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Discovery of an independent
poor-prognosis subtype
associated with tertiary lymphoid
structures in breast cancer
Ruiqi Liu1†, Xiaoqian Huang1†, Shiwei Yang1, Wenbo Du2,
Xiaozhou Chen1* and Huamei Li2*

1School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, China,
2Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated
Hospital of Nanjing University Medical School, Nanjing, China
Introduction: Tertiary lymphoid structures (TLSs) are ectopic lymphoid

formations that arise in non-lymphoid tissues due to chronic inflammation.

The pivotal function of TLSs in regulating tumor invasion and metastasis has

been established across several cancers, such as lung cancer, liver cancer, and

melanoma, with a positive correlation between increased TLS presence and

improved prognosis. Nevertheless, the current research about the clinical

significance of TLSs in breast cancer remains limited.

Methods: In our investigation, we discovered TLS-critical genes that may impact

the prognosis of breast cancer patients, and categorized breast cancer into three

distinct subtypes based on critical gene expression profiles, each exhibiting

substantial differences in prognosis (p = 0.0046, log-rank test), with Cluster 1

having the best prognosis, followed by Cluster 2, and Cluster 3 having the worst

prognosis. We explored the impact of the heterogeneity of these subtypes on

patient prognosis, the differences in the molecular mechanism, and their

responses to drug therapy and immunotherapy. In addition, we designed a

machine learning-based classification model, unveiling highly consistent

prognostic distinctions in several externally independent cohorts.

Results: A notable marker gene CXCL13 was identified in Cluster 3, potentially

pivotal in enhancing patient prognosis. At the single-cell resolution, we delved

into the adverse prognosis of Cluster 3, observing an enhanced interaction

between fibroblasts, myeloid cells, and basal cells, influencing patient

prognosis. Furthermore, we identified several significantly upregulated genes

(CD46, JAG1, IL6, and IL6R) that may positively correlate with cancer cells'

survival and invasive capabilities in this subtype.
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Discussion: Our study is a robust foundation for precision medicine and

personalized therapy, presenting a novel perspective for the contemporary

classification of breast cancer.
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1 Introduction

As a widely utilized high-throughput sequencing method,

RNA sequencing technology empowers scientists to analyze gene

expression at the whole transcriptome level comprehensively. In

recent years, the rapid advancements in next-generation sequencing

technologies have yielded extensive biomedical data on cancer,

including information on cancer genomes, transcriptomes,

proteomes, and the tumor immune microenvironment.

Leveraging cutting-edge analytical techniques in machine learning

and deep learning, it has become possible to delve deeply into data

and unearth insights into the pathogenesis, intrinsic heterogeneity,

effective therapeutic targets, and other potential aspects of specific

cancers within large-scale research cohorts (1–3). This process aids

in achieving early and precise cancer diagnoses, selecting

personalized medical treatment strategies, and accurately

predicting therapeutic responses and prognostic risks.

According to the latest cancer statistics in the United States

published in CA Cancer J Clin, breast cancer (BC) is the first

malignant tumor with the highest incidence rate in women

currently, and by 2023, it will have the highest number of new

cases of all cancer types. Among all female cancer patients, the

incidence rate of breast cancer is as high as 31%, and the mortality

rate has been ranked second, which seriously jeopardizes women’s

lives and health (4, 5). Based on gene expression profile

characteristics, breast cancer can be classified into five intrinsic

molecular subtypes, which are known as PAM50 typing. However,

gene sequencing is difficult to promote in the clinic due to its high

cost, time-consuming, and other drawbacks. The widely used typing

method is based on immunohistochemistry (IHC), which detects

the expression of Estrogen Receptor (ER), Progesterone Receptor

(PR), HER2, and Ki-67. IHC typing has a large margin of error and

low robustness and requires a biopsy of the patient, for which some

patients are not suitable (6, 7).

In recent years, some prognostic gene signatures associated with

breast cancer have been identified in several studies and applied to

clinical practice (8, 9). There is a long-standing hypothesis that

secondary lymphoid organs (SLOs) are the main sites of anti-tumor

immune responses (10). However, due to the distance between

SLOs and tumor tissues, immune cells can only migrate inside the

tumors to function. Nevertheless, recent findings have identified
02
certain anti-tumor immune response sites within tumor tissues,

known as tertiary lymphoid structures (11). TLSs are ectopic

lymphoid structures formed at sites of chronic inflammation in

non-lymphoid tissues (12), composed of a variety of cells such as T

cells, B cells, follicular dendritic cells (FDCs), and other cells with

high endothelial venules (HEV). It has been shown that TLSs play a

crucial role in controlling tumor invasion. For example, the

correlation between high density of TLSs and more prolonged

overall survival (OS) and disease-free survival (DFS) has been

demonstrated in a large number of solid tumors such as lung,

colorectal, liver, breast, pancreatic, and melanoma (13–20). Not

only that, TLSs in tumor tissues also play a crucial role in anti-

tumor immune response and are related to the prognosis of

immunotherapy closely (21–23).

