigate the pathogenesis of ARDS from an

aging perspective.

Through our analysis of normal and ARDS patient samples, we

have identified 134 ARDEGs. Based on the results of GO and KEGG

enrichment analyses, these ARDEGs are primarily involved in cellular

responses to DNA damage stimuli, inflammatory reactions, negative

regulation of innate immunity, and the FoxO signaling pathway and

cellular senescence pathway. Our research highlights the involvement

of these genes in inflammation response and aging. Increasing evidence

supports the influence of aging on the occurrence of ARDS. For

instance, elevated levels of reactive oxygen species production

enzyme NADPH oxidase 4 in aging mice enhance endothelial cell

permeability, impairing endothelial barrier function (41).

Additionally, KEGG pathway enrichment analysis indicates that

these ARGs predominantly participate in the FoxO signaling

pathway and lifespan regulation. FOXO transcription factors are

crucial determinants of aging and longevity (42). Further research is

needed to explore the hub ARDS-ARDEGs.
A B

D E FC

FIGURE 6

Selection of hub ARDS-ARDEGs using machine learning. (A) LASSO coefficient computation. The vertical dashed line shows the ideal lambda value.
(B) Ten-fold cross-validation for LASSO model parameter adjustment. Every curve represents a gene. (C) The correlation between the mistake rate
and the number of trees in the random forest. (D) Relative relevance ranking for ARDS-ARDEGs. (E) XGBoost modeling in the ARDS training set.
(F) Venn diagram illustrating the intersection of genes selected as aging markers using LASSO, random forest, and XGBoost algorithms.
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We identified four hub ARDS-ARDEGs (CKNP2, P2RY14, RBP2,

and TYMS) using WGCNA analysis and three machine learning

screenings (LASSO, RF, XGBoost). Our results indicated that four

hub ARDS-ARDEGs were considerably elevated in samples from

ARDS patients and had a robust diagnostic ability to predict ARDS.

CKAP2 (Cytoskeleton-associated protein 2, a crucial protein

that controls cell proliferation), particularly during mitosis and

cytokinesis (43). CKAP2 is up-regulated in a variety of malignant

tumors and has diagnostic value in osteosarcoma (44), triple-

negative breast cancer (45), gastric cancer, and other tumors (46).

It has been reported that the CKAP2 gene plays a role in cell

senescence (47), but its pathway needs to be confirmed by further

studies. TYMS (Thymidylate synthase) is a gene that plays a crucial

role in DNA replication and repair (48). Chen Y reported that the

knockdown of TYMS resulted in reactive oxygen species generation,

DNA damage, and cellular senescence (49). Restoring the

expression and activity of FoxM1 may potentially enhance the

functionality of endothelial cells and promote vascular neogenesis

and repair (50). Additionally, as a downstream target of FoxM1,
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TYMS could be involved in the endothelial cell repair process (51).

RBP2 (Retinoblastoma binding protein 2) facilitates the uptake,

absorption, and metabolism of retinol (52). Moreover, it is

implicated in the development of obesity and associated

metabolic disorders (53). Several studies indicate that RBP2 plays

a central role in maintaining innate immunity in the intestinal tract

(54). Nevertheless, extensive research is still required to attain a

comprehensive understanding of RBP2’s role in ARDS pathology.

P2RY14, a G-protein coupled purinergic receptor, manifests its

expression within the placenta, adipose tissue, intestine, stomach,

and lung (55). Under conditions of tissue stress, alterations in the

expression levels of P2Y14 occur, thereby influencing the processes

of cellular aging and apoptosis (56). The expression of P2Y14R in

human alveolar epithelial type 2 cells and its impact on IL-8

secretion and neutrophil recruitment suggest its pivotal role in

the activation of airway epithelial cells and modulation of immune

response (57).

