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Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting

most prominently both young individuals and lower-income populations in

developing and developed countries. To devise effective and curative

immunotherapy, it is crucial to comprehend the intricate nature of this

condition, characterized by an immune response imbalance that favors a

proinflammatory profile orchestrated by diverse subsets of immune cells.

Although the involvement of Natural Killer T (NKT) cells in asthma pathology is

frequently implied, their specific contributions to disease onset and progression

remain incompletely understood. Given their remarkable ability to modulate the

immune response through the rapid secretion of various cytokines, NKT cells

represent a promising target for the development of effective immunotherapy

against allergic asthma. This review provides a comprehensive summary of the

current understanding of NKT cells in the context of allergic asthma, along with

novel therapeutic approaches that leverage the functional response of these cells.
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1 Introduction

Asthma is one of the most common respiratory disorders,

affecting more than 300 million children and adults and causing

approximately 250,000 deaths each year (1, 2). This inflammatory

disease is often a life-long chronic pulmonary disorder

characterized by airway hyperresponsiveness and airflow

obstruction, severely impacting patients’ quality of life. The

prevalence of allergic diseases has increased worldwide over the

last several decades. Currently, the annual economic burden of

asthma in the United States is approximately 56 billion USD (3),

while the estimated economic costs per patient range from 1,900 to

3,200 USD per year (4). Notwithstanding the aforementioned,

different phenotypes of asthma have been defined, such as

occupational, cigarette smoke-induced, air pollution-induced, and

exercise-induced asthma, which lack the allergic response, mainly

given by the functional response associated with immunoglobulin E

(IgE) (5, 6).

Currently, the most common treatment for asthmatic disease is

inhaled corticosteroids. However, this could eventually lead to

steroid-refractory airway inflammation since airway remodeling

effects due to asthma are not avoided (7). Additionally,

uncontrolled comorbidities can increase the severity of asthma

(8). Other pharmacological therapies that have emerged as

promising curative treatments include systemic corticosteroids

and novel immunotherapeutic-based strategies (9). Nonetheless,

failure of patients to adhere to asthma treatments ranges from 30 to

70% (10). This adds to the fact that the palliative effect of some

medications disappears when the drug is discontinued, and the

airway remodeling changes are irreversible (11, 12). Thus, there is

currently no cure for asthma, and its treatment focuses on

improving its symptoms (8).

Within this context, understanding the cellular and molecular

interactions that occur during the genesis and development of

asthma, especially the pathological and protective roles played by

different immune cells, is imperative to improve the effectiveness of

the current immunotherapies. The first step is determining the

presence, function, and interplay of the different immune cells

involved in asthmatic disease.

Natural killer T (NKT) cells have been associated with a

protective role in cancer and the development of autoimmune

diseases (13). Importantly, different studies have shown

contradictory results about the involvement of NKT cells in

asthma (14, 15). In particular, it is still unclear whether these

unconventional T cells have a pathological or protective role in

the onset and development of asthma. Nevertheless, recent

investigations in other pathologies, such as cancer, malaria, and

HIV infection, have shown that stimulating NKT cells with different

glycolipid antigens can modulate the immune response outcome to

specific antigens with promising results (16). Hence, the

modulation of the NKT cell functions to improve asthma-

targeting immunotherapies could decrease airway obstruction by

downregulating the inflammatory process and avoiding further

damage to the pulmonary tissue, resulting in a novel

therapeutic strategy.
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In this review, we discuss the hallmarks of asthma, the current

knowledge of NKT cell biology, and their role in allergic asthma.

Additionally, we review recent findings in the function of NKT cells

that might translate into their potential clinical applications sooner

rather later.
2 Allergic asthma:
general characteristics

2.1 Current definition of asthma and
risk factors

Asthma is a long-term respiratory disease characterized by

chronic airway inflammation and symptoms such as wheezing,

dyspnea, chest tightness, and cough; being considered a clinically

heterogeneous disease with complex pathophysiology, and different

factors may influence the development of asthma in susceptible

individuals (Figure 1). Some asthma triggers include allergens,

irritant substances, exercise, weather variation, and respiratory

viruses (17). Airway hyperresponsiveness (AHR) is a crucial

feature of this disease, and it is a consequence of a highly reactive

response to innocuous foreign substances in asthmatic patients

compared to healthy individuals (18). Additionally, airway

inflammation leads to pulmonary dysfunction by releasing

proinflammatory mediators that cause airway remodeling (19).

Asthma is clinically diagnosed by assessing different symptoms.

These include recurrent wheezing, difficulty in breathing, chest

tightness, occurring or worsening of the above symptoms at

night, and occurrence of symptoms in the presence of exercise,

viral infections, animal hair or fur, mold, and pollen, among other

allergens (20). Other pathologies with similar symptoms, such as

bronchiolitis, chronic obstructive pulmonary disease, cystic fibrosis,

and chronic eosinophilic bronchitis, need to be excluded, and most

symptoms should be reversed using a bronchodilator (21).

Asthmatic disease can develop at any age, although it is most

common during childhood, and boys are more affected than girls,

reversing in adulthood (22, 23). Geographical location also impacts

asthma prevalence: countries such as Brazil, the Netherlands,

United Kingdom, Sweden, and Australia, have the highest

prevalence, ranging from 13% to 21.5% (24). On the other hand,

on a global scale, low- and lower-middle-income countries present

higher mortality rates in comparison to upper-middle and high-

income countries (25) (Figure 2).
2.2 Origin, development and consequences
of allergic asthma

Allergic asthma onset requires exposure of the subject to

allergens, which are defined as environmental substances [mites,

molds, grass, trees, and weed pollens (Table 1)] that are innocuous

for the majority of the population, but upon inhalation, ingestion or

injection can lead to immediate IgE-mediated hypersensitivity in

atopic subjects (41). After exposure, allergens trigger a TH2-cell
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response, characterized by interleukin (IL)-4 and IL-13 secretion,

mediating B cell differentiation into immunoglobulin E (IgE)-

producing cells (42). Later, in the elicitation phase, repeated

exposure of the subject to the given allergen enhances allergen-
Frontiers in Immunology 03
specific IgE production and triggers the secretion of inflammatory

cytokines by IgE-coated mast cells and basophils, which initiate

airway remodeling (43, 44). These processes are depicted in Figure 3

and discussed in detail below.
FIGURE 1

Different factors influence the development of allergic asthma. A wide range of characteristics, both related to the subject and surrounding environment,
are determinants in the possible onset and degree of severity of allergic asthma, among which the most relevant include microbiological exposure (light
green), genetic factors (light purple), exposure to environmental substances (light green) and factors to the environment and lifestyle (light red).
FIGURE 2