Given the close relationship between TLSs and cancer

prognosis, we looked at the expression levels of TLS-related genes

in breast cancer. We assessed their integrated correlation with

tumor microenvironment (TME) heterogeneity and clinical

prognosis. Specifically, we used TLS-related gene expression

profiles to typify breast cancer. Further, we explored the intrinsic

heterogeneity characteristics of TLS-derived breast cancer subtypes,

such as analyzing the prognosis of different subtypes, enriched

genes and pathways, differences in molecular mechanisms,

searching for subtype-specific biomarkers, etc., which, from

the perspective of TLSs, provides an insightful understanding

of the pathogenesis and progression of breast cancer, and also

provides the support and foundation for precision medicine and

personalized treatment.
2 Materials and methods

2.1 Molecular data and clinical information
on breast cancer

In this study, transcriptome expression data and clinical

information were acquired for a total of 1215 breast cancer

samples from The Cancer Genome Atlas Project (TCGA). Copy

number variant data, calculated using the Illumina platform based

on the GISTIC2 method, were downloaded from the UCSC Xena

database (https://xenabrowser.net/datapages/). The METABRIC
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dataset, encompassing transcriptome expression data and clinical

information for 1904 breast cancer patients, was downloaded from

cbio-portal (https://www.cbioportal.org) (24). Additionally,

external independent breast cancer datasets GSE19615 (n = 115)

and GSE20685 (n = 327) (25, 26), the 10X single-cell RNA

sequencing dataset GSE195665 (n = 167) (27), along with the

cohort of triple-negative breast cancer patients receiving anti-

angiogenic immunotherapy GSE103668 (n = 21) (28), were

downloaded from Gene Expression Omnibus (GEO).
2.2 Consensus clustering for investigating
potential breast cancer subtypes

We implemented unsupervised consensus clustering with the

parameter “clusterAlg = pam, distance = euclidean, pItem = 0.8”

using the “ConsensusClusterPlus” R software package (version

1.64.0) (29). This approach enabled the adjustment of the cluster

number from 2 to 6, facilitating the identification of the most stable

consensus matrix and the most distinct cluster assignment during

the iterative clustering process.
2.3 Computational index for breast
cancer-related events and
immune microenvironment

We used the “method = ssgsea” function from the “GSVA”

software package (version 1.48.0) to ascertain the activity scores of

TLS-related genes in patients (30). To evaluate any significant

variations in overall survival (OS) among subtypes, we conducted

Kaplan-Meier (KM) survival analysis and applied the log-rank test

using the “survival” software package (version 3.5.5) (31). To

identify differentially expressed genes (DEGs) within the TLS-

derived subtypes, we employed the FindAllMarkers function

integrated within the “Seurat” software package (version 4.3.0)

(32). Genes exhibiting adjusted p < 0.05 and a log2FC > 1 were

classified as significantly differentially expressed. For an in-depth

exploration of the distinct biological processes and pathways

manifesting significant differential expression among the subtypes,

we harnessed the bitr function of the “clusterProfiler” software

package (version 4.0.5) to convert gene symbols to Entrez IDs (33).

Subsequently, we conducted an enrichment analysis using the

enrichGO function with the “ont = BP” parameter, as well as the

enrichKEGG function, to elucidate and analyze the enriched Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways. GO and KEGG terms demonstrating adjusted

p < 0.05 were deemed significantly enriched. We leveraged the

“ESTIMATE” software package (version 1.0.13) to estimate stromal

scores, immune scores, and tumor purity in patients (34), the

immune infiltration tool “CIBERSORT” was used for assessing

the relative abundance of 22 immune cell types in patients (35).