To further validate the results of the bioinformatics analysis, we

conducted qRT-PCR to identify and screen the four hub genes using
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FIGURE 7

Performance of hub ARDS-ARDEGs in the GSE163426 dataset. (A-D) ROC curves demonstrate the chosen genes’ diagnostic efficacy. The AUC is
computed to assess the gene’s diagnostic accuracy. (E–H) Violin plots show the differences in the expression levels of particular genes between the
ARDS patient group and the control group. The control and ARDS patient groups are shown on the x-axis, while the gene expression values are
represented on the y-axis. The width of the violin plot represents the density of gene expression values, with a broader plot indicating a higher
expression density. (I-L) Relationship between the age of ARDS patients and the expression levels of the chosen genes. The x-axis represents the age
of ARDS patients, and the y-axis represents the gene expression levels. Each point on the scatter plot represents an individual ARDS patient.
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FIGURE 8

Performance of hub ARDS-ARDEGs in the GSE84439 dataset. (A-D) Violin plots compare the expression levels of particular genes in patients with
ARDS and those with septic shock. (E-H) ROC curves indicate the diagnostic performance of the identified genes about ARDS.
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FIGURE 9

Validation of hub ARDS-ARDEGs through total RNA sequencing. (A) Histopathological images of lung tissues in LPS-induced ARDS young and aged
mice. Scale bar, 50 mm. (B) Lung injury scoring analysis based on alveolar wall congestion and inflammatory cell infiltration, bronchovascular
peribronchial hemorrhage and inflammatory cell infiltration, bronchial lumen exudate, and endothelial cell swelling, with assignment of each slide
area to a severity score ranging from 1 (average) to 4 (severe injury). (C) Lung wet-to-dry ratio in young adult and aged mice 72 hours post LPS
exposure. (D-G) CKAP2, P2RY14, RBP2, and TYMS expression levels in young and aged ARDS mouse models,n = 6 in each group.The data are shown
as mean ± standard deviation, and asterisks (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) denote statistical significance; "ns" indicates
no significance.
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lung tissue samples from both the control and ARDS model groups

of mice. Remarkably, we observed significantly higher expression

levels of all four genes in the lung tissues of ARDS mice, aligning

with the findings of the bioinformatics analysis. Notably, there was a

significant difference in TYMS expression between elderly and

young mice after modeling, suggesting its potential as a diagnostic

biomarker for elderly ARDS patients. Therefore, our subsequent

research wil l focus on TYMS as the target gene for

further exploration.

To investigate the possible biological functions and pathways

TYMS may be involved in ARDS, we divided the ARDS dataset
Frontiers in Immunology 13
GSE163426 into groups based on the expression levels of TYMS and

performed GSEA. The results revealed that TYMS plays a critical

role in ARDS development by influencing immune inflammation

and vascular morphogenesis. These findings are consistent with

previous research on ARDS. We then conducted further research to

evaluate the immunological infiltration in ARDS utilizing ssGSEA.

In ARDS samples, we discovered a substantial increase in the

infiltration levels of effector memory CD4 T cells, activated CD8

T cells and activated CD4 T cells. Additionally, TYMS

demonstrated a negative correlation with CD56dim natural killer

cells, Central memory CD4 T cells, and immature dendritic cells,
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FIGURE 10

The GSEA of different TYMS expression groups in ARDS patients. (A) A volcano plot shows the differential gene analysis results between the ARDS
patient groups with high and low TYMS expression. (B) A cluster heat map, ordered by p-value, displaying the top 30 genes linked to TYMS that are
differentially expressed. (C–H) In the TYMS high expression group of ARDS patients, enrichment analysis reveals the upregulation of signaling
pathways involved in the regulation of immune system processes, defense response, negative regulation of alpha-beta T cell activation, blood vessel
morphogenesis, regulation of cell population proliferation, and negative regulation of inflammatory response in the TYMS high expression group of
ARDS patients.
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and a positive correlation with activated B cells, memory B cells, and

Type 2 T helper cells by correlation analysis with immune cells. It

has been established that inflammatory and immune-infiltrating

cells, such as Type 2 T helper cells, which are mainly responsible for

producing IL-4, IL-5, and IL-13 involved in humoral immunity,

serve a purpose in the development of ARDS (58).

However, the intricate interaction among these immune cells,

their distinct roles in ARDS, and the intricate molecular

mechanisms involved still require further investigation for a

comprehensive understanding.