Asthma-related mean mortality reported and projected cases. Based on Institute for Health Metrics and Evaluation (IHME), GBD Results. (https://
vizhub.healthdata.org/gbd-results/) and World Health Organization Global Health Estimates: Projection of deaths by cause, age and sex, (https://
colinmathers.files.wordpress.com/2022/05/ghe_dthwbinc_proj_2016-2060.xlsx), categorizing countries according to World Bank income groups.
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Initially, allergens reach the epithelium and penetrate different

organs by disrupting their physical barrier (45) using protease activity

(46) or by induction of immunological activity, mainly given by the

secretion of thymic stromal lymphopoietin (TSLP) (47, 48). Allergens

are captured and processed by dendritic cells (DCs) underneath the

airway epithelium, which migrate to local lymph nodes and interact

with naïve T cells (49). This event triggers naïve T cells proliferation

and differentiation, which initiates sensitization and further allergen-

specific responses (49). Since the subject is exposed to a complex
Frontiers in Immunology 04
mixture of molecules, including the given allergen, naïve CD4+ T cells

differentiate into T-helper 2 (TH2)-lymphocytes (50). The respiratory

epithelium also becomes actively involved in this process by secreting

different cytokines, such as TSLP, TNF-a, IL-1b, IL-6, and IL-33,

collectively referred to as alarmins (51). Particularly, TSLP, an IL-7-

like cytokine, induces DCs maturation and skewing of the immune

response toward a TH2 profile (52).

Upon activation, TH2 cells produce and secrete a wide range of

cytokines that cause mucosal mastocytosis (IL-9), eosinophilia (IL-5)

(53), airway hyperreactivity and mucus hyperproduction (IL-13)

(54), as well as isotype switching in IgG-producing B cells to

allergen-specific IgE-producing cells (IL-4 and IL-13) (55).

Moreover, the cytokine milieu stimulates eosinophils, mast cell

maturation, and basophil recruitment (56).

Innate lymphoid cells type 2 (ILC2s) are also involved in the

development of the pathology, as effector cells of airway

inflammation in asthma (57). ILC2s express the GATA-3

transcription factor and produce IL-4, IL-5, IL-9, and IL-13 (58).

The release of alarmins or lipid mediators such as PGD2 and

cysteinyl leukotrienes (CysLTs), stimulates ILC2s to produce TH2

cytokines, such as IL-5 and IL-13, leading to increased recruitment of

eosinophils in mucosal sites and exacerbating the inflammatory

process (59, 60), thus contributing to the development of

allergic asthma.

In the elicitation phase, re-exposure to the allergen will lead to

its recognition and binding to mast cell-bound IgE. This interaction

will induce the approximation of adjacent FcϵR1-IgE complexes,

causing the activation of mast cells, leading to an early-phase

reaction and causing an early-type bronchoconstrictor response

(EAR) that lasts for 5–90 minutes (44). Upon activation, mast cells

release a wide range of preformed inflammatory substances, such as

histamine, neutral proteases, cytokines, and proteoglycans (61).

Such substances will cause local or systemic symptoms, such as

urticarial, flushing, vomiting, diarrhea, bronchospasm, rhinorrhea,

and hypotension (62).

Hours after allergen-induced activation, mast cells de novo

synthesize and release a wide range of proinflammatory and

chemoattractant cytokines and inflammatory lipids, initiating the

late-phase reaction (63). Cytokines, such as TNF-a, IL-5, and IL-10,
can induce activation of DCs, T cells, and B cells (64). A

consequence of this proinflammatory response, mainly mediated

by TNF-a, is the margination and extravasation of TH2 cells,

basophils, and eosinophils to the affected tissues (65). In addition,

mast cells within the smooth muscle can be activated by allergen-

IgE-FcϵR1 receptor interaction and release proinflammatory

mediators that may facilitate AHR (66).

Eosinophils are recruited and activated by IL-3, IL-5, GM-CSF,

and eotaxins (67). Activated eosinophils release several

inflammatory mediators (human eosinophil major essential

protein (MBP), eosinophil peroxidase, leukotrienes, IL-13, and

TGF-b) causing airway constriction and AHR, goblet cell

metaplasia, mucus overproduction, tissue damage, and airway

remodeling (68–70). Lung eosinophilia is correlated with severe

asthma, which has suggested that the number of eosinophils present

in the airways could be a marker of the severity of the disease (71).
TABLE 1 Characterization of main allergens involved in allergic asthma.

Main source Allergen
Biological
function

Reference

Animals and arthropods

House dust mite
(Dermatophagoides
pteronyssinus)

Der p 1
Cysteine and
serine protease

(26)

Der p 2
Lipid
binding protein

(27)

Der p 3
Trypsin-like
serine protease

(28)

Der p 5
Possible ligand-
binding protein

(29)

Cat
(Felis domesticus)

Fel d 1
Secretory globins (30)

Dog
(Canis familiaris)

Can f 1
Lipocalin (31)

Mouse
(Mus musculus)

Mus m 1
Lipocalin (32)

Rat
(Rattus norvegicus)

Rat n 1
Lipocalin (33)

Cockroach
(Blattella germanica)

Bla g 2
Inactive
aspartic protease

(34)

Grasses

Rye
(Lolium perenne)

Lol p 1
Expansins —

Timothy
(Phleum pratense)

Phl p 5
Nucleases (35)

Bermuda
(Cynodon dactylon)

Cyn d 1
Expansins —

Weeds

Ragweed
(Artemisia
artemisiifolia)

Amb a 1
Pectate lyase (36)

Trees

Birch
(Betula verrucosa)

Bet v 1
Pathogenesis-
related protein

(37)

Bet v 2 Profilin (38)

Fungi

Aspergillus fumigatus Asp f 1 Cytotoxin (39)

Alternaria alternata
Alt a 1

Possible role in
plant pathogenesis

(40)
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Over time, airway remodeling is a significant factor in the

irreversible airflow obstruction and reduction of lung functionality

observed in severe cases of asthma (72). Eosinophils and mast cells are

responsible for these effects in the context of asthmatic disease, by

infiltrating into tissue in response to cytokines produced by TH2 cells,

as mentioned previously (73). Allergen-IgE complexes stimulate mast

cells to produce a large variety of de novo synthesized and granularly

stored mediators, including histamine, proteoglycans, proteases,
Frontiers in Immunology 05
prostaglandins and leukotrienes; cytokines such as IL-1b, IL-6, IL-
13, and TNF-a; as well as chemokines and different growth factors

(74). This also occurs in eosinophils, which release IL-3, IL-5, GM-

CSF and eotaxins, among other proinflammatory mediators, inducing

the thickening of airway walls, changes in the protein composition of

the extracellular matrix, vascular leakage, goblet cells hyperplasia,

mucus hypersecretion, and bronchial hyperresponsiveness (72).