Furthermore, we used the “genefu” software package (version

2.32.0) to predict the PAM50 type of patients in the single-cell

dataset (GSE195665) (36).
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2.4 Building machine learning models to
predict Cluster 1&2 and Cluster 3 subtypes
of breast cancer patients

Considering that Cluster 3 identified in the TCGA breast cancer

cohort has the worst prognosis, we introduced the XGBoost model

to differentiate between Cluster 1&2 and Cluster 3 categories of

individual breast cancer patients. The TCGA breast cancer cohort

was randomly divided into training and testing sets according to

7:3, and the TLS-critical genes obtained from Lasso regression were

used as features in the training set. The XGBoost model was applied

to the training set using the “xgboost” function in the “XGBoost” R

package (version 1.7.5.1), with parameters set to “nfold = 10,

objective = binary: logistic, max. depth = 8, eval_metric =

logloss”, the model with the highest AUC value was kept. The

model performance was tested using the testing set and other

external independent datasets (METABRIC dataset, GSE195665,

GSE20685, GSE195665, and GSE103668).
2.5 Performing cell communication
analysis using CellChat

In the single-cell dataset, we used the CellChat package (version

1.6.1) to analyze intercellular communication in Cluster 1&2 and

Cluster 3 (37). CellChat is a specialized tool for analyzing intercellular

communication by integrating known intercellular communication

databases and single-cell RNA sequencing data, assisting in revealing

potential interactions between cell populations and contributing to

the understanding of the dynamic characteristics of intercellular

communication in biological processes.
2.6 Statistical analysis

All statistical analyses were performed in R4.3.0. Standard

statistical tests such as Student’s t-test, Wilcoxon rank sum test,

log-rank test, and Cox proportional risk regression were used to

analyze the expression and clinical data, and p < 0.05 was

considered statistically significant.
3 Results

3.1 Heterogeneity of TLSs in breast cancer
and potential prognostic value

TLSs are an integral part of anti-tumor immunity, and its

density is closely related to patient survival, prognosis, and

recurrence. Based on the existing studies on TLSs, we included 79

TLS-related genes by reviewing the literature (11, 18, 19, 21, 38–42)

to analyze 1,215 breast cancer samples from TCGA (Supplementary

Table S1). These genes are mainly chemokine- and immune cell-

associated genes which are closely related to the formation of

tertiary lymphoid structures. In the TCGA breast cancer cohort,
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we observed a noteworthy disparity in the distribution of TLSs

between tumor and normal samples (Figure 1A), and there were

notable distinctions in the expression levels of TLS-related genes

between tumor and normal samples (Figure 1B). The high-

expression group had a longer overall survival time than the low-

expression group (Figure 1C). To validate the strong relationship

between TLSs and the prognosis of breast cancer patients, we

compared the relationship between the TLS-related gene activity

score and PAM50, the classical staging of breast cancer. The results

showed that the Her2 and Basal subtypes, which had a poorer

prognosis, had lower TLSs (Figure 1D). Although PAM50 typing

can be used to predict the prognosis of patients, such as LumA has a

better prognosis, whereas Her2 and Basal have a worse prognosis,

we were still able to differentiate between better and worse

prognostic groups from each of the PAM50 subtypes, based on

the level of TLS-related gene expression. Similarly, the prognosis of

the high-expression group was significantly better than the low-

expression group, demonstrating the good prognostic predictive

ability of TLS-related genes (Figure 1E).

To obtain more effective and reliable gene signatures for

predicting the prognosis, we screened the above 79 TLS-related

genes using LASSO regression and obtained 12 TLS-critical genes

(Figure 1F). The univariate Cox regression analysis showed that all
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critical genes significantly correlated with prognosis. CCL8, CCL2,

IL1R1, IL10, CR1, CETP, and GNLY were potential protective

factors, whereas SELL, HLA-F, LAMP3, HLA-DQB1, CXCL13

were potential risk factors (Figure 1G). In summary, TLSs show

significant heterogeneity in breast cancer and can impact the

prognosis of patients.
3.2 Determination of breast cancer
subtypes based on TLS-critical genes

To investigate the prognostic value of TLSs in breast cancer

more precisely, we performed a consensus clustering analysis on

TLS-critical gene expression profiles in the TCGA breast cancer

cohort. We categorized breast cancer patients into three subtypes:

Cluster 1, Cluster 2, and Cluster 3 (Figure 2A; Supplementary

Table S2; see Materials and Methods). The results showed that

TLS-derived breast cancer subtypes reflected significant variability

in prognosis, with Cluster 1 having the best prognosis, followed by

Cluster 2, and Cluster 3 having the worst prognosis (Figure 2B).