Furthermore, we investigated the cellular localization of TYMS

based on snRNA-Seq data. The results revealed different proportions

of AT1 cells, AT2 cells, endothelial cells, mononuclear/macrophage
Frontiers in Immunology 14
cells, fibroblast cells, and neuronal cells between the control group

and COVID-19-ARDS patients. Remarkably, the proportion of

endothelial cells in ARDS patients was significantly lower

compared to the healthy control group, indicating impaired

endothelial cell function in ARDS patients. The increased

proliferation of B cells is associated with improved survival rates in

ARDS (59). Additionally, there was a decrease in alveolar epithelial

cells in ARDS patients, consistent with the findings of a study by Feng

et al. (60). TYMS showed high expression in the endothelial cells of

ARDS patients, and moderate induction may contribute to

endothelial regeneration and the maintenance of endothelial barrier

integrity, thereby reducing the infiltration of inflammatory cells and

inhibiting the progression of ARDS.
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FIGURE 11

The ssGSEA immune infiltration analysis in ARDS patients. (A) Boxplot showing the difference in immune cell infiltration between controls and ARDS
patients (controls vs. ARDS patients). (B) Heatmap depicting the correlation between hub ARDS-ARDEGs expression and different immune cell
infiltrations. (C) Boxplot showing the differences in immune cell infiltration between high and low expression groups of ARDS patients according to
TYMS expression. (high versus low). (D–I) The proportion of activated B cells, memory B cells, type 2 T helper cells, CD56dim natural killer cells,
central memory CD4 T cells, and immature dendritic cells in ARDS patients correlated with TYMS’s expression levels. The significance levels are:
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Within the microenvironment of the tissue, intercellular

communication among diverse cell types assumes a consequential

role. The results of this study demonstrate that endothelial cells

communicate with airway epithelial cells through the VISFATIN

signaling pathway. Additionally, endothelial cells receive ligand

signals from other cell types, including AT1 cells, fibroblast cells,

smooth muscle cells, neurons, fibroblast cells, and macrophages.

The SEMA3 signaling pathway mainly mediates cell-to-cell

communication between endothelial cells and other cells. The

SEMA3 signaling pathway significantly impacts the vascular

system, promoting vascular development and regeneration (61).

In conclusion, these findings provide valuable insights into the

intercellular communication between endothelial cells and other

cell types, elucidating the specific signaling pathways and

molecules involved.

Our research has limitations. Firstly, information from open

databases served as the foundation for all analysis. The species

representation, sequencing platforms, molecular types, sample

grouping, and sample quality of the GEO collection are all

limited. Nevertheless, the datasets utilized in this investigation

were the only ones readily available for our analysis. Even though
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our cohorts have been constructed and confirmed, prospective

research with additional validation would be ideal. Extensive

research is also required to investigate the possible roles of hub

genes in the pathophysiology of ARDS.
Conclusion

Our study utilized bioinformatics analyses and machine

learning methods to identify four potential aging-related genes

associated with ARDS. The essential genes CKAP2, P2RY14,

RBP2, and TYMS were validated using animal samples to

determine their expression levels in an animal model through the

protective role of TYMS in maintaining the integrity of the

pulmonary microvascular endothelial barrier, promoting

endothelial cell regeneration, and restoring its function. It could

be a novel approach to the management and prevention of ARDS.

These discoveries have immediate therapeutic implications,

opening the door to more accurate diagnoses and individualized

treatment plans. In the end, our study provides important insights

for further investigation into ARDS and its treatment modalities
A
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FIGURE 12

Analysis of single-nuclei RNA-Seq data. (A) A uniform manifold approximation and projection map showing the 19 cell types found using
unsupervised analysis. The data is sourced from post-mortem lung tissue samples of COVID-19 fatal cases and seven healthy donors. (B) The 19 cell
type proportions. (C) Dot plot illustrating the hub ARDS-ARDEGs expression levels in several cell types. (D) A violin plot showing how COVID-19
patients and healthy donors differ in the expression of TYMS in endothelial cells.
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while laying the groundwork for experimental and clinical research

in the future.
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FIGURE 13

Network representation of cell-cell communication. (A) Frequency-based network diagram demonstrating the varying degrees of interactions
among different cell types. (B) Intensity-based network diagram showcasing the strength of interactions among diverse cell populations.
(C) Communication pathways and their associated intensities originating from endothelial cells are illustrated in a network diagram. (D)
Communication pathways and their respective strengths through which endothelial cells receive signals are visualized in a network diagram. (E)
Scatter plot detailing the ligand-receptor signaling patterns emitted by endothelial cells. (F) Scatter plot depicting the ligand-receptor signaling
received by endothelial cells. (G) Chord diagram illustrating the intricate SEMA3 signaling pathway.
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