Therefore, these cells contribute significantly not only to immediate
FIGURE 3

Onset and development of allergic asthma. Environmental allergens reach the airway epithelium, which could present different degrees of injuries
due to exposure to irritating substances. Allergens are captured and processed by DCs with further migration to regional lymph nodes to present
allergen-derived peptides to naïve T cells. Influenced by the cytokine milieu, differentiation to TH2 cells occurs. Further proliferation and return to
the pulmonary epithelium, these cells produce a wide range of inflammatory cytokines, influencing the function of innate immune cells. In parallel,
activation and isotype switching of B cells leads to the production of allergen-specific IgE. On posterior encounters of the epithelium with the
allergen, innate immune responses are triggered by IgE-coated mast cells and basophils, leading to massive secretion of inflammatory cytokines that
initiate the inflammatory process associated with allergic asthma. Repetitive exposure to asthma-inducing allergens will lead to tissue damage due to
the continuous presence of inflammatory mediators, causing different modifications in the airway architecture. CCL27, C-C motif chemokine ligand
27; TSLP, Thymic stromal lymphopoietin; IL, interleukin; TNF, tumor necrosis factor; GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor;
APC, antigen-presenting cell; Ig, immunoglobulin; PGD2, prostaglandin D2; TH2, T helper 2; ILC2: Innate lymphoid type 2 cell.
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hypersensitivity and late-phase inflammation, but also to tissue

remodeling in the airways.

If exposure to the allergen is repetitive over time, the

proinflammatory milieu will persist and lead to a chronic allergic

inflammation, characterized by a persistent type 2 immune

response caused by the activation of TH2 lymphocytes,

eosinophils, basophils, and macrophages (75). This chronic

airway inflammation —a cardinal marker of asthma- results in

parenchymal damage and a continuous process of repairing by

generating connective tissue, aiming to preserve the optimal

functionality of the airway, mainly through the reduction of

airway hyperreactivity, given that stiffer airways may constrict less

well in response to a stimulus than a thinner-walled airway (76, 77).

Despite the fact that most of the cases of allergic asthma present

the aforementioned immunopathologic events, clinical

immunologists have considered that such characterization is an

oversimplification of the disease. This has led to a paradigm shift

regarding the characteristics of the disease, on which allergic asthma

is now classified into different endotypes, particularly type 2-high or

ultra-high asthma, which is characterized by the increased number

and function of pulmonary eosinophils, and type 2-low (also

denominated non-type 2) asthma (59). Although this current

review mainly focuses on type 2-high or eosinophilic allergic

asthma and therapies for this particular endotype, it is worth to

mention that type 2-low asthma is characterized by the absence of

TH2 cytokines, being associated with later onset of the pathology,

use of elevated dose of corticosteroids, and obesity (78).

Furthermore, type 2-low asthma presents an elevated number of

pulmonary neutrophils, increased levels of IL-6, and activation of

the inflammasome pathway. More detailed information regarding

the mechanism associated with non-type 2 asthma and treatment

options has been reviewed on different articles (79–81).
3 NKT cells: a multiway bridge
between innate and
adaptive immunity

Since different subsets of immune cells are involved in the

development of asthma, novel approaches that target other groups

of cells, such as NKT cells, could improve current immunotherapies

and lead to the development of novel therapeutic strategies with the

potential to become the first curative approximation (82).

NKT cells are a highly conserved, non-conventional T cells

subpopulation that participates in innate and adaptive immune

responses by rapidly secreting various cytokines, which faculty these

cells to exert immunomodulatory functions in different contexts,

including tumor response, infectious diseases, allograft rejection,

and autoimmune diseases (83, 84). As the name implies, these cells

express cell-surface molecules from conventional T cells, such as T-

cell receptors (TCR)-CD3 complex, and NK cells, such as CD161

(NK1.1 in mice), NKG2D, and proteins associated with the Ly49

receptor family (85, 86). The development of NKT cells begins in

the thymus, where CD4+CD8+ double-positive (DP) thymocytes are

selected based on whether the TCR recognizes self- or foreign lipids
Frontiers in Immunology 06
in the context of CD1d molecules (87). Then, selected cells further

differentiate and finally migrate to peripheral locations, such as the

liver, spleen, gut, and lungs (88).

Different types of NKT cells have been identified, and the

current classification of NKT cell subsets is based on their

phenotype (89). Type I NKT cells, also known as invariant NKT

(iNKT) cells, are defined by an invariant TCRa chain expression

(Va14Ja18 in mice and Va24Ja18 in humans) paired with a

limited TCRb chains repertoire (Vb8, Vb7, Vb2 in mice and

Vb811 in humans) (90). Although more elusive, type II NKT

cells, designated as diverse NKT (dNKT) cells, express a more

diverse repertoire of TCRa and b chains, which enable the

recognition of a wide range of self- and foreign lipid antigens also

presented by CD1d (91). A distinctive property of dNKT cells is the

null reactivity toward glycolipids recognized by iNKT cells,

notwithstanding its capacity to become activated by compounds

such as sulfatide, phosphatidylinositol, phosphatidylglycerol and

b-GalCer (92). The complete identification and characterization of

dNKT cells are still challenging due to technical limitations and the

lack of specific markers (93). Because of this, most of the research

has focused on studying the biology of iNKT cells, which will be the

focus of this review.

In contrast to conventional T cells, iNKT cells become activated,

mainly, by the recognition of glycolipid antigens bound by their

tails to non-classical and non-polymorphic MHC class I-like CD1d

glycoprotein (94), which is highly expressed on professional

antigen-presenting cells (95, 96). Subsequent to its activation,

NKT cells secrete copious amounts of various cytokines,

including TH1-like (IFN-g, TNF-a), TH2-like (IL-4, IL-6, IL-13),

TH17-like (IL-17A, IL-22) and regulatory cytokines (IL-10) (97–

100). This event determines the capacity of iNKT cells to stimulate

and modulate the function of other immune cells, such as CD4+ and

CD8+ T cells, B cells, DCs, and NK cells, via non-direct activation,

also known as transactivation. Thus, iNKT cells are a functional

bridge between innate and adaptive immunity, being capable of

modifying the outcome of the immune response.

Interestingly, the type of cytokine secreted by iNKT cells

depends on the expression of NK1.1 (101) and specific

transcription factors associated with T cell differentiation, such as

T-bet, GATA-3, RORgt, and PLZF (102). Thus, iNKT cells are

classified according to the expression of these transcription factors:

NKT1 (PLZFloT-bet+), NKT2 (PLZFhiGATA-3hi), NKT10

(PLZFloE4BP4+), and NKT17 (PLZFintRORgt+) (103, 104).