By comparing the expression levels of TLS-critical genes in the

three subtypes, it can be found that TLS-critical genes were

expressed at the highest level in Cluster 1, followed by Cluster 2,
B C D

E F G

A

FIGURE 1

Expression levels of TLS-related genes reveal the heterogeneity of the tumor microenvironment and its impact on prognosis in breast cancer.
(A) The t-SNE plot showing a projection of breast cancer samples based on TLS-related genes, with each point representing a sample; tumor
samples are shown in red and normal samples in blue. (B) Violin plot showing the differences in the expression levels of TLS-related genes in normal
and cancer samples of the breast cancer cohort. P-value was obtained by t-test. (C) Violin plot showing the distribution of overall survival time
between high- and low-expression groups of TLS-related genes in the breast cancer cohort. The high- and low-expression groups were divided by
the median, and the P value was obtained by t-test. (D) Violin plot showing the distribution of enrichment scores of TLS-related genes in PAM50
typing, with P-values obtained by Wilcoxon rank sum test. (E) Kaplan-Meier survival curves between the high- and low-expression groups of TLS-
related genes in PAM50 typing. P-values were calculated by log-rank test. (F) The LASSO algorithm was used to process the TLS-related genes, and
12 critical genes were screened for subsequent analysis. (G) Forest plot showing the prognostic impact of the 12 TLS-critical genes on the TCGA
breast cancer cohort as determined by univariate Cox regression analysis.
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and at the lowest level in Cluster 3 (Figure 2C), which is in line

with the results of the previous analyses: higher TLSs reflects

better prognosis. To further validate the characteristics of the

three subtypes, we introduced the genomic grade index (GGI),

which is a gene expression signature designed to enhance the

histologic grade assessment (43). It was found that Cluster 3 had

the highest GGI (Figure 2D), implying that Cluster 3 had a worse

prognosis and reduced responsiveness to immunotherapy

treatment. We also calculated the stem cell characteristic gene

activity scores of the three subtypes. Stem cell characteristic gene

activity score is strongly associated with tumor aggressiveness, risk

of recurrence and patient prognosis. Cluster 3 had the highest

score (Figure 2E), and the resulting subtype heterogeneity may

provide the basis for selecting treatment-resistant clones, leading

to poor clinical outcomes. Not only that, we further analyzed the

stromal score, tumor purity and immune score of these three

subtypes to explore the tumor microenvironment characteristics

of the three subtypes. We found that Cluster 3 had the lowest

immune scores, the stromal scores, and the highest tumor purity

(Figure 2F), implying that among the TLS-derived subtypes,

Cluster 3 had the lowest immune cell infiltration and activity,

the highest tumor cell density, and tumor invasiveness.
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To elucidate the biological functions and pathways involved in

TLS-derived subtypes, we performed differential gene expression

analysis, as well as GO and KEGG functional enrichment analysis

(Figure 2G). Cluster 1 was significantly associated with the immune

system and organisms’ response to external pathogens or other

organisms. Cluster 2 was significantly associated with protein

localization to the cell periphery, small molecule degradation, cilia

assembly, and organic acid catabolism, which play essential roles in

maintaining normal cellular function. Cluster 3 was significantly

associated with viruses replicating their genomes and the negative

regulatory processes that regulate viral genome replication, involving

key processes in viral biology (Supplementary Table S3). Further

functional enrichment analysis showed that Cluster 1 was

significantly associated with hematopoietic cell lineage, cytokine-

cytokine receptor interactions, and Th17 cell differentiation

pathways, Cluster 2 was significantly associated with lysosomal,

Hedgehog signaling and synaptic vesicle cycling pathways, and

Cluster 3 was associated with nucleoplasmic transfer pathway and

Hippo signaling pathway (Supplementary Table S4). Notably, Hippo

is a very conserved signaling pathway responsible for regulating cell

proliferation and apoptosis, and its major components are mutated

and dysregulated in a variety of cancers, promoting the development
B
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A

FIGURE 2

Heterogeneity of TLS-derived breast cancer subtypes. (A) Heatmap showing the consensus clustering matrix of the TCGA breast cancer cohort
based on the TLS-critical gene expression matrix. (B) KM curves showing significant differences in prognosis among the three TLS-derived subtypes.
P-value was obtained by log-rank test. (C) Violin plot showing differences in the expression of TLS-critical genes among TLS-derived subtypes. P-
values were obtained by t-test. (D) Violin plot showing the GGI of the TLS-derived subtypes, with P-value derived by t-test. (E) Violin plot showing
the stem cell signature gene activity scores of the TLS-derived subtypes. The P-value was derived by t-test. (F) Violin plot showing the distribution
of different biological characteristics in the TLS-derived subtypes, including immune score, stromal score, and tumor purity, with P-values derived
by t-test. (G) Bubble plot showing enriched gene ontology terms and KEGG pathways. (H) Circle plot showing the copy number variation of the
TLS-derived subtypes, with white indicating copy number increase and gray indicating copy number deletion.
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of malignant tumors. It has been demonstrated that transcriptional

coactivators downstream of the Hippo signaling pathway, including

YAP/TAZ, promote the proliferation of breast cancer cells by

stabilizing the KLF5 transcription factor, survival, and tumor

growth, leading to poor prognosis of breast cancer (44).