Further analysis of these subsets allowed the establishment of the

principal cytokines that these subsets secrete: IFN-g (NKT1), IL-4
(NKT2), IL-10 (NKT10), and IL-17A (NKT17) (103).

A breakthrough in the study of iNKT cells was the discovery that

virtually all of them react to a-galactosylceramide (aGalCer),
a glycolipid present in extracts of the marine sponge Agelas

mauritianus (105, 106). Further development of fluorescent-labeled

aGalCer-CD1d tetramers allowed the detection and quantitation of

iNKT cells by flow cytometry (107), and their purification using

fluorescent- and magnetic-activated cell sorting (FACS and MACS,

respectively) methods (108). Moreover, the activation of iNKT cells in

vivo by the administration of aGalCer leads to a rapid secretion of

TH1 (IFN-g and TNF-a) and TH2 (IL-4, IL-5, and IL-13) cytokines
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within a few hours after injection (109), allowing the transactivation

of innate and adaptive immune cells (110, 111).
3.1 Outlining the role of iNKT cells in
asthmatic disease on animal models

It has been proposed that iNKT cells deploy a protective role in

several pathologic conditions, such as tumors and some infectious

and autoimmune diseases. Notwithstanding the previous role, these

cells have been associated with pathogenic roles in other diseases,

such as atherosclerosis, tissue transplant rejection, certain liver

diseases, airway hyperresponsiveness, and asthma (112).

The first study addressing the possible pathogenic role of NKT

cells in asthma revealed that the depletion of NK1.1+ cells, such as

NK and NKT cells, before the immunization with ovalbumin

(OVA) as a model of allergic asthma led to a reduction of airway

eosinophilia and T cell infiltration in the lungs together with

diminished levels of allergen-specific IgE (113). However, in

CD1d1 mutant mice, characterized by reduced frequencies of

NKT cells, the induction of OVA-specific allergic asthma resulted

in pulmonary eosinophilic inflammation similar to that observed in

wild-type mice, concluding that NKT cells were dispensable for

allergen-induced asthma (113).

In contrast to earlier findings, Akbari et al. (2003) used Cd1d−/−

and Ja281−/− mice (both strains lacking iNKT cells) to establish an

allergic asthma model, observing a reduced airway eosinophilia and

diminished OVA-specific IgE production, without development of

AHR (114). These results implied that pulmonary NKT cells

became activated soon after antigen encounters in the lungs and

that these cells were required to induce AHR by secreting IL-4 and

IL-13. Furthermore, using OVA-sensitized and challenged Ja18−/−

mice, Lisbonne et al. (2003) demonstrated that the absence of iNKT

cells leads to a diminished AHR, reduced number of total cell

number present in BAL fluid, and lower anti-OVA IgE titer (14).

Later, it was demonstrated that activation of iNKT cells by

intranasal administration of aGalCer in BALB/c mice was enough

to induce asthma-related symptoms, including AHR and airway

inflammation (115). Moreover, nasal administration of SP-30, a

synthetic a-glucuronosylceramide derived from Sphingomonas

capsulata, led to the induction of AHR, pulmonary eosinophilia,

and increased serum IgE levels, being an independent response of

other immune cells such as T cells, B cells, and eosinophils (115).

In 2011, Wingender et al. demonstrated that house dust extracts

(HDE), considered as TH2-biasing mucosal adjuvants, could induce

activation of DN3A4-1.2 cells, a well-characterized murine iNKT cell

hybridoma, in a CD1d- and TCR-dependent manner, which suggests

that HDE may contain antigens that are recognized by iNKT cells

(116). HDE has also activated the human iNKT cell line, implying a

similar response in both cell lines toward the same antigens.

Furthermore, in order to evaluate the contribution of iNKT cells to

the TH2-related activity of HDE, BALB/c wild-type and Ja18−/− mice

-which lack of iNKT cells- were immunized with OVA plus HDE, to

be further airway challenged with OVA. Notably, immunization and

airway challenge of wild-type mice led to the development of an

eosinophilic airway inflammatory response, with elevated levels of
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TH2 cytokines and IgE responses, in opposition to the effects

observed in the Ja18−/− immunized mice, that although presented

signs of allergen-induced airway inflammation -mainly due to the

effects of HDE-, it was significantly lower in comparison to

inflammation observed in wild-type mice. These results led to the

proposition that iNKT cells were involved in the development of

allergic asthma, most likely due to the secretion of cytokines derived

from activated iNKT cells, given by the recognition of antigens

present in HDE. Furthermore, Albaker et al. (2013) reported that

the glycosphingolipid asperamide B, purified from Aspergillus

fumigatus -a saprophytic fungus whose spores are highly recovered

from soils and other environments- induced the activation of

iNKT cells and caused AHR after treatment with a single intranasal

dose (117). These results suggested that iNKT cell-induced asthma

would depend on environmental exposure to air pollutants such as

pollen particles, HDE, and fungal compounds. Other investigations

have required the coadministration of aGalCer to induce allergic

asthma, failing to induce the disease only by the administration of

OVA or ragweed, suggesting that NKT cells, antigen-specific TH2

cells, and IL-4 were needed for the development of asthma,

respectively (118, 119).

Notwithstanding the proposition that the secretion of specific

cytokines derived from iNKT cells could promote the development

of allergic asthma, it has also been proposed that iNKT cells could

modify the immune landscape, particularly by counteracting the

tolerogenic effects of T regulatory (Treg) cells, which are associated

with the resolution of asthmatic inflammation and protection

against experimental asthma. This was initially addressed by

Thorburn and colleagues (120) on which immunoregulatory

components derived from Streptococcus pneumoniae, namely,

type-3-polysaccharide (T3P) and pneumolysoid (Ply), jointly

reduce the number of eosinophils present in an OVA-induced

allergic asthma murine model. Furthermore, the concomitant

administration of T3P and Ply led to an increase in the number

of pulmonary Treg cells, which had the capacity to suppress the

accumulation of NKT cells in the lungs and NKT cell-induced

AHR, proposing that cell contact-mediated suppression was the

main mechanism for this event. Later, Lu and collaborators (121)

demonstrated that increased expression of Foxp3 on Treg cells by

the injection of lentiviral particles carrying the Foxp3 gene in an

OVA-induced allergic asthma model caused the reduction of

pulmonary NKT ce l l s . Fur thermore , in traper i tonea l

administration of a-GalCer in the same model led to increased

percentage of pulmonary NKT while reducing the levels of Treg

present in lungs. Such results suggest a negative regulation between

these cellular subsets, on which Treg cells could have regulatory

properties over NKT cells, blocking their activity with the

concomitant reduction of al lergic asthma symptoms.

Furthermore, a recent study using a murine model for asthma

demonstrated that enhancing the suppressive capabilities of Treg

cells through CD39 overexpression led to a lower number of

pulmonary NKT cells, along with a reduced secretion of IL-4 and

IFN-g derived from these cells, causing a reduction in airway

resistance, lower pulmonary eosinophilia, and reduced goblet cell

hyperplasia (122). However, evidence presented by Chen et al. (123)

has called into question the previously depicted counter-regulation
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between NKT and Treg cells in the context of asthma, mainly given

by the expansion of lung Treg cells in wild-typemice but not in iNKT

cell-knockout mice through the intraperitoneal administration of

aGalCer. In particular, the aGalCer administration enhanced the

secretion of IL-2 by iNKT cells, and the neutralization of this

cytokine reduced the expansion of Treg cells in vivo and in vitro.

Thus, the authors suggested that the release of IL-2 by aGalCer-
activated iNKT cells can induce the generation of lung Treg cells in

mice. Additionally, the same group demonstrated that

intraperitoneal administration of a-GalCer previous to OVA

sensitization caused a lower infiltration of inflammatory cells in

the respiratory tract, reduced number of goblet cells in the airway

epithelium, and lower number of eosinophils on bronchoalveolar-

lavage fluid, as well as promoting the expansion and increased

function of Treg cells (124). Based on this evidence, the authors

proposed that the production of IL-2 by aGalCer-activated iNKT

cells was fundamental to promote the expansion of Treg cells.

Given these facts, the exact mechanisms of the cross-regulation

between NKT and Treg cells are still debatable. It is important to

note that further discussion about the relationship between iNKT

cells and Treg cells should consider the route of administration of

glycolipids and the timing related to allergen sensitization, as well as

evaluating other types of glycolipids that could be determinant in

the interaction between NKT and Treg cells and further depicting

the molecular mechanisms by which such cross-regulations occurs.

The current classification of iNKT cells considers the existence of

different subsets, which could explain their protective or pathological

role in certain diseases (103). In the context of asthma, Kim et al.

(2009), employing a T-bet−/− murine model (125), suggested that even

in reduced number, the remaining iNKT cells are sufficient for

developing AHR, either induced by administration of aGalCer or

OVA. A particular characteristic of this model is the significant

reduction of IFN-g with an increased IL-4 production, which could

be associated with a predominance of iNKT2 cells, leading to an

enhanced susceptibility to generate a TH2-biased response. Following

this hypothesis, nasal administration of IL-25 in mice caused AHR and

enhanced secretion of IL-4 and IL-13 due to higher expression of IL-

17RB, a receptor of IL-25, associated with the phenotype of iNKT2 cells

(126). In a recent report, Tumes et al. (2019) indicated that mice

lacking the epigenetic regulatory enzyme enhancer of zest homolog 2

(Ezh2) presented an increased number of iNKT2 cells in association

with higher levels of IgE, airway inflammation, and induced or

spontaneous AHR, supporting the pathologic role of iNKT2 cells in

the development of asthma (127). Considering these studies, iNKT cells

could directly cause AHR and TH2 inflammation, outlining iNKT cells

as a multifaceted subset in asthma by either fulfilling an adjuvant

function or directly inducing AHR.

Humanized mouse models have been proposed to study the

complexity of the immune response subsiding allergic diseases,

avoiding the ethical constraints inherent to function studies on

humans (128). In the context of the plausible pathogenic role of

NKT cells in allergic asthma, Ose et al. (2021) evidenced that a

challenge with either birch or grass pollen allergens on NSG mice

that had received CD56-depleted PBMCs obtained from highly

sensitized donors led to diminished production of allergen-specific

IgE and reduced lung inflammation (129). Furthermore, pathologic
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airway resistance level and goblet cell hyperplasia were restored

when NSG-SGM3 mice expressing human IL-3, GM-CSF, and stem

cell factor received CD56-depleted PBMCs concomitantly with

positively selected CD3+CD56+ iNKT cells.
3.2 Potential protective role of iNKT cells in
allergic asthma models

Although all the aforementioned studies suggest that iNKT cells

have a pathological role in the onset of asthma, other studies have

reported that iNKT cells are unrelated to the development of

allergic asthma. Matsuda et al. (2005) and Hachem et al. (2005)

demonstrated that experimentally induced allergic asthma could be

modulated by injection of aGalCer in OVA-sensitized mice

previous a further OVA challenge, reducing the amount of

pulmonary eosinophilic infiltration and AHR (130, 131). This

suggests that aGalCer-induced secretion of IFN-g could function

protectively regarding the development of asthma by modulating

the cytokine secretion from a TH2- towards a TH1-profile.

Koh et al. (2010) suggested that NKT cells are dispensable for

developing chronic asthma (132). This research group also

evaluated different allergic asthma hallmarks, such as airway

remodeling characteristics, AHR, and eosinophilic airway

inflammation. It was established that OVA-induced allergic

asthma on BALB/c Cd1d−/− mice presented a significant increase

in AHR, a higher number of total cells in BAL fluid, enhanced

mucus metaplasia, subepithelial fibrosis, and smooth muscle

hyperplasia with increased levels of IL-4 and IL-13 (132). These

results could also imply that the pathogenesis of acute AHR –in

which NKT cells have been reported to be fundamental in its onset-

might differ from chronic AHR.

Applying a protocol for allergic asthma induction in response to

OVA on a triple-knockout murine model that presented only NKT

cells and activated CD8+ T cells, Das et al. (2006) reported that

while wild-type mice developed eosinophilic airway inflammation

in conjunction with increased levels of IL-4 and IL-5 in BAL, H2-Kb

−/−H2-Db−/−C2ta−/− triple-knockout mice did not develop airway

allergic inflammation (15). This evidence allowed them to suggest

that NKT cells and activated CD8+ T cells were not sufficient to

induce symptoms associated with the onset of asthma.

Furthermore, depleting NKT cells from wild-type BALB/c and

C57BL/6 mice did not avoid the induction of allergic asthma,

suggesting again that NKT cells are dispensable for establishing

this disease.

McKnight et al. (2017) found no significant difference among

different models of induced airway disease when comparing wild-

type and iNKT cell-deficient mice concerning the number of lung

iNKT cells present after challenge, the onset of AHR, and severity

after administration of anti-CD1d monoclonal antibody (133).

Based on these results, the authors proposed that the difference

between the murine models employed to study the role of iNKT

cells in asthma could be influenced by the microbiota the animals

are exposed to.