In addition, we obtained copy number variation data for the

TCGA breast cancer cohort at the GDC Xena Hub (https://

xenabrowser.net/datapages/). By looking at the copy number

variation of TLS-derived subtypes, we found that the genetic

variant profiles also exhibited significant heterogeneity. More copy

number amplifications occurred in Cluster 1&2, while more copy

number deletions occurred in Cluster 3 (Figure 2H). Specifically, on

chromosomes 1, 8, 11, 16, 17, and 20, Cluster 1&2 showed more copy

number amplification, while Cluster 3 showed only a few copy

number amplifications. Besides, on chromosomes 3, 4, 5, 6, 7, 10,

12, 19, and X, copy number amplification was observed in Cluster

1&2, whereas in Cluster 3, there was no copy number amplification

but only copy number deletion. This difference also reflects the

molecular heterogeneity within breast cancer, and these molecular

changes may lead to different characteristics and functions of tumor

cells, which affects the tumor’s treatment response and prognosis,

leading to differences in the response of different subtypes to

treatment. Therefore, this difference could be considered when

developing treatment regimens. Gene amplification is usually

associated with the overproliferative capacity of tumor cells, and for

Cluster 1&2, which has more gene amplification, inhibiting the

overproliferative capacity of tumor cells may be an effective

therapeutic strategy. On the contrary, gene deletions may lead to

reduced tumor suppressor function, and for Cluster 3 with more gene

deletions, focusing on restoring tumor suppressor function may be

another effective therapeutic strategy.
3.3 Prognostic value of TLS-derived breast
cancer subtypes

To investigate the differences in immune infiltration of TLS-

derived breast cancer subtypes, we used the CIBERSORT cell

deconvolution tool to assess the relative abundance of 22 immune

cell types in three subtypes. The results showed that Cluster 3 had

the lowest degree of immune infiltration (Figure 3A). Next, we

investigated the impact of potential interactions between cancer

signature pathways and TLS-derived subtypes on patients and

found that some pathways such as HALLMARK_UV_

RESPONSE_UP, HALLMARK_ESTROGEN_RESPONSE_

EARLY, and other signature signaling pathways had lower

activity levels in Cluster 3 (Supplementary Table S5), may be

positively correlated with survival, while HALLMARK_KRAS_

SIGNALING_UP, HALLMARK_APOPTOSIS, HALLMARK_

TNFA_SIGNALING_VIA_NFKB, and other signature signaling

pathways were more active in Cluster 3, may be negatively

correlated with survival (Figure 3B). To verify this speculation, we

selected three signature signaling pathways, HALLMARK_

ESTROGEN_RESPONSE_EARLY, HALLMARK_ESTROGEN_

RESPONSE_LATE, and HALLMARK_E2F_TARGETS, and

observed the KM curves of their OS. The results were consistent
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with our speculation that the high activity of HALLMARK_

ESTROGEN_RESPONSE_EARLY versus HALLMARK_

ESTROGEN_RESPONSE_LATE in Cluster 3 represented a better

prognosis, and HALLMARK_E2F_TARGETS in Cluster 3 High

activity, on the other hand, was associated with a worse prognosis

(Figure 3C). We further evaluated the activity of 28 immune cells

(45) in TLS-derived subtypes, and it could be seen that Cluster 1

and Cluster 2 were immunized to a better extent than Cluster 3

(Figure 3D; Supplementary Table S6). We chose Activated B cells

with low activity in Cluster 3, observed the KM curve of their OS,

and found that the lower activity of Activated B cells led to a poor

prognosis of Cluster 3 (Figure 3E). All of these results suggest that

TLS-derived breast cancer typing heterogeneity can influence breast

cancer prognosis and can be utilized as a feasible factor to predict

the prognosis. In addition, we investigated the association between

TLS-critical genes and the survival of TLS-derived subtypes and

found IL1R1 and CCL8 are protective factors (HR < 1, p < 0.05)

(Figure 3F). IL1R1 and CCL8 are implicated in the regulation of

inflammation and immune response. We next compared their

expression differences in the three subtypes and found the lowest

expression level of IL1R1 and CCL8 in Cluster 3, which may have

contributed to the poor prognosis (Figure 3G).
3.4 Prediction of TLS-derived subtypes in
external datasets using XGBoost

To develop an accurate and unsupervised clustering-

independent method for predicting TLS-derived subtypes in

breast cancer patients, we trained the XGBoost model for

predicting Cluster 1&2 and Cluster 3 subtypes based on the

breast cancer cohort of TCGA and the 12 TLS-critical genes

obtained by using Lasso regression previously (see Materials and

Methods). Our model achieved an accuracy of 0.92 in predicting the

training set of TCGA (Figure 4A). Applying our model to external

datasets of breast cancer (Metabric dataset, GSE19615, GSE20685)

and combining it with clinical information, we were able to

demonstrate that the predicted Cluster 1&2 and Cluster 3

subtypes differed significantly in prognosis (Figure 4B). The

expression pattern of TLS-critical genes is consistent with

the TCGA-BRCA cohort (Figure 4C). Furthermore, due to the

extensive attention that TLSs have received in immunotherapy in

recent years (21–23), we additionally collected a dataset of 21 triple-

negative breast cancer patients who were treated with cisplatin and

bevacizumab in a neoadjuvant setting (GSE103668), to test the

predictive value of TLS-derived subtypes. Our model divided the

cohort into two groups, Cluster 1&2 and Cluster 3, the differences in

the expression of TLS-critical genes were also consistent with the

other datasets tested (Figure 4D). Notably, while 18.8% of patients

in Cluster 1&2 achieved pathologic complete remission (pCR), no

patients in Cluster 3 achieved pCR, indicating a worse response to

the neoadjuvant setting in Cluster 3 (Figure 4E).

We next analyzed the importance of TLS-critical genes in the

XGBoost prediction model and found that CXCL13 had the highest

importance (Figure 4F; Supplementary Table S7). Combining

clinical information, we found that CXCL13 effectively predicted
frontiersin.org

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://doi.org/10.3389/fimmu.2024.1364506
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1364506
patient prognosis in the TCGA-BRCA cohort and external datasets

(Metabric dataset, GSE19615, GSE20685) (Figure 4G). Previous

studies have identified that TLS production requires continuous

chronic stimulation, its maintenance depends on some molecules,

including CXCL13 (43, 46), and increasing CXCL13 levels

promotes the formation of TLSs (47–49). These results suggest

that CXCL13 is an essential biomarker for clinical studies of

Cluster 3, which may be necessary for improving breast cancer

patients’ prognosis.
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3.5 Single-cell perspective of
TLS-derived subtypes

To further validate the significance of TLS-derived subtypes, we

applied the model to the single-cell dataset (GSE195665) from the

GEO database. We performed a detailed analysis of the single-cell

transcriptome data of 834,356 cells from 167 samples, including

steps of downsampling, quality control, batch-effects correction,

and normalization, and finally, we used XGBOOST to predict TLS
B
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FIGURE 3

Prognostic differences in TLS-derived breast cancer subtypes. (A) Box line plot showing the differences in immune infiltration among the TLS-derived
subtypes, P-values were derived by Wilcoxon rank sum test. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B) Heatmap
showing activity scores of cancer signature pathways for the TLS-derived subtypes. These pathways were obtained from the MSigDB database.
(C) KM curves showing the effect of the activity of cancer signature pathways on the prognosis of TLS-derived subtypes. P-values were obtained by
log-rank test. (D) Heatmap showing the effect of the activity of 28 immune cell genomes on the prognosis of TLS-derived subtypes. (E) KM curves
showing the effect of immune cell activity on the prognosis of patients with TLS-derived subtypes. P-values were obtained by log-rank test.
(F) Heatmap showing the effect of the expression of TLS-critical genes on the prognosis of TLS-derived subtypes. P-values were obtained by log-
rank test. (G) Violin plot showing the differences in the distribution of IL1R1 and CCL8 expression levels in TLS-derived subtypes. P-values were
obtained by t-test.
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typing for 44 tumor samples (Figure 5A). By comparing Cluster1&2

and Cluster3, we observed that the differences in expression

patterns of TLS-critical genes, immune scores, and tumor purity

were all consistent with our results obtained in other datasets

(Figures 5B, C). Utilizing the genefu package to predict PAM50

typing for tumor samples from the single-cell dataset, we noted that

samples predicted as Basal and Her2 were also predicted as Cluster

3 (Figure 5D). These findings re-emphasize the poor prognosis of

Cluster 3 and confirm the feasibility of our typing strategy from a

single-cell perspective.