Chang et al. (2011) showed that influenza virus A (H3N1)

infection in suckling but not in adult mice could induce a protective
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effect by CD4-CD8- (DN) NKT cells in a T-bet TLR7-dependent

manner (134). The authors associated the protective effect with the

maturation and expansion of DN NKT cells, which might have led

to the expansion of Treg cells. Furthermore, administration of iNKT

cells ligands such as aGalCer or antigens derived from Helicobacter

pylori replicated the protective effect of NKT cells, as seen in

influenza virus infection. This was the first study to propose a

subset of NKT cells that could suppress AHR in conjunction to

provide a mechanism for the hygiene hypothesis, therefore

proposing a possible therapeutic approximation by using

compounds derived from microorganisms in an NKT cell-based

strategy. Further studies of the DN NKT cell population revealed a

high expression of CD38, which could suppress CD4+ T cells

through cytotoxic activity and prevent the development of

AHR (135).

Further investigations have developed multiple aGalCer-
derived glycolipid analogs that can induce a biased TH1/TH2

cytokine response (136–138). It has been reported that the co-

administration of aGalCer-modified analog a-lactosylceramide

(aLacCer) -a weak activator of murine and human iNKT cells-

and aGalCer led to a reduced airway hyperreactivity and neutrophil
infiltration, accompanied by lower production of IL-4 and IL-13, in

comparison to the basal levels induced by the administration of

aGalCer alone (139).
Recent evidence has called into question the previously depicted

counter-regulation between NKT and Treg cells in asthma. In 2019,

Chen et al. reported that intraperitoneal administration of aGalCer
promotes the expansion of lung Treg cells in WT mice but not in

iNKT cell-knockout mice. In particular, the aGalCer

administration enhanced the secretion of IL-2 by iNKT cells, and

the neutralization of this cytokine reduced the expansion of Treg

cells in vivo and in vitro. Thus, the authors suggested that the release

of IL-2 by aGalCer-activated iNKT cells can induce the generation

of lung Treg cells in mice (123). Later that year, the same research

group reported the expansion and increased suppressive activity of

Treg cells within pulmonary tissue on wild-type BALB/c mice that

received a single dose of aGalCer previous to allergen sensitization,

leading to decreased TH2 immune response (124). Given these facts,

the exact mechanisms of the cross-regulation between NKT and

Treg cells are still debatable. It is important to note that further

discussion about the relationship between iNKT cells and Treg cells

should consider the route of administration of glycolipids and the

timing related to allergen sensitization.
3.3 Conflicting evidence regarding the
presence and activity of NKT cells in
asthmatic patients

Murine models of asthma have been of significant importance

for studying the possible role of NKT cells in this disease; however,

mice do not reproduce exactly the pathological state evidenced in

humans with asthma, including differences in the degree of

symptoms and events associated with the chronicity of the

disease, such as airway remodeling, and the use of compounds
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employed to induce experimental allergic asthma, which are

generally innocuous to humans, particularly regarding the

extended use of OVA as a model allergen in murine models.

The first approximation to determine the possible role of NKT

cells in asthmatic patients evaluated the frequency of these cells in

peripheral blood. Interestingly, asthmatic patients showed a lower

NKT cell count than healthy controls. Besides, there was no

correlation between the number of NKT cells and clinical variables,

such as eosinophil count and serum IgE level, among others (140).

Conversely, other studies have reported elevated frequency of

iNKT cells in BAL fluid from asthmatic patients compared to

healthy controls, in addition to a reduced number of iNKT cells

in peripheral blood, which might suggest a process of migration of

these cells from the periphery to the airways (141–143).

Moreover, Agea et al. (2005) reported that human T cells,

including iNKT cells, may recognize lipids from pollens –

particularly phosphatidylcholine and phosphatidylethanolamines-

through a CD1-dependent pathway, requiring CD1a+ and CD1d+

antigen presenting cell (144).

An initial report by Akbari et al. (2006) showed that more than

60% of pulmonary CD4+CD3+ T cells present in BAL fluid from

patients with moderate or severe asthma were iNKT cells (145).

However, other groups have failed to replicate the same results,

evidencing that the presence of iNKT cells in BAL fluid, induced

sputum, and bronchial-biopsy specimens ranges from 0.07% to 3%

(141, 142, 146). Furthermore, the study conducted by Vijayanand

and collaborators employing different lung-derived samples was

unable to observe the results reported by Akbari et al., on which less

than 2% of NKT cells were detected on pulmonary samples and

were unable to detect the NKT T-cell receptor genes Va24 and

Vb11 on bronchoalveolar-lavage fluid and sputum of asthmatic

subjects (147). In this sense, it has been suggested that the results

obtained by Akbari et al. (2006) may be biased due to improper

gating strategy and lack of blocking Fc receptors that could have led

to nonspecifically binding of antibodies (143).

Although limited by the small number of patients, the results

presented by Reynolds et al. (2009) evidence an increased presence

of iNKT cells in lung biopsies of patients with mild-to-moderate

asthma taken at baseline, 24 hours and seven days after allergen

challenge, similar context to mouse models previously used (148).

By using aGalCer-loaded CD1d tetramers, the group reported that

9.8% of CD3+ T cells were iNKT cells at baseline, increasing 24

hours after the allergen challenge to 15%, returning to baseline

levels after seven days. By correlating the results with the

measurement of AHR by spirometry, the group proposed that

iNKT cells would have a crucial role in allergic asthma by

increasing AHR, being the first study to recreate similar

conditions as those studies employing murine models.

Furthermore, the presence of iNKT cells in other types of

samples, such as induced sputum, has been determined to be

increased in patients with asthma and eosinophilic bronchitis

(149). The same study also found an inverse correlation between

the number of iNKT cells in sputum and the degree of AHR,

proposing that specific cytokines produced by iNKT cells, such as

IFN-g, could inhibit AHR. In a further study, the same research
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group assessed the cytokine produced by iNKT cells present in the

blood of asthmatic patients, evidencing an enhanced production of

IL-4, which may contribute to the inflammatory process in the

airways and the severity of the diseases (150).

Carpio-Pedroza et al. (2013) found an increased frequency of

iNKT cells in peripheral blood during asthma exacerbation attacks

in children (151). Even more, this study showed that iNKT cells

could be influencing asthmatic exacerbations due to increased

production of IL-4 and decreased levels of IFN-g, proposing that

iNKT cells could modulate these episodes by the polarization of T

cells and recruitment of pro-inflammatory cells. These results align

with the previous work by Yan-ming et al. (2012), where they

evidence an increased production of IL-4 by iNKT cells (152). This

study also demonstrated a reduction of IL-4 in sublingual

immunotherapy treatment for house dust mite allergy with no

further increase in IFN-g levels. However, it enhanced the

production of IL-10, suggesting a possible mechanism of

immunotherapy through immune tolerance induction.