We compared cellular fraction differences between Cluster 1&2

and Cluster 3, as well as between normal samples and Cluster 3.

Notably, Cluster 3 exhibited elevated fibroblasts abundance and

diminished lumhr cells abundance (Figures 5E, F). Cellchat analysis

demonstrated that, compared to Cluster 1&2, fibroblasts in Cluster

3 had significantly stronger interactions with other cells, especially
Frontiers in Immunology 08
with myeloid cells, but weaker interactions with lumhr cells

(Figure 5G; see Materials and Methods). Further analysis of

receptor and ligand genes showed that the interaction of CD46-

JAG1 and IL6-(IL6R+IL6ST) was significantly enhanced in Cluster

3 (Figure 5H). We observed the expression patterns of CD46 and

JAG1 in fibroblasts, pericytes, and basal cells, as well as IL6, IL6R,

and IL6ST in fibroblasts and myeloid cells. Within Cluster 3, the

expression of CD46 was significantly increased in fibroblasts, JAG1

in basal cells, IL6 in fibroblasts, and IL6R in myeloid cells

(Figures 5I, J). The KM survival curves showed that CD46, JAG1,

IL6, and IL6R were all risk factors that lead to poor prognosis in

breast cancer patients (Figure 5K), which implies that the enhanced

interaction between CD46-JAG1 leads to poor prognosis in breast

cancer patients, along with the IL6-(IL6R+IL6ST) axis. Therefore,

we hypothesized that CD46 and IL6 were upregulated in fibroblasts,

with enhanced interactions with basal cells and myeloid cells,
B

C D E

F G

A

FIGURE 4

Validating the reliability of TLS-derived subtypes in external datasets. (A) ROC curve showing the accuracy of the XGBoost classifier in predicting
specific samples in the training set. (B) Kaplan-Meier survival curves for Cluster 1&2 versus Cluster 3 overall survival predicted using XGBoost. P-
values were obtained by log-rank test. (C) Violin plot showing the difference in expression levels of TLS-critical genes in Cluster 1&2 versus Cluster 3
predicted using XGBoost. P-values were obtained from the t-test. (D) Violin plot showing the difference in expression levels of TLS-critical genes in
Cluster 1&2 versus Cluster 3 using XGBoost predictive immunotherapy cohorts. P-values were obtained by t-test. (E) Stacked bar graph showing the
comparison of disease treatment effects between Cluster 1&2 versus Cluster 3 in the predicted immunotherapy cohort using XGBoost. pCR = 0
indicates this sample did not achieve pCR and pCR = 1 indicates this sample achieved pCR. (F) Bar graph showing the importance ranking of 12 TLS-
critical genes (sorted by gain index) in the training set. (G) KM curves showing the effect of CXCL13 on the prognosis of breast cancer patients. The
P-value was obtained by log-rank test.
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leading to upregulation of JAG1 and IL6R expression, ultimately

contributing to the poor prognosis of Cluster 3.
4 Discussion

TLSs are increasingly recognized as a focus of anti-tumor

immunity, and it has been demonstrated that a higher number of

mature TLSs in tumors is associated with favorable outcomes in

various cancers. We explored the breast cancer microenvironment

using TLS-related genes and found the heterogeneity of TLSs in
Frontiers in Immunology 09
breast cancer, which supports our TLS-derived typing of breast

cancer. Therefore, we used consensus clustering analysis on the

TLS-critical gene expression profiles of the TCGA breast cancer

cohort and obtained three subtypes (Cluster 1, Cluster 2, and

Cluster 3), and found that the three subtypes differed significantly

in prognoses. Gene ontology annotation and pathway analysis

revealed these three subtypes were associated with different

biological processes. Calculation of the activity scores of signature

cancer signaling pathways and immune cell genomes in TLS-

derived subtypes revealed that the heterogeneity of TLS-derived

subtypes may affect prognosis and may be utilized as a viable
B C D

E

F

G

H I J

K

A

FIGURE 5

Single-cell profiling of the immune microenvironment and TLS-derived subtypes interactions. (A) The predictive result of the breast cancer single-
cell dataset (n = 44). (B) Violin plot showing the difference in expression levels of TLS-critical genes in Cluster 1&2 versus Cluster 3 predicted using
XGBoost. The P-value was obtained by Wilcoxon rank sum test. (C) Violin plot showing the difference in tumor purity and immune scores of Cluster
1&2 versus Cluster 3 predicted using XGBoost. P-values were obtained by Wilcoxon rank sum test. (D) Sankey plot showing the association of
Cluster 1&2 versus Cluster 3 with PAM50 typing. (E) Grouped boxplot showing the cellular proportion of Cluster 1&2 and Cluster 3 samples. P-values
were obtained from t-tests. ns, not significant, *p < 0.05. (F) Grouped boxplot showing the cellular proportion of normal and Cluster 3 samples.
P-values were obtained from t-tests. ****p < 0.0001. (G) Interaction map depicting the ligand-receptor interactions within the immune
microenvironment. The width of edges represents the relative interaction strength. Red colored edges represent increased signaling in Cluster 3
compared to Cluster 1&2, while blue colored edges represent decreased signaling in Cluster 3 compared to Cluster 1&2. (H) Bubble plot showing
the significant interactions between receptor and ligand genes among fibroblasts, basal cells, myeloid cells, and pericytes in Cluster 1&2 and Cluster
3. (I) Violin plot showing the differences in the distribution of CD46 expression levels in fibroblasts and JAG1 expression levels in basal cells of both
Cluster 1&2 and Cluster 3. P-values were obtained by t-test. (J) Violin plot showing the differences in the distribution of IL6 expression levels in
fibroblasts and IL6R expression levels in myeloid cells of both Cluster 1&2 and Cluster 3. P-values were obtained by t-test. (K) KM curves showing
the effect of CD46, JAG1, IL6, and IL6R on the prognosis of TCGA-BRCA cohort. P-values were obtained by log-rank test.
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predictor of prognosis. By further evaluating the degree of immune

infiltration, stromal scores, tumor purity, GGI, and copy number

variant differences of the TLS-derived subtypes, the results showed

that Cluster 3 had the lowest immune scores, stromal scores, the

highest tumor purity, and the highest GGI, which were all

consistent with its poor prognosis. In addition, we identified

many gene deletions in Cluster 3, suggesting significant

heterogeneity in the characterization of genetic variation in TLS-

derived subtypes at the genomic level. The above results suggest that

TLS-derived subtypes could provide a new strategy for current

breast cancer typing.

To validate the reliability of TLS-derived subtypes, we

developed a prediction model using XGBoost to predict Cluster

1&2 versus Cluster 3 in other externally independent datasets. The

model was evaluated to perform well in the TCGA training set

(accuracy = 0.92). In other externally independent breast cancer

cohorts, the subtypes predicted by our model showed prognostic

differences and significant gene expression differences consistent

with the expected pattern. This supports TLSs for typing studies in a

broader range of breast cancer cohorts. In addition, we found that

CXCL13 is the most critical marker gene in the Cluster 3 subtype.

As mentioned in a previous study, the process of TLS formation is

as follows: activation of local fibroblasts, recruitment of immune

cells to maturation, and activated fibroblasts in the first step

promote the recruitment and aggregation of lymphocytes through

the secretion of the pro-angiogenic factors CXCL13 and CCL19

(50), so a better prognosis can be achieved by increasing CXCL13

levels to promote TLSs formation.

Finally, we applied the model to a breast cancer single-cell

dataset. Again, the Cluster 3 subtype showed a worse prognosis,

higher tumor purity, and lower immune scores. After observing the

cellular components and intercellular communication, we

hypothesized that in Cluster3, CD46, and IL6 were upregulated in

fibroblasts, with enhanced interactions with basal cells and myeloid

cells, leading to upregulation of the expression of JAG1 and IL6R,

ultimately contributing to the poor prognosis of Cluster 3. Relevant

research has demonstrated that the inflammatory cytokines IL6/IL6R

amplify the signaling of the Notch-Jagged pathway, which stimulates

the generation of hybrid epithelial-mesenchymal cancer stem cells,

and that inhibition of CD46 gene expression reduces the effects of

proliferation, invasion, and migration capacity of breast cancer cells.

Knockdown of the JAG1 gene significantly reduced the potential for

tumor organogenesis in triple-negative breast cancer (TNBC) cells,

and JAG1-mediated adaptive resistance in Her2 breast cancer cells

led to tumor recurrence (51). Overall, these studies highlight the

critical roles of IL6 and IL6R, as well as CD46 and JAG1, in the

survival and invasive capacity of cancer cells, and their broad promise

as targets for antitumor therapies, as well as exploring the possibility

of combining them with other therapeutic agents.
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