Adding to the controversy regarding the role of iNKT cells in

asthmatic patients, it has been depicted that the aforementioned

cells could interact either synergistically or antagonistically with

Treg cells, mainly through the secretion of IL-2 from iNKT cells,

causing an increased proliferation of Treg cells (153), or the

suppression of the proliferation and cytokine secretion of NKT

cells by Treg cells (154), respectively. Nguyen et al. (155) explored

such interaction on samples derived from allergic asthma patients,

evidencing an increased expression of natural cytotoxic receptors

NKp30 and NKp46 on iNKT cells from patients with allergic

asthma, as well as an elevated secretion of granzyme B and

perforin by these cells, which led to an increased cytotoxicity of

iNKT cells against autologous Treg cells, suggesting that the

reduction of Treg cells caused by iNKT cells could be mediated

either by the direct interaction or through the secretion of the

aforementioned cytotoxic enzymes. Such results suggest that iNKT

cells may also contribute to the pathogenesis of AHR by acting as

counter-regulators of Treg cells.

In the context of the usage of bacterial lysate, such as OM-85

Broncho-Vaxom (OM-85 BV), as a clinical immunomodulatory

therapy, Lu et al. (2015) demonstrated a significant increase in the

number of peripheral blood iNKT cells in asthmatic children

treated with OM-85 BV, further evidencing a decreased

production of IL-4 and enhanced secretion of IL-10 from these

cells. This evidence suggests that therapeutic strategies-based

modulation of the immune response by iNKT cells could induce

allergen-specific tolerance and a possible curative therapy in the

context of asthmatic disease.
3.4 Methodological differences regarding
studies of iNKT cells involvement in asthma

Given the conflicting results observed in both murine model

and samples derived from asthmatic patients, measures should be

taken to properly evaluate the contribution of NKT cells in the onset

or severity of allergic asthma, among which should consider the

following aspects:
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3.4.1 Mice strain background
It is a well-established fact that the differences in genetic

background of mice determine inflammatory characteristics,

being critical for the development of relevant murine models of

allergic asthma. It has been reported that A/J and AKR/J mice

present higher levels of AHR after allergen sensitization and

challenge (156). However, the mouse strain most frequently

employed for allergic asthma studies are C57BL/6 and BALB/c.

Comparative studies have indicated that BALB/c mice are prone to

developing a TH2 response and developing AHR, while C57BL/6

mice are hyporesponsive to methacholine challenges although

displaying a considerable allergen-induced eosinophilic

inflammation (157).

3.4.2 Animal models to determine the
significance of NKT cells in asthma

Difference between models that consider either the deletion of

critical genes for developing NKT cells, deletion of CD1d genes, or

administration of blocking antibodies should weigh whether such

approaches effectively allow evaluating the participation of NKT

cells on allergic asthma, taking into consideration the different

subtypes of NKT cells that exist. Some models, such as Ja18−/−, still
endows the development of dNKT cells, which could be further

stimulated by unidentified antigens and/or mechanisms that could

modulate the onset of asthma (158).

3.4.3 Microbe exposure
The current microbiota present in the subject could be

conditioning the immune response in the development of

asthmatic diseases. The presence or absence of different bacteria

would affect the immune response and inflammation (159).

Furthermore, intestinal and mucosal microbiota could affect

murine models employed to evaluate the participation of NKT

cells in asthma (160, 161).

3.4.4 Allergens
Particularly in protein-induced allergic asthma, endotoxin

content in immunizing content could influence the development

of asthma and the type of allergic response associated with the

diseases (162, 163). Additionally, even though the use of OVA as a

model allergen presents benefits, such as high accessibility,

increased purity of the compound and the characterization of the

epitopes against which immune responses are mounted, its use has

been called into question, mainly due to the fact that inhalation of

pure OVA induces a tolerogenic response (164), it is not an

environmental allergen and does not cause airway inflammation

in humans. Thus, the use of other allergens, such as ragweed, house

dust mite (HDM) extracts and Aspergillus fumigatus (165–167) has

been proposed in the development of model that resemble more

closely to the allergic asthma observed in humans.
3.4.5 Routes of sensitization and challenge
Different routes are employed depending on whether the

objective is to induce acute or chronic asthma. One publication

reported that subcutaneous sensitization was superior to
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intraperitoneal administration; however, is still pending to confirm

this evidence (168). Furthermore, allergic responses in the murine

asthma model do not resemble the natural induction of allergic

disease, mainly because allergen exposure is a continuous event

through time. In addition, current protocols have suggested chronic

exposure to aeroallergens as a “physiological” approximation to the

induction of allergic asthma (166, 169). In line with that knowledge,

it has been recommended allergen exposure should consider

inhalation by nebulization, intratracheal or intranasal

administration (170–172).

3.4.6 Proper identification of iNKT cells
Concise detection of iNKT cells should consider staining with

fluorescent-labeled aGalCer-CD1d tetramer (173), as well as

employing proper reagents to block unspecific interactions with

other cells. Furthermore, iNKT cells could be activated by

recognizing glycolipid content in the tetramer. This should be

considered in adoptive transfer experiments, where iNKT cells

could become transitorily anergic due to undesired activation

(174), leading to a downregulation of the expression of its TCR.

On the other hand, for human samples, as well as including

tetramer staining, identification of NKT cells should also be

complemented with the use of Vb11, Va24 and Va24-Ja18-
specific antibodies (147).
3.5 Reconsidering current treatment
of asthma

Asthma is considered a heterogeneous disease on which different

‘asthma phenotypes’ have been recognized (175). According to the

demographic, clinical and/or pathophysiological characteristics, the

most common phenotypes of asthma include allergic asthma,

non-allergic asthma, adult-onset asthma, asthma with persistent

airflow limitation and asthma with obesity (175–177).

The current pharmacological therapy for asthmatic patients

includes inhaled short-acting b-agonists (178), long-acting b-
agonist (179), inhaled corticosteroids (180), systemic

corticosteroids (181), leukotriene receptor antagonist (182), and

biological agents, mainly monoclonal antibodies, directed against

different immunological targets involved in the occurrence and

severity of allergic asthma symptoms (183–186). Among the

biological agents currently available for asthma treatment, some

of the most used are mepolizumab, reslizumab, and benralizumab,

which interfere with the functions of IL-5 and, in the case of the

latter, has cytotoxic activity against cells that express the IL-5

receptor; dupilumab, that blocks IL-4 receptor a (187–189);

omalizumab, that leads to a reduce binding of IgE to its receptor

as well as downregulates the FcϵRI expression (190); and

tezepelumab, that blocks TSLP and probed useful in cases of

type-2 low asthma (191).

According to the severity of the disease, different therapeutic

strategies can be considered. In the case of mild asthma, defined as

well controlled asthma, treatment considers low-dose of inhaled

corticosteroids and, when needed, short-acting b-agonists. On the

other hand, treatment for moderate asthma, also considered as a well-
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controlled asthma, contemplates the use of medium-dose inhaled

corticosteroids and long-acting b-agonist. Finally, severe asthma,

defined as asthma that remains uncontrolled despite optimized

treatment, considers the use of long-acting muscarinic antagonists,

leukotriene receptor antagonist therapy and the use of biological

agents, such as the aforementioned monoclonal antibodies (192).

However, high failure rates (30% to 70%) to adhere to the

treatment regimen in asthma patients, as well as the high cost of

treatment (193) and the heterogeneity in the immunopathology

of the disease, impose significant limitations that can impair the

effectiveness of the treatment, leading to the disappearance of

therapeutic effects (10–12).

As current management of asthma considers only the

regulation of asthmatic symptomatology, allergen desensitization

immunotherapy arises as the unique treatment that can revert

allergic diseases since it can suppress the proinflammatory state

and promote the development of allergen tolerance (194).

Allergen immunotherapy leads to the generation of regulatory

cells, such as regulatory T (Treg) cells and regulatory B (Breg) cells

(195, 196), which produce inhibitory cytokines, such as IL-10 and

TGF-b, as well as possessing specific molecules, such as granzyme B,

CD39, CD73 and CTLA-4, that promote an immunosuppressive

environment in the context of allergic inflammation (197, 198).

Through these mechanisms, both Treg and Breg cells suppress

allergic TH2 immune responses, as well as suppressing the

production of allergen-specific IgE and inducing the secretion of

IgG4 and IgA antibodies on B cells; abolish the homing of TH2 cells

on inflamed tissues; suppress the activation of epithelial cells and

mucus production; reduce the activation threshold of innate

immune cells, such as mast cells, basophils and eosinophils; and

interfere in the differentiation of naïve CD4+ T cells to TH2 cells

(197, 199). Thus, the overall result of allergen immunotherapy leads

to the generation of regulatory cells that suppress both TH1 and TH2

responses, to later promote a pronounced TH1 response to the

administered allergen (200).

However, allergen immunotherapy has certain drawbacks that

limit its use. Initially, candidates for allergen immunotherapy should

present concise result of allergy testing, such as immediate

hypersensitivity skin test or presence of serum specific IgE, while

patients with positive test for specific IgE antibodies that do not

correlate with clinical symptoms are not considered for the treatment

(200). Secondly, previous to initiate allergen immunotherapy,

patients should have a controlled asthma through the use of

pharmacotherapy (200). Thirdly, allergen immunotherapy could

induce adverse reactions, such as local allergic reactions,

anaphylaxis, or near-death reactions (201). Fourthly, effectiveness

of allergen immunotherapy mostly relies on the subjective assessment

of the patient’s report of feeling better during a season that previously

caused asthmatic symptoms (200). Furthermore, the immunotherapy

build-up regime could last between 3 and 6 months, while the

maintenance regimen could extend from 3 to 5 years (202).

Additionally, discontinuation of allergen immunotherapy could

lead to a relapse of the asthmatic symptomatology, reducing its

effectiveness over extended periods (200).

Given these facts, improvements on allergen immunotherapy

are required, mainly to induce an early tolerogenic response and
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prolonged effectiveness through time. In this way, allergen

immunotherapy could benefit from multiple aGalCer-derived
analogs capable of activating iNKT cells that have recently been

developed in order to generate a biased TH1/TH2 cytokine response

(203–205), and combined with different strategies designed to

deliver the glycolipid analog cargo , such as the use of

nanoparticles designed to induce the activation of iNKT cells

(206), would allow joint delivery of both iNKT cells modulating

glycolipids and allergens, allowing a possible restoring of the

imbalanced cytokine production present in asthma by further

induction of a tolerogenic immune response toward a specific

allergen. Suzuki et al. (2019) led one distinguishable investigation

that used aGalCer-loaded liposomes jointly delivered with OVA as

a therapeutic strategy in a murine model of allergen-induced

asthmatic disease, demonstrating a switch of immunoglobulins

generated upregulation of TH1-type cytokine secretion and

reversion on nasal symptoms (207).

On the other hand, an earlier immunosuppressive milieu could

be established through the induction of NKT10 cells (100), which

produce and secrete IL-10, which might lead to the generation of

other cellular subsets producing such immunosuppressive

cytokines, and could significantly impact the immune response in

the context of allergic inflammation.

Finally, it has been demonstrated that activation of NKT cells

can lead to the generation of Breg cells, as evidenced by Zeng (208)

and Vomhof-DeKrey (209), which could enhance the generation of

such cells in the context of allergen immunotherapy and promote a

stronger anti-inflammatory response.
4 Concluding remarks

The information provided supports the fact that, in the context

of allergic asthma, iNKT cells are present; however, their precise

pathological or protective functions on this pathology remains

unclear (Figure 4). Differences in the reported biological role of

iNKT cells may also be due to biases as a result of methodological

variations. Further studies employing murine models should take
Frontiers in Immunology 12
into account the proper genetic background of mice, the presence of

iNKT cells in different types of tissues and samples retrieved from the

animals, as well as the proper identification of the different subtypes of

iNKT cells and the cytokine profile secreted by these cells. Regarding

the participation of iNKT cells in human subjects, studies should

consider the accurate identification of these cells employing either

specific antibodies or CD1d tetramers, as well as proper staining

protocols. Even more, it is pending evaluation if iNKT cells could

participate in asthmatic disease caused by other etiologies, such as

chronic, aspirin-induced, occupational, and steroid-resistant asthma.

Considering the capacity of iNKT cells to modulate different

immune cell subsets, further investigations should focus on inducing

the activation of these cells on asthmatic pulmonary tissue, promoting

an anti-inflammatory cytokinemilieu that would lead to the reduction

of the symptomatology and, ultimately, to the reversion of the

pathology. Future studies need to take into consideration the

possible role that iNKT cells could be playing in the context of

asthma to develop efficient immunotherapies that not only lead to

the reversion of TH2-type cytokine overproduction but also generate a

strategy that could be fully accomplished by the patient in a reduced

regimen and leading to a lengthy tolerogenic response, arising as a

time- and cost-effective therapy.
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FIGURE 4
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